JPH0480642A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JPH0480642A
JPH0480642A JP2194348A JP19434890A JPH0480642A JP H0480642 A JPH0480642 A JP H0480642A JP 2194348 A JP2194348 A JP 2194348A JP 19434890 A JP19434890 A JP 19434890A JP H0480642 A JPH0480642 A JP H0480642A
Authority
JP
Japan
Prior art keywords
value
temperature
calculation
signal
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194348A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakano
中野 昌芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2194348A priority Critical patent/JPH0480642A/en
Publication of JPH0480642A publication Critical patent/JPH0480642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To compensate a nonlinear change due to each of an interference component gas concentration and an ambient temperature and thereby to improve the precision in measurement by a method wherein a compensated value of the ambient temperature and a compensated value of an interference error of the interference component gas concentration due to the ambient temperature are determined by computation. CONSTITUTION:A temperature sensor 22 detects the ambient temperature of the main body 2 of an analyzer and outputs a temperature signal 22a. An arithmetic element 23 receives a detection signal 13a and the temperature signal 22a as inputs, executes a prescribed computation and outputs the result of the computation as an intermediate signal 23a. An arithmetic element 24 receives a detection signal 15a and the temperature signal 22a as inputs and outputs an intermediate signal 24a by a prescribed computation. Even when a measured value shown by each of the detection signals 13a and 15a is a value changing in a nonlinear manner in accordance with the temperature, a computed value is compensated with high precision by an error compensation signal 27a. Therefore the concentration of a component gas to be measured can be measured with high precision without containing both of a temperature error and an interference error substantially.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非分散形単光神複光束式の赤外線ガス分析計、
特に試料ガス中の干渉成分ガスによる測定誤差と赤外線
ガス分析計の周囲温度が基準値と異なることにもとづく
測定誤差との双方を少なくすることができる分析計に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-dispersive single-beam double-beam infrared gas analyzer;
In particular, the present invention relates to an analyzer that can reduce both measurement errors due to interfering component gases in a sample gas and measurement errors due to the ambient temperature of the infrared gas analyzer being different from a reference value.

〔従来の技術〕[Conventional technology]

第2図は従来の非分散形単光#A復元東武赤外線ガス分
析計1の構成図で1図における分析計本体2は富士電機
(株)発行「富士時報」第50巻ta7号pp、36〜
43(以後、この文献を富士電機文部ということがある
。)(記載された「赤外線ガス分析計」における第3図
記載のものと同じものである。
Figure 2 is a configuration diagram of the conventional non-dispersive type single light #A restored Tobu infrared gas analyzer 1. The analyzer body 2 in Figure 1 is "Fuji Jiho" published by Fuji Electric Co., Ltd., Vol. 50, Ta No. 7, pp. 36 ~
43 (Hereinafter, this document may be referred to as the Fuji Electric Literature Department.) (This is the same as the one shown in Figure 3 in the "infrared gas analyzer" described.

さ″C,第2図において、3は単光源である赤外線光源
4から出射された赤外線を断lje光としての赤外線5
にして出射するようにしたシングルポイントチ1ツバ、
6は赤外線5を二つの光束5a。
In Fig. 2, 3 is an infrared ray 5 which cuts off the infrared rays emitted from the infrared light source 4, which is a single light source.
A single point chi1 brim designed to emit light,
6 is the infrared ray 5 as two luminous fluxes 5a.

5b[分け、かつ一方の光束5畠をガス人ロアから試料
ガス8が導入される試料セル9に入射させ他方の光束5
bを赤外線5を吸収することのないたとえば不活性ガス
が封入された基準セル10(入射させるようにした分配
セル、1目:試料セル9と基準セルlOとが設けられた
セル部で、12は上述した千冒ツバ3と光源4と分配セ
ル6とを備えた光源部である。13はこの分析計1が温
度測定の対象とする測定成分ガスGmと同種のガスが封
入され℃おり、かつ光束51の試料セル9を透過した透
過光5Cと光束5bの基準セル10を透過した透過光5
dとからなるセル部出射光工4が入射され、かつ試料セ
ル9に導入された試料ガス8中の測定成分ガスGrnC
よる光束51の吸収にもとづく主測定値E、と試料ガス
8中の干渉成分ガスGiによる光束5mの吸収にもとづ
く副測定値E、との合計値である第111J定値Slを
表す第1検出信号131を出方するよつ(シた第1検出
!、15は干渉成分ガスGiが試料ガス8中に存在する
ことにもとづく測定成分ガスGmのdlff1本分析計
1による測定誤差(以後この誤差を干et[Etという
ことがある。)を補償するためのガスが封入され、かつ
透過光5Cの第1検出器13を透過した透過光5Cと透
過光5dの第1検出器13を透過した透過光5fとから
なる第1検出器出射光16が入射され、かつ試料ガス8
中の干渉e、分ガスGiによる光束5aの吸収にもとづ
く第2測定値S!を表す第2検出信号15aを出力する
よってした第2検出器で1m述した分析針本体2は上述
の光源部12とセル部11と検出Sta及び15とで構
成されている。
5b [separated, and one beam 5 is made incident on the sample cell 9 into which the sample gas 8 is introduced from the gas lower, and the other beam 5 is
A reference cell 10 filled with, for example, an inert gas that does not absorb infrared rays 5 (distribution cell in which the infrared rays 5 are incident); 13 is a light source section comprising the above-mentioned Chifutsuba 3, light source 4, and distribution cell 6. Reference numeral 13 is filled with gas of the same type as the measurement component gas Gm whose temperature is to be measured by this analyzer 1; Transmitted light 5C of the light flux 51 transmitted through the sample cell 9 and transmitted light 5 of the light flux 5b transmitted through the reference cell 10.
d and the measurement component gas GrnC in the sample gas 8 introduced into the sample cell 9.
A first detection signal representing the 111J constant value Sl, which is the sum of the main measurement value E based on the absorption of the luminous flux 51 by the interference component gas Gi in the sample gas 8, and the sub-measurement value E based on the absorption of the luminous flux 5m by the interference component gas Gi in the sample gas 8. 131 appears (first detection!), 15 is the measurement error of the measurement component gas Gm due to the presence of the interference component gas Gi in the sample gas 8. The transmitted light 5C is filled with a gas to compensate for the temperature difference (sometimes referred to as Et), and the transmitted light 5C is transmitted through the first detector 13, and the transmitted light 5d is transmitted through the first detector 13. The first detector output light 16 consisting of the light 5f is incident, and the sample gas 8
The second measured value S! is based on the absorption of the luminous flux 5a by the interference e in the middle gas Gi, the second measured value S! The analytical needle main body 2 described above is composed of the above-mentioned light source section 12, cell section 11, and detection Sta and 15.

