JPH0480501B2 - - Google Patents

Info

Publication number
JPH0480501B2
JPH0480501B2 JP58098371A JP9837183A JPH0480501B2 JP H0480501 B2 JPH0480501 B2 JP H0480501B2 JP 58098371 A JP58098371 A JP 58098371A JP 9837183 A JP9837183 A JP 9837183A JP H0480501 B2 JPH0480501 B2 JP H0480501B2
Authority
JP
Japan
Prior art keywords
tube
lighting tube
voltage
lighting
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58098371A
Other languages
Japanese (ja)
Other versions
JPS59224044A (en
Inventor
Hiroaki Okumura
Toshihiko Shimatani
Minoru Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP9837183A priority Critical patent/JPS59224044A/en
Publication of JPS59224044A publication Critical patent/JPS59224044A/en
Publication of JPH0480501B2 publication Critical patent/JPH0480501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/541Igniting arrangements, e.g. promoting ionisation for starting using a bimetal switch

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高圧蒸気放電灯に係り、特にその始動
補助用として改良された点灯管を具備した高圧蒸
気放電灯に関するものである。 従来例の構成とその問題点 一般に、点灯管は易放電気体を充填した気密容
器内に、ステムに植立された内部導入線に溶接な
どにより支持された熱応動素子からなる電極を有
し、この電極間での放電による発熱によつて電極
同士が接触して放電が断たれて、電極が離間する
際に電流の瞬断によつて安定器の両端にパルス電
圧を発生させる目的に使用されるものである。特
に、1500V以上の高いパルス電圧を発生させる点
灯管は、メタルハライドランプや高圧ナトリウム
灯の始動補助用に用いることが可能になる。 点灯管の封入ガスやアルゴンの場合はガス圧を
10Torr以下に低くすることによつて1500V以上
の高いパルス電圧を得ることができるが、封入ガ
ス圧を低くすると、点灯管の放電開始電圧が
300V近くまで高くなり、点灯管の特性を安定さ
せるために、エージング工程で、放電開始電圧を
200V以下に低下させようとすると、長時間のエ
ージングを必要とする。また封入ガス圧が低い
と、点灯管のグロー放電電流が少なくなり、電極
である熱応動素子の加熱が遅くなり、電極接点が
閉じるまでの初期グロー時間が長くなつてしまう
欠点があつた。 螢光灯の点灯管などとして一般に用いられてい
るアルゴン−ネオン−ヘリウム系の混合ガスを用
い、数10Torrの封入ガス圧とした点灯管におい
ては、前記の閉路時間は短縮され、螢光灯用とし
ての実使用において問題はなくなるが、パルス電
圧は600〜1400Vと低く、メタルハライドランプ
や高圧ナトリウム灯などの高圧蒸気放電灯の始動
用には不適であつた。 メタルハライドランプや高圧ナトリウム灯に点
灯管を組合せて使用する場合の他の問題点は、点
灯管が外管内に組込まれるため、点灯管の周囲温
度が高く、150〜350℃の高温にさらされることで
ある。このような高温ランプ寿命(9000〜12000
時間)を通じて安定した点灯管の特性を維持させ
ることが必要になつてくる。外管内に組込まれた
点灯管は、高温に長時間さらされると、点灯管の
各部材から徐々に不純ガスが放出され、点灯管の
特性を劣化させる問題が発生する。たとえば、点
灯管の動作が開始する電圧(以下閉路電圧とい
う。)ランプ動程中に上昇し、200V以上の閉路電
圧となつてランプが始動不能に陥る問題が発生す
る場合がある。 発明の目的 本発明はこのような問題点にかんがみてなされ
たもので、パルス電圧が1500V以上と高く、パル
ス発生回数が多く、初期グロー時間が短く、かつ
長期動程中を通じて閉路電圧が低い点灯管を外管
内に具備することによつて始動性にすぐれ、長寿
命で信頼性の高い高圧蒸気放電灯を実現するもの
である。 発明の構成 本発明は気密容器内に、少なくとも一方に熱応
動素子を有する電極を具備し、かつヘリウム−ア
ルゴン−水素、または、ヘリウム−水素の混合気
体を封入し、その封入ガス圧を20℃において35〜
70Torrに選定し、さらに前記気密容器の内壁に
ジルコニウム、チタン、バリウム、バリウム−ア