17はに1のゲインを有しかつ信号131 が入力され
る線形増幅器、18はに8のゲインを有しかつ信号15
mが入力される線形増幅器、19は増幅器17の出力信
号が表す値に(1/(1+AIT ) )を乗じる演算
を行ってその結果のvlを表す信号19aを出力するよ
うにした1m1f補償演算器で、20は増幅第1gの出
力信号が表す値に+1/(1+淘T)1を乗じる演算を
行ってその結果のV!を表す信号201を出力するよう
にした温度補償演軍器である。
17 is a linear amplifier that has a gain of 1 and receives the signal 131; 18 has a gain of 8 and receives the signal 15;
19 is a 1m1f compensation calculator that multiplies the value represented by the output signal of the amplifier 17 by (1/(1+AIT)) and outputs a signal 19a representing the result vl. 20 is the value represented by the output signal of the amplified first g by +1/(1+T)1, and the result is V! This is a temperature compensation performance device that outputs a signal 201 representing the temperature.

そうして、ここに、入1.A2はそれぞれ予め測定した
既知の定数としての温度係数を表しており。
Then, enter here 1. A2 represents a temperature coefficient as a known constant measured in advance.

またTは分析計本体20間囲温度tとこの温ftの基準
値t、との差(” o)を示している。第2図における
2tは演算器出力信号19mと203とが入力され、か
つこれら雨入カ信号のそれぞれカ表スtLv1.V! 
’3mV= (V+  ’t)ヲX出L テこのVを表
す信号2t1を出力するようにした減算器で、赤外線ガ
ス分析計1は上述の@部で構成されている。
Further, T indicates the difference ("o) between the ambient temperature t between the analyzer main body 20 and the reference value t of this temperature ft. 2t in FIG. 2 is the input of the calculator output signals 19m and 203, And the power level of each of these rain input power signals tLv1.V!
The infrared gas analyzer 1 is a subtracter configured to output a signal 2t1 representing this V.

〔発明が解決しようとする1m!41 分析計1を工上述のように構成されているので減算器出
力信号2taが表す値Vは(1)式で示される。
[1m that the invention tries to solve! 41 Since the analyzer 1 is constructed as described above, the value V represented by the subtractor output signal 2ta is expressed by equation (1).

V” ((KI Et +KI Em )/(1+AI
 T) l  (KI St/(1+A、’r) 1・
・・・・・(1) したがって、  1=1.である時のV、E1t、S2
tからS10E1t、S2tからS10EJ。
V” ((KI Et +KI Em)/(1+AI
T) l (KI St/(1+A,'r) 1・
...(1) Therefore, 1=1. V, E1t, S2 when
t to S10E1t, S2t to S10EJ.

の各値をV・I g2tに対するS20I E、・、当
。とすると(2)式が得られる。
Each value of S20I E for V・I g2t, ·, this. Then, equation (2) is obtained.

V* =に+ g1t、S2tからS10+KIEso
 Kt ate     −−(2)さて、(2)式に
おけるEm@、8R・は前述したよう(いずれも試料ガ
ス8中の干渉成分ガスGiによる赤外線吸収にもとづく
測定値であるが、この場合、 E1t、S2tからS1
0、 S1t、S2tからS10かいずれもガスGi’
)8度C11c依存しないものであればKI Eam=
Km SN。となるようにに、 、 K、を設定するこ
とによって(2)式からv6=KIE!@が得られて、
この場合E、oがガス8中の測定成分ガスGmの温度C
1に対応していることが上述の富士電機文献から明らか
であるから、減算器出力信号2t8によって温度Cmを
干渉誤差Eiを含むことなく正#i’C測定することが
できることになる。
V* = to + g1t, S2t to S10+KIEso
Kt ate --(2) Now, as mentioned above, Em@ and 8R in equation (2) are measured values based on infrared absorption by the interference component gas Gi in the sample gas 8, but in this case, E1t , S2t to S1
0, S1t, S2t to S10 are all gas Gi'
) If it does not depend on 8 degrees C11c, KI Eam=
Km SN. By setting , K, so that v6=KIE! from equation (2). @ is obtained,
In this case, E and o are the temperature C of the measurement component gas Gm in the gas 8
1, it is clear from the above-mentioned Fuji Electric literature that the temperature Cm can be measured as positive #i'C using the subtractor output signal 2t8 without including the interference error Ei.

ところが、実際/ck: 、第3図で示したように。However, in reality /ck:, as shown in Figure 3.

測定値E @ 6 + 816がJl、vci[応じて
それぞれ固有の非線形状′/c変化して同じ#度C1に
おいてもE2tに対するS20の大きさと8.・の大き
さとが異なるのが通例であるから、Ciの広い範囲(わ
たってKI Ego =に! S 20  となるよう
にすることは不oT能で、このため1分析計1では、第
3図に示したようr、予め設定した1141j Ciの
基準値Cir’cおいてKI ES6= Kl sta
 が成立するようPc K、 + K、を設定すること
が行われている。したがって1分析計1rcはC1(C
irの時に、 E2tに対するS20(K、8.。とな
って干渉誤差Eiの補償が不充分であるので温度Cmの
測定精度が悪いという問題点がある。
The measured value E @ 6 + 816 changes according to Jl, vci [each unique nonlinear shape'/c, and even at the same degree C1, the magnitude of S20 with respect to E2t and 8. Since it is customary for the magnitudes of . As shown in r, KI ES6= Kl sta at the preset reference value Cir'c of 1141j Ci.
Pc K, + K is set so that the following holds true. Therefore, 1 analyzer 1rc is C1 (C
When ir, S20(K, 8..) for E2t occurs, and the interference error Ei is insufficiently compensated for, so there is a problem that the measurement accuracy of the temperature Cm is poor.

また1分析計1においては、検出信号13aが表す第1
測定値8 s =E t + ” sが@囲温度ty)
広い範囲にわたって温度係数AIで線形に変化し、検出
信号15鳳が表す第2測定値S!がtn広い範囲(わた
つ″C温度係数A、で線形に変化するものであれば。
In addition, in one analyzer 1, the first
Measured value 8 s = E t + ” s @ ambient temperature ty)
The second measured value S!, which varies linearly with the temperature coefficient AI over a wide range, and is represented by the detection signal 15! If tn varies linearly over a wide range (temperature coefficient A).

出力信号19!が表す値V、が1=1゜におけるS。Output signal 19! S when the value V represented by is 1=1°.

の値3..=E2tに対するS20+E3゜に対応し、
出力信号20aが表す値V、がt=t、VCおけるS、
の値S!。(対応することは明らかで、この場合−Ci
=CirにおいてKI E#@=に、 stoとなるよ
うvcK1t、S2tからS10に、を設定すること(
よって、C1=CIである限りtの広−九範囲にわたっ
て減算器出力信号2t8により櫂度Cmを正確に測定す
ることができるわけであるが、爽際にはS、 、 S、
 bllに応じ℃非線形状に変化するので演算器19.
20 F ヨッテV1 、Vl ヲ”) 広い範囲にわ
たって81O’SR0に対応した値にすることが不可能
で、こnため1分析計1では、温[t・で測定したs、
 、 S、 7’)各櫃S1・、Sl。とは異なる温度
【=t、で測定したS、 、 S、の各種S1t、S2
tからS10、S□とから(3)式のようにしてA、 
、 A、を決定している。
The value of 3. .. = corresponds to S20+E3° for E2t,
The value V represented by the output signal 20a is t=t, S at VC,
The value of S! . (It is clear that there is a correspondence, in this case −Ci
Set vcK1t, S2t to S10 to be sto in KI E#@= in =Cir (
Therefore, as long as C1=CI, it is possible to accurately measure the paddle degree Cm using the subtractor output signal 2t8 over a wide -9 range of t, but at the moment of refreshing, S, , S,
The calculation unit 19.
20
, S, 7') Each box S1., Sl. Various S1t, S2 of S, , S, measured at a temperature [=t, different from
From t to S10, S□, as in equation (3), A,
, A is determined.

したがって、減算器出力信号2taによって温度Cmの
測定を行う分析計IICは、1=10または【=t、で
ある場合にだとえKIEs/(1+AIT)=に!Sm
 / (1+A、T )つ1成立するようにに1t、S
2tからS10Ktが設定されていたとしても、いUo
または1(1にであるとV、 、 V、がそれぞれ81
0181@に対応した値(ならないので、信号2taが
表すm寂Cmの測定値に1ニ一般に周囲温度tにもとづ
(温度誤差E、が存在すること(なつ℃、結結局1析析
計1はこのような誤差Elが存在するという理由によっ
てもdl f Cmの測定精度が愚いという問題点があ
る。
Therefore, the analyzer IIC, which measures the temperature Cm by the subtractor output signal 2ta, becomes KIEs/(1+AIT)=! if 1=10 or [=t, Sm
/ (1+A,T) 1t, S so that one holds true
Even if S10Kt is set from 2t, Uo
or 1 (if it is 1, V, , V, are each 81
Since the value corresponding to There is a problem in that the measurement accuracy of dl f Cm is poor due to the existence of such an error El.

本発明の目的は、上述した副測定値Esの干渉成分ガス
温度Ci及び周囲温度t7′)それぞれによるいずれも
非線形状の変化を共にほぼ完全に補償するようにして、
温度Cmに対する測定精度の高い赤外線ガス分析計を得
ることにある。
The object of the present invention is to almost completely compensate for the nonlinear changes caused by the interfering component gas temperature Ci and the ambient temperature t7' of the sub-measurement value Es mentioned above,
An object of the present invention is to obtain an infrared gas analyzer with high measurement accuracy for temperature Cm.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため2本発明によれば、試料セルと
基準セルとが設けられたセル部と、前記セル部に赤外線
を入射させる光源部と、前記赤外線の前記セル部を透過
した透過光としてnセル部出射光が入射されかつ前記試
料セル中の測定成分ガスによる前記赤外線り吸収にもと
づく主測定値と前記試料セル中の干渉成分ガスによる前
記赤外線の吸収にもとづく副測定値との合計値である第
1測定値を表す第1検出信号を出力する第1検出器と、
前記セル部出射光の前記第1検出器を透過した透過光と
しての第1検出器出射光が入射されかつ前記試料セル中
の前記干渉ガス成分ガスによる前記赤外線の吸収にもと
づく第2測定値を表す第2検出信号を出力する第2検出
器と、前記第1検出信号について所定の第1温度補償演
算を行ってこの演算稍果としてn第1演算値に応じた第
1中間信号を出力する第1温度補償手段と、n記第2検
出信号について所定の第2温度補償演算を行ってこの演
算結果とじCの第2演算値に応じた第2中間信号を出力
する第2温度補償手段と、前記第2中間信号を用い℃所
定7)関数値算出演算を行って前記第1演算値の中の前
記第1検出信号九おける前記副測定値に起因する特定演
算値に対応した干渉誤差補償値を表す誤差補償信号を出
力する関数値算出手段とを備え、前記第1中間信号の値
外線ガス分析計であって、前記第1及び第2温度補償演
算は同州温度がtである時vr−前記第1及び第2検出
信号がそれぞれ表す前記第1及び第2測定値をそれぞれ
Stt、Sztとしかつ前記周囲温度が基準値t、であ
る時に前記第1及び第2検出這号がそれぞれ表す前記第
1及び第2測定値をそれぞれ8t@、8111としかツ
51trc対すルSte ’) 比及び82tに対する
S2tに対するS20の比がいずれも温度差(t−ts
)の既知の高次式で表されろものとしてstt ’ 8
2tから5lll、s□を推定する演算であり、前記周
囲温度は前記赤外線ガス分析計の周囲の温度であり、前
記関数値算出演算は前記第2演算値と前記特定演算値と
の間に存在する非線形の既知の関数関係を用いて行う演
算であるように赤外線ガス分析計を構成する。
In order to achieve the above object, two aspects of the present invention include: a cell section in which a sample cell and a reference cell are provided; a light source section that makes infrared rays enter the cell section; and transmitted light of the infrared rays transmitted through the cell section. The sum of the main measurement value based on the infrared ray absorption by the measurement component gas in the sample cell and the sub-measurement value based on the infrared ray absorption by the interference component gas in the sample cell. a first detector that outputs a first detection signal representing a first measurement value, which is a value;
A second measurement value is obtained based on the absorption of the infrared rays by the interference gas component gas in the sample cell in which the first detector output light as transmitted light that has passed through the first detector of the cell unit output light is incident. a second detector that outputs a second detection signal representing the nth value; and a second detector that performs a predetermined first temperature compensation calculation on the first detection signal and outputs a first intermediate signal corresponding to the n-th calculation value as a result of this calculation. a first temperature compensation means; and a second temperature compensation means for performing a predetermined second temperature compensation calculation on the n second detection signals and outputting a second intermediate signal corresponding to the second calculation value of the calculation result. , using the second intermediate signal at a predetermined temperature 7) Performing a function value calculation operation to compensate for interference error corresponding to a specific calculation value caused by the sub-measurement value in the first detection signal 9 among the first calculation values. and a function value calculation means for outputting an error compensation signal representing a value, the first and second intermediate signal temperature compensation calculations are performed when the state temperature is t. vr-When the first and second measured values respectively represented by the first and second detection signals are Stt and Szt, and the ambient temperature is a reference value t, the first and second detection signals are respectively The ratio of the first and second measured values to 8t@, 8111 and 51trc to S20 and the ratio of S20 to S2t to 82t, respectively, are the temperature difference (t-ts
) as a known higher-order formula of stt ' 8
The calculation is to estimate 5lll, s□ from 2t, the ambient temperature is the temperature around the infrared gas analyzer, and the function value calculation calculation exists between the second calculation value and the specific calculation value. The infrared gas analyzer is configured such that the calculation is performed using a known nonlinear functional relationship.