ルミウム合金、ジルコニウム−アルミニウム合
金、ジルコニウム−ニツケルの混合焼結物から選
択された一種または複数種のゲツタ材を被着させ
た構成の点灯管を外管内に設け、ランプ点灯時の
高温でも特性変化を僅少に与えた高圧蒸気放電灯
である。 実施例の説明 以下、本発明の一実施例について図面を参照し
て詳細に説明する。 第1図は本発明の一実施例である高圧蒸気放電
灯(ここではメタルハライドランプ)の点灯回路
の一例を示すもので、発光管1の両端に一対の主
電極2,3が封着され、主電極3に近接して補助
電極4が封着されている。点灯管5は低抵抗6と
バイメタルスイツチ7とに直列接続され、これが
発光管1と並列に接続されている。補助電極4に
は高抵抗8を通じて、主電極3と反対電位の電圧
が印加される回路構成になつている。電源10の
投入によつて、バイメタルスイツチ7、点灯管
5、低抵抗6の直列体に電圧が印加されて点灯管
5が動作し、電流の遮断に応じてインダクタンス
素子(安定器)9の両端にパルス電圧を発生さ
せ、発光管5を始動させるものである。 発明者らは、このような高圧蒸気放電灯の外管
内に組込む点灯管について、そのガス組成、封入
ガス圧、および点灯管の内壁に被着するゲツタ材
について実験を行なつた。 点灯管は、第2図に示すように、軟質ガラスか
らなる外径が約12mmの気密容器11の一端にステ
ム12が設けられており、これに植立された内部
導入線13にバイメタル板からなる熱応動素子1
4が溶接され、その先端部に直径0.8mmから丸棒
からなるタングステン接点15が溶接された電極
を内部に有している。点灯管の内壁にはゲツタ材
16が被着されている。かかる構造の点灯管を用
いて、充填気体の種類、封入ガス圧、ゲツタの材
質を変化させた。充填気体の種類は、アルゴン
(Ar)、ヘリウム−アルゴン(He−Ar)、アルゴ
ン−ネオン−ヘリウム(Ar−Ne−He)、ヘリウ
ム−水素(He−H2)、ヘリウム−アルゴン−水
素(He−Ar−H2)について検討したが、これら
の中でパルス電圧が高く、かつパルス発生回数の
多いのは、水素を含む、He−H2および、He−
Ar−Heであつた。これらは水素を含むために、
消弧特性が良く電極接点の離間によつておこる電
流の瞬断速度が大きくなつたものと考えられる。
したがつて以下の実験はHe93%、Ar2%、H25%
の混合ガスを用いて行なつた。封入ガス圧を変化
させたときのパルス電圧と閉路電圧を測定するた
めに、点灯管に400W用チヨーク安定器と300Ωの
抵抗との直列体を接続して行なつた。点灯管のエ
ージングは30分間行なつた後に共試したものであ
る。その結果を下表に示す。 なお、同表の結果はHe93%、Ar2%、H25%混
合ガスの場合であるが、He95%、H25%の混合
ガスでも、ほぼ同等の結果が得らることを確認し
ている。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to a high-pressure steam discharge lamp, and more particularly to a high-pressure steam discharge lamp equipped with an improved lighting tube for use in starting the lamp. Conventional structure and its problems In general, a lighting tube has an electrode made of a thermally responsive element supported by welding or the like to an internal lead-in wire planted in a stem, in an airtight container filled with an easily dischargeable electric material. This is used for the purpose of generating pulse voltage across the ballast due to the instantaneous interruption of current when the electrodes come into contact with each other due to the heat generated by the discharge and the discharge is cut off, and when the electrodes separate. It is something that will be done. In particular, lighting tubes that generate high pulse voltages of 1500V or more can be used to assist in starting metal halide lamps and high-pressure sodium lamps. When using gas filled in a lighting tube or argon, check the gas pressure.