〔作用〕[Effect]

上記のように構成すると、51tK対するS、oの比W
、及びS2tに対するSt@の比W!を後述するような
it差’l’=(t−t。)の高次式とすることによっ
て第1及び第2中間信号がそれぞれS I Q I S
 ! @をほぼ正確に表すようにすることができ、また
関数値算出手段における関数値算出演算(申いる上記の
関数関係を後述のように設定することだよって誤差補償
信号が表す干渉誤差補償値が第1演算値の中の特定演算
値にはぼ正確に一致するよ5にすることができるので、
第1中間信号の値と誤差補償信号の値との差から干渉誤
差Ei及び温度誤差Etの充分に補償された精変の高い
If測定結果が得られることになる。
With the above configuration, the ratio W of S and o to 51tK
, and the ratio of St@ to S2t W! By making it a higher-order expression of it difference 'l' = (t-t.) as described later, the first and second intermediate signals are
! By setting the above functional relationship as described below, the interference error compensation value represented by the error compensation signal can be Since it can be set to 5 to almost exactly match the specific calculated value in the first calculated value,
From the difference between the value of the first intermediate signal and the value of the error compensation signal, a highly precise If measurement result with sufficiently compensated interference error Ei and temperature error Et can be obtained.

Cf1i4施例〕 第1図は本発明の一実陶例の構成図で1本図においては
第2図におけるものと同じものに第2図の場合と同じ符
号がつげである。
Cf1i4 Embodiment] FIG. 1 is a block diagram of a practical example of the present invention, and in this figure, the same parts as in FIG. 2 are designated by the same symbols as in FIG. 2.

第1図において、22は分析計本体20闇囲温gtを検
出してこのtを表す温度信号22mを出力するようにし
た温度センサ、23は第1検出信号13mと温度信号2
2aとが入力されかつこれらの入力信号を用いて(4)
式右辺の演算を行ってこの演算結果としての第1演算値
”leを表す第1中間信号23mを出力するようにした
第1演算部。
In FIG. 1, 22 is a temperature sensor that detects the dark ambient temperature gt of the analyzer body 20 and outputs a temperature signal 22m representing this t, and 23 is a first detection signal 13m and a temperature signal 2.
2a are input and using these input signals (4)
A first calculation unit configured to perform calculations on the right side of the equation and output a first intermediate signal 23m representing a first calculation value "le" as a result of this calculation.

24は第2検出信号15aと温度信号22aとが入力さ
れかつこれらの入力信号を用いて(5)式右辺の演算を
行ってこの演算結果としての第2演算値S討を表す第2
中間信号24aを出力するようにした第2演算部で、2
5はセンサ22と演算部23とからなる第1温度補償手
段、26はセンサ22と演算部24とからなる第2温度
補償手段である。そうして、 (4)、(5)式におけ
るY、−Y、及びZ1〜zqはいずれも常数であり、ま
たT=(t−1・)であって、この場合、補償手段25
.26は、*述したように第1及び第2測定値S鳳・8
重がいずれもam t [応じて非線形状に変化するの
で、(6)及び(7)式がいずれも高い近似精変で成立
するものとして信号13ae lsaが表す測定値S1
t。
A second signal 24 receives the second detection signal 15a and the temperature signal 22a, performs the calculation on the right side of equation (5) using these input signals, and represents the second calculation value S as the result of this calculation.
A second arithmetic unit configured to output the intermediate signal 24a outputs the 2
Reference numeral 5 denotes a first temperature compensation means consisting of a sensor 22 and a calculation section 23, and numeral 26 denotes a second temperature compensation means consisting of a sensor 22 and a calculation section 24. Then, Y, -Y, and Z1 to zz in equations (4) and (5) are all constants, and T=(t-1·), in this case, the compensation means 25
.. 26 is *As mentioned above, the first and second measured values S-8
Since both weights change non-linearly according to am t
t.

S、tからS2tに対するS20、S2tに対するS2
0を推定するために設けられていて、さらに、(4)及
び(6)式における常数係数Y1〜Ypは、予め、試料
ガス8中の干渉成分ガス温度C!を任意の一定値C1o
にした状態で温度家を(p+1)m類の温度に変えてそ
れぞれの温度1でSttを測定するという実験を行って
定められており、tり、 (51及ヒ(7)式[オける
常数係数z、 〜z qtz。
S20 for S2t from S, t, S2 for S2t
Furthermore, the constant coefficients Y1 to Yp in equations (4) and (6) are provided in advance to estimate the interfering component gas temperature C! in the sample gas 8. to any constant value C1o
It was determined by conducting an experiment in which Stt was measured at each temperature of 1 by changing the temperature of the thermostat to (p + 1) m class temperatures with the temperature set to 1. Constant coefficient z, ~z qtz.

予め、ガス8中の温度CiをC1oにした状態でtを(
q+1)種畑の温度に変え℃それぞれの温度tで8.t
を測定するという実験を行って定められている。そうし
て、また、この場合、係数Y、 −Y2tに対するS2
0z1〜zqは1lfct[依存しないものとしている
In advance, with the temperature Ci in the gas 8 set to C1o, t is (
q+1) Change to the temperature of the seed field and change the temperature t to 8. t
It was determined by conducting an experiment to measure the Then, also in this case, S2 for the coefficient Y, −Y2t
0z1 to zq are assumed to be independent of 1lfct.

81e= S1t/ (1+Y1T+Y、 T +・−
−−−−・−・+YpT  )−(4)81t、S2t
からS10=8.t/(1+Z、T+Z、T+−−・・
−・・−+Z9T >−・−C5)sl、/S2tに対
するS20=W、 = 1 +Y、 T+Y、 T+・
・・・−+Y、T・−・・・・(6)82t/St@m
W、=−1+Z、T+Z、T”+−−・−+ZqT ・
1t、S2tからS10、(7)さて、第1図において
は補償手段25.26が上述のように構成されいるが、
信号23aが表す演算値S、eb″−E1.に対応した
演算値をE!eとしE2tに対するS20に対応した演
算値をE、eとして516=E2e+E3゜のよう(な
ることが前述した所から明らかであり。
81e= S1t/ (1+Y1T+Y, T +・-
−−−・−・+YpT )−(4)81t, S2t
From S10=8. t/(1+Z, T+Z, T+--...
−・・−+Z9T >−・−C5) S20=W for sl, /S2t, = 1 +Y, T+Y, T+・
...-+Y, T... (6) 82t/St@m
W, =-1+Z, T+Z, T"+--・-+ZqT ・
1t, S2t to S10, (7) Now, in FIG. 1, the compensation means 25 and 26 are configured as described above,
Let E!e be the calculated value corresponding to the calculated value S, eb''-E1. represented by the signal 23a, and let E, e be the calculated value corresponding to S20 for E2t, as 516=E2e+E3° (from the above) It's obvious.

また、このE3eと(5)式のSzcとは試料ガス8中
0干渉成分ガス1度Ciに応じ℃それぞれ固有の非線形
状だ変化するのでE3゜・826は共にCiの関数であ
つ℃、この結果E、Iaを82t5の関数J(Sze)
として表せることがまた前述した所から明らかである。
In addition, this E3e and Szc in equation (5) change in a nonlinear shape unique to each degree Celsius depending on the zero interference component gas 1 degree Ci in the sample gas 8, so both E3° and 826 are functions of Ci. The result E, Ia is the function J (Sze) of 82t5
It is also clear from the above that it can be expressed as

故[、関数Jを知ることができれば信号24畠が表すS
28からE3eを知ることができて、したがって、信号
23aが表すSleとこのFiseとからE2tに対す
るS20を求め℃このEoからガスB中のm定成分ガス
IlfCmを干渉誤差1ムを含むことなく正確に知るこ
とができるわけで、このため1本発明では、J(S2.
)が(8)式の最右辺の式で近似できるものとして、こ
の式を用いてS2eから(8)式記載の干渉誤差補償値
Eicを求めてこの11ocよって演算値sl、n中の
E3eを補償するようKしてぃて。
Therefore, if we can know the function J, the S represented by the signal 24
Therefore, from Sle represented by the signal 23a and this Fise, we can find S20 for E2t and accurately calculate the m constant component gas IlfCm in gas B from this Eo without including an interference error of 1m. Therefore, in the present invention, J(S2.
) can be approximated by the right-most equation of equation (8), use this equation to find the interference error compensation value Eic described in equation (8) from S2e, and use this 11oc to calculate E3e in the calculated value sl,n. Please tell me to compensate you.

(8)式におけるX、 〜Xoは、lii!囲温度tが
1.vcなるようにしかつ試料ガス8が干渉成分ガスG
iと赤外線吸収を生じないガスとだけからなるよつにシ
たうえで温度Ciをn49類の異なる値に変えてそれぞ
れの温度CiでS、o及びslを測定するという実験を
行って決定した常数係数である。
X in formula (8), ~Xo is lii! The ambient temperature t is 1. vc and sample gas 8 is interfering component gas G.
This was determined by conducting an experiment in which S, o, and sl were measured at each temperature Ci by changing the temperature Ci to different values of the n49 class, using a gas consisting only of i and a gas that does not absorb infrared rays. It is a constant coefficient.