A high pulse voltage of 1500V or more can be obtained by lowering the pressure to 10Torr or less, but lowering the filled gas pressure will lower the firing voltage of the lighting tube.
In order to stabilize the characteristics of the lighting tube, the discharge starting voltage has to be lowered during the aging process.
Attempting to lower the voltage below 200V requires long-term aging. In addition, when the pressure of the filled gas is low, the glow discharge current of the lighting tube decreases, the heating of the thermally responsive element which is the electrode is delayed, and the initial glow time until the electrode contact closes becomes longer. In lighting tubes that use an argon-neon-helium mixed gas and have a sealed gas pressure of several tens of Torr, which is commonly used as lighting tubes for fluorescent lamps, the above-mentioned closing time is shortened, and the fluorescent light Although there was no problem in actual use as a lamp, the pulse voltage was low at 600 to 1,400 V, making it unsuitable for starting high-pressure steam discharge lamps such as metal halide lamps and high-pressure sodium lamps. Another problem when using a lighting tube in combination with a metal halide lamp or high-pressure sodium lamp is that the lighting tube is built into the outer bulb, so the ambient temperature around the lighting tube is high, reaching a high temperature of 150 to 350℃. It is about being exposed. Such high temperature lamp life (9000~12000
It becomes necessary to maintain stable characteristics of the lighting tube over time. When the lighting tube incorporated in the outer bulb is exposed to high temperatures for a long period of time, impurity gas is gradually released from each member of the lighting tube, causing a problem that the characteristics of the lighting tube deteriorate. For example, the voltage at which the lighting tube starts operating (hereinafter referred to as the closed-circuit voltage) increases during the lamp operation, resulting in a closing-circuit voltage of 200 V or more, which may cause the lamp to become unable to start. Purpose of the Invention The present invention has been made in view of the above problems, and has the following features: high pulse voltage of 1500V or more, large number of pulse generation, short initial glow time, and low closed circuit voltage throughout long-term motion. By providing the lamp tube within the outer bulb, a high-pressure steam discharge lamp with excellent startability, long life, and high reliability is realized. Structure of the Invention The present invention comprises an electrode having a thermally responsive element on at least one side in an airtight container, and a mixed gas of helium-argon-hydrogen or helium-hydrogen is sealed, and the pressure of the sealed gas is set at 20°C. 35~
70 Torr, and one or more getter materials selected from zirconium, titanium, barium, barium-aluminum alloy, zirconium-aluminum alloy, and mixed sintered zirconium-nickel are applied to the inner wall of the airtight container. This is a high-pressure steam discharge lamp in which a lighting tube with a similar structure is installed inside the outer bulb, and its characteristics change slightly even at high temperatures when the lamp is lit. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an example of a lighting circuit for a high-pressure vapor discharge lamp (metal halide lamp here) which is an embodiment of the present invention, in which a pair of main electrodes 2 and 3 are sealed at both ends of an arc tube 1. An auxiliary electrode 4 is sealed adjacent to the main electrode 3. The lighting tube 5 is connected in series to a low resistance 6 and a bimetal switch 7, which are connected in parallel to the arc tube 1. The circuit configuration is such that a voltage having an opposite potential to that of the main electrode 3 is applied to the auxiliary electrode 4 through a high resistance 8 . When the power supply 10 is turned on, a voltage is applied to the series body of the bimetal switch 7, the lighting tube 5, and the low resistance 6, and the lighting tube 5 operates, and in response to the interruption of the current, the inductance element (ballast) 9 A pulse voltage is generated at both ends of the arc tube 5 to start the arc tube 5. The inventors conducted experiments regarding the gas composition, gas pressure, and getter material adhered to the inner wall of the lighting tube, which is incorporated into the outer bulb of such a high-pressure steam discharge lamp. As shown in Fig. 2, the lighting tube has a stem 12 installed at one end of an airtight container 11 made of soft glass and having an outer diameter of about 12 mm, and a bimetal plate attached to an internal lead-in wire 13 planted in the stem 12. A thermally responsive element 1 consisting of
4 is welded to the tip of the electrode, and a tungsten contact 15 made of a round bar with a diameter of 0.8 mm is welded to the tip thereof. A getter material 16 is adhered to the inner wall of the lighting tube. Using a lighting tube with such a structure, we varied the type of filling gas, the pressure of the filled gas, and the material of the getter. The types of filling gas are argon (Ar), helium-argon (He-Ar), argon-neon-helium (Ar-Ne-He), helium-hydrogen (He- H2 ), helium-argon-hydrogen (He -Ar-H 2 ), but among these, He-H 2 and He-, which contain hydrogen, have a high pulse voltage and a large number of pulses.