E se ””J(S 2 e) ” E ic =X
IS ze+Xe52e +++++++++++Xf
18..−・−・(8) すなわち、第1図において、27は信号241が入力さ
れかつ信号24aが表す演算値S、e!を用いて(8)
代置右辺の演算を行って干渉誤差補償値E罰に応じた値
鳩な有する誤差補償信号27畠を出力するようにした関
数値算出手段、28は信号23mと271とが入力され
かつ信号231の値Mlと信号27aの値M、との差(
Ms  Mt)を演算してこの演算結果を表す信号28
aを出力するようにした減算手段で、この場合、上記の
干渉誤差補償値Eicが、上述した理由で、中間信号2
3aが表す演算値ale”E2e+E3e’)中の検出
信号13aにおける副測定値E、に起因する特定演算値
E3eに対応した値となつ℃いるため、結局(Ms M
t)を表す減算手段出力信号28aの値が上述のE26
に応じた値でなるように信号z3a+ 271  の各
レベルが設定されている。29は分析計本体2と湿質補
償手段25.26と関数値算出手段27と減算手段28
とを備えた赤外線ガス分析計である。
E se ””J(S 2 e) ” E ic =X
IS ze+Xe52e ++++++++++Xf
18. .. --- (8) That is, in FIG. 1, 27 is the calculated value S, e! to which the signal 241 is input and which the signal 24a represents. using (8)
A function value calculating means is configured to calculate the right side of the substitution and output an error compensation signal 27 having a value corresponding to the interference error compensation value E penalty; The difference between the value Ml of the signal 27a and the value M of the signal 27a (
Ms Mt) and a signal 28 representing the result of this calculation.
In this case, the above-mentioned interference error compensation value Eic is output from the intermediate signal 2 due to the above-mentioned reason.
Since the value corresponding to the specific calculation value E3e caused by the sub-measurement value E in the detection signal 13a in the calculation value ale"E2e+E3e') represented by 3a is the value, in the end, (Ms M
The value of the subtraction means output signal 28a representing t) is the above-mentioned E26.
Each level of the signal z3a+ 271 is set to have a value corresponding to . 29 is the analyzer main body 2, moisture compensation means 25, 26, function value calculation means 27, and subtraction means 28
This is an infrared gas analyzer equipped with

分析計29は上述のように構成されているので。Since the analyzer 29 is configured as described above.

検出信号13a、15aのそれぞれが表す測定値S、 
、 S、かいずれも温*1<応じて非線形状に変化する
ものであっても、中間信号23a、24aが表す演算値
ste’sz。及びS1eを構成するE2e。
The measured value S represented by each of the detection signals 13a and 15a,
, S, the calculated values ste'sz represented by the intermediate signals 23a and 24a, even if both of them change non-linearly according to the temperature*1<. and E2e that constitutes S1e.

E3eはそれぞれ常’CS161 s、o、 E*@e
 E1t、S2tからS10 Kよく近似した値になる
ことが明らかで、また、この場合。
E3e is always 'CS161 s, o, E*@e
It is clear that E1t and S2t give S10 K values that are very close to each other, and in this case.

第1演算値S、eの中の特定演算値E3eが温度Ciに
応じて非線形状に変化してもこの演算値E3eが誤差補
償信号27mによって高い精度で補償されることが明ら
かである。故に、この分析計29によれば、減算手段出
力信号28mによって、測定成分ガス温度Cmを温度誤
差gt及び干渉誤差Eiをいずれも殆ど含むことなく高
精度に測定することができることになる。
It is clear that even if the specific calculated value E3e among the first calculated values S and e changes non-linearly in accordance with the temperature Ci, this calculated value E3e is compensated with high accuracy by the error compensation signal 27m. Therefore, according to this analyzer 29, the measurement component gas temperature Cm can be measured with high precision using the subtraction means output signal 28m, with almost no temperature error gt or interference error Ei included.

〔発明の効果〕〔Effect of the invention〕

上述したように1本発明においては、試料セルと基準セ
ルとが設けられたセル部と、前記セル部に赤外線を入射
させる光源部と、前記赤外線のセル部を透過した透過光
としてのセル部出射光が入射されかつ試料セル中の測定
成分ガスによる赤外線の吸収にもとづく主測定値と試料
セル中の干渉成分ガスによる赤外線の吸収にもとづく副
測定値との合計値である第1測定値を表す第1検出信号
を出力する第1検出器と、セル部出射光の第1検出器を
透過した透過光としての第1検出器出射光a分 が入射されかつ試料セル中の干1tt4スによる赤外線
の吸収にもとづく第2測定値を表す第2検出信号を出力
する第2検出器と、第1検出信号について所定の第1温
度補償演算を行ってこの演算結果としての第1演算値に
応じた第1中間信号を出力する第111[補償手段と、
第2検出信号について所定の第2温度補償演算を行って
この演算結果としての第2演算値に応じた第2中間信号
を出力する第2温度補償手段と、第2中間信号を用いて
所定の関数値算出演算を行って第1演算値の中の第1検
出信号における副測定値に起因する特定演算値に対応し
た干渉誤差補償値を表すvA差補償信号を出力する関数
値算出手段とを備え、第1中間信号の値と誤差補償信号
・n値との差から測定成分ガスの温度を測定する非分散
形単光源複光束式の赤外線ガス分析計であって、第1及
び第2温度補償演算は#l!囲温度がtである時に第1
及び第2検出信号がそれぞれ表す第1及び第2測定値を
それぞれStt 、S!tとしかつWR囲湿温度基準値
t・である時rc第1及び第2検出信号がそれぞれ表す
第1及びg2測定値をそれぞれ81 @ e 8!。と
しかつ81tに対するS8.の比及びS2t [対する
81t、S2tからS10fl比がいずれも温度差(I
ts)の既知の高次式で表されるものとして81i 、
 s2tからS2tに対するS20、S2tに対するS
20を推定する演算であり、前記周囲温度は前記赤外線
ガス分析計の範囲の温度であり、関数値算出演算は第2
演算値と特定演算値との間に存在する非線形の既知の関
数関係を用いて行う演算であるように赤外線ガス分析計
t#le、した。
As described above, one aspect of the present invention includes a cell section in which a sample cell and a reference cell are provided, a light source section that makes infrared rays enter the cell section, and a cell section that emits infrared light transmitted through the cell section. The first measurement value is the sum of the main measurement value based on the absorption of infrared rays by the measurement component gas in the sample cell and the sub-measurement value based on the absorption of infrared rays by the interference component gas in the sample cell. a first detector that outputs a first detection signal representing the cell part; a second detector that outputs a second detection signal representing a second measurement value based on absorption of infrared rays; and a second detector that performs a predetermined first temperature compensation calculation on the first detection signal and responds to the first calculation value as a result of this calculation. a 111th compensation means for outputting the first intermediate signal;
a second temperature compensation means for performing a predetermined second temperature compensation calculation on the second detection signal and outputting a second intermediate signal according to the second calculation value as a result of the calculation; function value calculation means for performing a function value calculation operation and outputting a vA difference compensation signal representing an interference error compensation value corresponding to a specific calculation value resulting from the sub-measurement value in the first detection signal among the first calculation values; A non-dispersive single light source double beam infrared gas analyzer that measures the temperature of a component gas to be measured from the difference between the value of the first intermediate signal and the error compensation signal/n value, Compensation calculation is #l! When the ambient temperature is t, the first
and the first and second measured values respectively represented by the second detection signal Stt, S! When t and WR ambient humidity temperature reference value t., the first and g2 measured values respectively represented by the rc first and second detection signals are 81 @ e 8! . Toshikatsu and S8 for 81t. and the ratio of S2t [to 81t and the ratio of S2t to S10fl are both temperature difference (I
81i as expressed by a known higher-order formula of ts),
S20 to S2t from s2t, S to S2t
20, the ambient temperature is a temperature within the range of the infrared gas analyzer, and the function value calculation is a second calculation.
The infrared gas analyzer t#le was designed so that the calculation was performed using a known nonlinear functional relationship between the calculated value and the specific calculated value.

このため、上記のように構成すると、8口に対すルS1
゜ノ比W1及びS2t′/c対するs2tに対するS2
0n比W1を(6)及び(7)弐に示したような温度差
T=(t−to)の高次式とすることによって第1及び
第2中間信号がそれぞれS 1 @ * S@。をほぼ
正確IC表すようにすることができ、−!た関数値xt
k3手段虻おける関数値算出演算(用いる上記の関数関
係を(8)弐におけるように設定することによって誤差
補償信号が表す干渉誤差補償値が第1演算値の中の特、
定演算値にほぼ正確(一致するようにすることかできる
ので1本発明VCは第1中間信号の値と!a差補償信号
の値との差から干渉誤差E1及び温度誤差E < )充
分に補償された精度の高いI!II!測定結果が得られ
る効果がある。
Therefore, if configured as above, Le S1 for 8 ports
° ratio W1 and S2 for s2t for S2t'/c
By setting the 0n ratio W1 to a higher-order equation of temperature difference T=(t-to) as shown in (6) and (7) 2, the first and second intermediate signals are S1@*S@, respectively. can be made to represent the IC almost exactly, and -! function value xt
Function value calculation operation in k3 means (by setting the above function relationship to be used as in (8) 2, the interference error compensation value represented by the error compensation signal is a special value among the first calculation values,
Since the VC of the present invention can be made to almost exactly (coincide) with the fixed calculated value, the interference error E1 and temperature error E<) are sufficiently calculated from the difference between the value of the first intermediate signal and the value of the !a difference compensation signal. Compensated and accurate I! II! It has the effect of obtaining measurement results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図。 第2図は従来の赤外線ガス分析計の構成図。 第3図は第2図に示した赤外線ガス分析計の機能説明図
である。 1.29・・・・・・赤外線ガス分析計、5a、5b・
・・・・・光束(赤外@)、9・・・・・・試料セル、
  10・・・・・・基準セル。 11・・・・・・セル部、12・・・・・・光源部、1
3・−・・・・第1検出器。 13a・・・・・・第1検出1言号、  14・・・・
−・セル部出射光、15第2検出器、15a・・・・−
・第2検出信号、16・−・・・・第1検出器出射光、
23a・・・・・・第1中間信号、24m・−・・・・
第2中間信号、25・・・・・・第1温度補償手段、2
6・−・M22温補償手段、27・・・・−・関数値算
出手段、271・・・・・・誤差補償信号。 代理人弁理士 山 口  i−、エ エ″ ニミニ7 N−ノ ′砿
FIG. 1 is a configuration diagram of an embodiment of the present invention. Figure 2 is a configuration diagram of a conventional infrared gas analyzer. FIG. 3 is a functional explanatory diagram of the infrared gas analyzer shown in FIG. 2. 1.29... Infrared gas analyzer, 5a, 5b.
...Light flux (infrared @), 9...Sample cell,
10...Reference cell. 11...Cell part, 12...Light source part, 1
3.--First detector. 13a...First detection 1 word, 14...
-・Cell part emitted light, 15 second detector, 15a...-
・Second detection signal, 16...first detector output light,
23a...First intermediate signal, 24m...
Second intermediate signal, 25...First temperature compensation means, 2
6.--M22 temperature compensation means, 27.--function value calculation means, 271.--error compensation signal. Representative Patent Attorney Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1)試料セルと基準セルとが設けられたセル部と、前記
セル部に赤外線を入射させる光源部と、前記赤外線の前
記セル部を透過した透過光としてのセル部出射光が入射
されかつ前記試料セル中の測定成分ガスによる前記赤外
線の吸収にもとづく主測定値と前記試料セル中の干渉成
分ガスによる前記赤外線の吸収にもとづく副測定値との
合計値である第1測定値を表す第1検出信号を出力する
第1検出器と、前記セル部出射光の前記第1検出器を透
過した透過光としての第1検出器出射光が入射されかつ
前記試料セル中の前記干渉成分ガスによる前記赤外線の
吸収にもとづく第2測定値を表す第2検出信号を出力す
る第2検出器と、前記第1検出信号について所定の第1
温度補償演算を行つてこの演算結果としての第1演算値
に応じた第1中間信号を出力する第1温度補償手段と、
前記第2検出信号について所定の第2温度補償演算を行
つてこの演算結果としての第2演算値に応じた第2中間
信号を出力する第2温度補償手段と、前記第2中間信号
を用いて所定の関数値算出演算を行つて前記第1演算値
の中の前記第1検出信号における前記副測定値に起因す
る特定演算値に対応した干渉誤差補償値を表す誤差補償
信号を出力する関数値算出手段とを備え、前記第1中間
信号の値と前記誤差補償信号の値との差から前記測定成
分ガスの温度を測定する非分散形単光源複光束式の赤外
線ガス分析計であつて、前記第1及び第2温度補償演算
は周囲温度がtである時に前記第1及び第2検出信号が
それぞれ表す前記第1及び第2測定値をそれぞれS_1
_t、S_2_tとしかつ前記周囲温度が基準値t_0
である時に前記第1及び第2検出信号がそれぞれ表す前
記第1及び第2測定値をそれぞれS_1_0、S_2_
0としかつS_1_tに対するS_1_0の比及びS_
2_tに対する_S_2_0の比がいずれも温度差(t
−t_0)の既知の高次式で表されるものとしてS_1
_t、S_2_tからS_1_0、S_2_0を推定す
る演算であり、前記周囲温度は前記赤外線ガス分析計の
周囲の温度であり、前記関数値算出演算は前記第2演算
値と前記特定演算値との間に存在する非線形の既知の関
数関係を用いて行う演算であることを特徴とする赤外線
ガス分析計。
1) a cell section in which a sample cell and a reference cell are provided; a light source section that makes infrared rays enter the cell section; and a light source section that transmits the infrared rays and emits light from the cell section as transmitted light that passes through the cell section; A first measurement value representing a first measurement value that is the sum of a main measurement value based on the absorption of the infrared rays by the measurement component gas in the sample cell and a submeasurement value based on the absorption of the infrared rays by the interfering component gas in the sample cell. A first detector outputs a detection signal, and the first detector output light as transmitted light transmitted through the first detector of the cell section output light is incident, and the interference component gas in the sample cell enters the first detector. a second detector outputting a second detection signal representing a second measurement value based on absorption of infrared rays; and a predetermined first detection signal for the first detection signal.
a first temperature compensation means for performing a temperature compensation calculation and outputting a first intermediate signal according to a first calculation value as a result of the calculation;
a second temperature compensation means for performing a predetermined second temperature compensation calculation on the second detection signal and outputting a second intermediate signal according to a second calculation value as a result of the calculation; and using the second intermediate signal. A function value that performs a predetermined function value calculation operation and outputs an error compensation signal representing an interference error compensation value corresponding to a specific operation value resulting from the sub-measurement value in the first detection signal among the first operation values. a non-dispersive single-light source double-beam infrared gas analyzer that measures the temperature of the measurement component gas from the difference between the value of the first intermediate signal and the value of the error compensation signal, The first and second temperature compensation calculations calculate the first and second measured values respectively represented by the first and second detection signals by S_1 when the ambient temperature is t.
_t, S_2_t and the ambient temperature is the reference value t_0.
When , the first and second measured values respectively represented by the first and second detection signals are S_1_0 and S_2_
0 and the ratio of S_1_0 to S_1_t and S_
The ratio of _S_2_0 to 2_t is the temperature difference (t
−t_0) as expressed by a known higher-order formula of S_1
The calculation is to estimate S_1_0 and S_2_0 from _t and S_2_t, the ambient temperature is the temperature around the infrared gas analyzer, and the function value calculation calculation is performed to estimate the temperature between the second calculation value and the specific calculation value. An infrared gas analyzer characterized in that the calculation is performed using an existing nonlinear known functional relationship.
JP2194348A 1990-07-23 1990-07-23 Infrared gas analyzer Pending JPH0480642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194348A JPH0480642A (en) 1990-07-23 1990-07-23 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194348A JPH0480642A (en) 1990-07-23 1990-07-23 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JPH0480642A true JPH0480642A (en) 1992-03-13