It was Ar-He. Because these contain hydrogen,
It is thought that this is because the arc extinguishing characteristics are good and the instantaneous current interruption speed that occurs is increased due to the distance between the electrode contacts.
Therefore, the following experiment uses 93% He, 2% Ar, and 5 % H2.
The experiment was carried out using a mixed gas of In order to measure the pulse voltage and closed circuit voltage when the filled gas pressure was changed, a series body consisting of a 400W chiyoke ballast and a 300Ω resistor was connected to the lighting tube. The lighting tube was aged for 30 minutes before being tested. The results are shown in the table below. The results in the same table are for a mixed gas of 93% He, 2% Ar, and 5% H 2 , but it has been confirmed that almost the same results can be obtained with a mixed gas of 95% He and 5% H 2 . There is.

【表】 上表から明らかなように、20℃での封入ガス圧
が35〜70Torrの範囲では、点灯管の閉路電圧が
180V以下となり、またパルス電圧も高圧蒸気放
電灯の始動に必要な1500V以上を得ることができ
た。初期グロー時間についても測定したが、ガス
圧35Torr以上では、すべて2.5秒以内の短時間で
あり満足すべき特性であつた。 次に、点灯管を高圧蒸気放電灯の外管内に組込
んだ際に高温状態で長時間さらされることによる
閉路電圧が徐々に上昇する問題について検討し
た。 点灯管の温度は外管の取付け位置、外管内の封
入ガス圧などによつて変化するが、通常150〜350
℃である。He93%−Ar2%−H25%の混合ガスを
50Torr封入した点灯管を400Wのメタルハライド
ランプの外管に組込んで、動程中の点灯管の閉路
電圧を測定した結果を第3図に示す。曲線aは点
灯管の内壁にゲツタ材を被着しなかつた場合を、
曲線bはバリウムのゲツタ材を被着した場合をそ
れぞれ示す。点灯管は温度約240℃となるように、
外管内において発光管の上側部位に取付けたもの
である。 第3図から明らかなように、点灯管の気密容器
内壁にゲツタ材を被着することによつて動程中の
閉路電圧上昇を抑制することができる。閉路電圧
上昇には、温度が大きく影響することが明白であ
るので、強制テストとして、温度を変えた熱処理
テストを行なつた。その結果を第4図に示す。曲
線cおよびdはゲツタ材を被着していない点灯管
の場合で、それぞれ、370℃および160℃で熱処理
した場合の結果である。同図から明らかに温度が
閉路上昇に大きく影響を与えていることがわか
る。次にゲツタ材を種々変えた点灯管を試作し、
同様の熱処理テストを行なつた。その結果を第4
図に併記している。曲線eはバリウムからなるゲ
ツタ材、曲線fはバリウム50%−アルミニウム50
%合金、曲線gはジルコニウム84%−アルミニウ
ム16%合金、曲線hはジルコニウム80%−ニツケ
ル20%の混合焼結物、曲線iはチタンまたはジル
コニウムのパウダを気密容器内壁に被着させた点
灯管の各場合で、熱処理温度はいずれも370℃で
ある。この結果から明らかなように、ランプ動程
中の点灯管の温度が高いときには、前述のゲツタ
材を必要とする。 高圧ナトリウム灯の低ワツトタイプ、例えば
110Wランプでは、外管内が真空であることと、
低ワツトのことのため、点灯管を外管内に組込ん
でも、約140℃の温度であり、この場合はゲツタ
材を用いなくても閉路電圧の上昇はわずかである
ことを実験で確かめている。 以上のように、本発明は一般に放電灯には有害
とされる水素を含む放電気体を封入して高いパル
ス電圧と多いパルス発生回数を得るとともに、気
密容器の内壁にゲツタ材を被着することによつて
長期動程中の閉路電圧の上昇を抑制することがで
きるものである。ゲツタ材は、水素も吸着するの
で、封入ガスに水素を用いた場合、その効果は疑
問視されたが、実験の結果、効果を発揮すること
が判明したもので、アルゴン、ネオン、ヘリウム
の通常の組合せである希ガスを用いた場合のゲツ
タ効果とは異なる特異な効果であると考えられ