Family

ID=16323091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194348A Pending JPH0480642A (en) 1990-07-23 1990-07-23 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPH0480642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128806A (en) * 2010-12-23 2011-07-20 深圳市赛宝伦计算机技术有限公司 Gas detection method used for infrared gas analyzer
JP2017015679A (en) * 2015-06-30 2017-01-19 旭化成エレクトロニクス株式会社 Gas concentration measurement device
EP3674689A4 (en) * 2017-08-21 2021-07-28 Hubei Cubic-ruiyi Instrument Co., Ltd Gas analyzer and gas analyzing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128806A (en) * 2010-12-23 2011-07-20 深圳市赛宝伦计算机技术有限公司 Gas detection method used for infrared gas analyzer
JP2017015679A (en) * 2015-06-30 2017-01-19 旭化成エレクトロニクス株式会社 Gas concentration measurement device
EP3674689A4 (en) * 2017-08-21 2021-07-28 Hubei Cubic-ruiyi Instrument Co., Ltd Gas analyzer and gas analyzing method

Similar Documents

Publication Publication Date Title
Boumans Theory of spectrochemical excitation
US2761067A (en) Multi-component photometric analysis
Robinson Quantitative analysis with infrared spectrophotometers
Aleixandre et al. Review of small commercial sensors for indicative monitoring of ambient gas
Waters et al. The free proton concentration scale for seawater pH
Theodorou et al. Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: Application to direct cadmium measurement in water by GFAAS
CN105628637B (en) A kind of infrared gas analysis method and apparatus of three reference channels
CN115839927A (en) Gas concentration interference compensation correction method based on nonlinear equation solving method
JPH0480642A (en) Infrared gas analyzer
Carter et al. Uncertainty sources for measurable ocean carbonate chemistry variables
Cheong et al. Improved accuracy of determination of dissolved silicate in seawater using absorption spectrometry
JPH063264A (en) Method for forming calibration curve in near infrared analysis
US20090030655A1 (en) Analysis Methods for unmixing the response of non-linear, cross-reactive sensors and related system to single and multiple stimulants
CN115791650A (en) Flue gas detection method and device
Borkhodoev About the limit of detection in X-ray fluorescence analysis
Fontela et al. Carbonate system species and pH
Kortazar et al. Accurate determination of total alkalinity in estuarine waters for acidification studies
CN113702298A (en) Method, system and equipment for correcting cut-to-height of edge scattered radiation
Al-Ammar et al. Elimination of interferences and effects from drift in working parameters in inductively coupled plasma atomic emission spectrometry by using a combination of the generalized standard addition method and the generalized internal reference method
Li et al. Analysis and optimization of dynamic measurement precision of fiber optic gyroscope
Cięszczyk Sensors signal processing under influence of environmental disturbances
JP2013148376A (en) Measuring device
Torres et al. Implementation of the primary pH-measurement system and its uncertainty estimation
Shi et al. Improving CO₂ Concentration Profile Measurements From a Ground-Based CO₂-DIAL Through Conditional Adjustment
JPS5930215B2 (en) Analyzer using internal standard correction method