る。すなわち、ゲツタが水素を吸着して飽和した
後もさらに不純ガス(N2、CO、CO2、H2O、
CxHyなど)に対してゲツタ作用があり、ランプ
動程中の閉路電圧上昇を抑制する高価が発揮され
たものと考えられる。 次に、本発明の一実施例である400Wメタルハ
ライドランプについて第5図を参照して説明す
る。発光管1が外管17の中心部に保持され、こ
の外管17内に、He93%−H25%−Ar2%の混合
ガスを57Torr封入し、内壁にバリウムからなる
ゲツタを被着した点灯管5、低抵抗6、バイメタ
ルスイツチ7および高抵抗8が組込まれた構造に
なつている。発光管1の内部には沃化スカンジウ
ム、沃化ナトリウム、沃化セシウム、約53mgの水
銀およびアルゴン35Torrが封入されている。外
管17内には、窒素ガス350Torrが封入されてい
る。点灯管5の取付け位置が発光管1の上側部位
となるため、外管17の対流によつて点灯管5の
温度は約240℃の高温であつた。このランプの指
導電圧は200V級チヨークコイルからなる安価な
安定器と組合せて、165Vで、点灯管5の閉路電
圧は155Vであつた。また9000時間点灯後でも、
このランプの始動電圧は170V、点灯管5の閉路
電圧は160Vであり、200V級チヨーク形安定器で
使用可能であつた。 点灯管のゲツタ材をジルコニウム−ニツケルの
混合焼結物のパウダーを被着した別の点灯管を用
い、他を同一条件にしたメタルハライドランプで
は、その始動電圧は165V、点灯管の閉路電圧
160Vであり、9000時間点灯後の始動電圧は
180V、点灯管の閉路電圧は175Vであり、前述の
バリウムゲツタと同じく200V級チヨーク形安定
器で使用可能であつた。 発明の効果 以上説明したように、本発明の高圧蒸気放電灯
は、始動電圧の高いメタルハライドランプや高圧
ナトリウム灯を200Vの商用電源で点灯するため、
パルス電圧が1500V以上と高く、パルス発生回数
が多く、初期グロー時間の短い点灯管を外管内に
組込むことによつて、始動電圧が低減され、
200Vの商用電源で安価なチヨーク形安定器と組
合せて使用可能になつたものである。また点灯管
を高温部に位置させても動程中の閉路電圧上昇が
僅少であるので、ランプのマウント構造が簡略化
され、安価で信頼性が高いという利点を有してい
るものである。
[Table] As is clear from the above table, when the filled gas pressure is in the range of 35 to 70 Torr at 20℃, the closing voltage of the lighting tube is
The voltage was less than 180V, and the pulse voltage was more than 1500V, which is necessary to start a high-pressure steam discharge lamp. Initial glow times were also measured, and at gas pressures of 35 Torr or higher, all were short, within 2.5 seconds, which was a satisfactory characteristic. Next, we investigated the problem of a gradual increase in closed-circuit voltage due to long-term exposure to high temperatures when the lighting tube is assembled into the outer bulb of a high-pressure steam discharge lamp. The temperature of the lighting tube varies depending on the installation position of the outer tube, the pressure of the gas sealed inside the outer tube, etc., but it is usually between 150 and 350.
It is ℃. Mixed gas of He93%-Ar2%-H2 5 %
Figure 3 shows the results of measuring the closed-circuit voltage of the lighting tube during its movement by incorporating the lighting tube sealed with 50 Torr into the outer bulb of a 400W metal halide lamp. Curve a represents the case where the inner wall of the lighting tube is not coated with getta material.
Curve b shows the case where a barium getter material is applied. The temperature of the lighting tube is approximately 240℃.
It is attached to the upper part of the arc tube within the outer tube. As is clear from FIG. 3, by applying a getter material to the inner wall of the airtight container of the lighting tube, it is possible to suppress the increase in closed circuit voltage during movement. Since it is clear that temperature has a large effect on the increase in closed circuit voltage, we conducted a heat treatment test at varying temperatures as a forced test. The results are shown in FIG. Curves c and d are the results for lighting tubes not coated with getter material and heat treated at 370°C and 160°C, respectively. It is clear from the figure that temperature has a large influence on the increase in closed circuit. Next, we made prototype lighting tubes using various getsuta materials.
A similar heat treatment test was conducted. The result is the fourth
It is also shown in the figure. Curve e is a Getsuta material made of barium, and curve f is barium 50% - aluminum 50.
% alloy, curve g is an 84% zirconium-16% aluminum alloy, curve h is a mixed sintered product of 80% zirconium and 20% nickel, and curve i is a lighting with titanium or zirconium powder coated on the inner wall of an airtight container. In each case of the tubes, the heat treatment temperature is 370°C. As is clear from this result, the above-mentioned getter material is required when the temperature of the lighting tube is high during lamp operation. Low wattage type of high pressure sodium lamp, e.g.
The 110W lamp requires a vacuum inside the outer bulb,
Due to the low wattage, even if the lighting tube is assembled into the outer tube, the temperature is approximately 140℃, and experiments have confirmed that in this case, the increase in closing voltage is small even without using getter material. There is. As described above, the present invention provides a method for obtaining a high pulse voltage and a large number of pulse generation by enclosing a discharge material containing hydrogen, which is generally considered to be harmful to discharge lamps, and also for applying a getter material to the inner wall of an airtight container. This makes it possible to suppress the increase in closed circuit voltage during long-term travel. Since Getsuta material also adsorbs hydrogen, its effectiveness was questionable when hydrogen was used as the filler gas, but as a result of experiments, it was found to be effective. This is considered to be a unique effect that is different from the getter effect when using a rare gas that is a combination of In other words, even after the getter adsorbs hydrogen and becomes saturated, it continues to absorb impure gases (N 2 , CO, CO 2 , H 2 O,
CxHy, etc.), which is thought to have exerted its effect on suppressing the increase in closed-circuit voltage during lamp movement. Next, a 400W metal halide lamp, which is an embodiment of the present invention, will be explained with reference to FIG. The arc tube 1 is held in the center of the outer tube 17, and a mixed gas of 93% He - 5% H 2 - 2% Ar is sealed at 57 Torr inside the outer tube 17, and a getter made of barium is coated on the inner wall. It has a structure in which a light tube 5, a low resistance 6, a bimetal switch 7 and a high resistance 8 are incorporated. Inside the arc tube 1, scandium iodide, sodium iodide, cesium iodide, about 53 mg of mercury, and 35 Torr of argon are sealed. Inside the outer tube 17, 350 Torr of nitrogen gas is sealed. Since the lighting tube 5 was mounted above the arc tube 1, the temperature of the lighting tube 5 was as high as about 240° C. due to the convection of the outer bulb 17. The guiding voltage of this lamp was 165V in combination with an inexpensive ballast consisting of a 200V class chiyoke coil, and the closing voltage of the lighting tube 5 was 155V. Also, even after 9000 hours of lighting,
The starting voltage of this lamp was 170V, and the closing voltage of the lighting tube 5 was 160V, so it could be used with a 200V class chiyoke type ballast. In a metal halide lamp, the starting voltage is 165V, and the starting voltage is 165V, and the starting voltage is 165V, and the starting voltage is 165V, and the starting voltage is 165V. Voltage
It is 160V, and the starting voltage after 9000 hours of lighting is
The closing voltage of the lighting tube was 180V, and the closing voltage of the lighting tube was 175V, so it could be used with a 200V class chiyok type ballast like the barium getter mentioned above. Effects of the Invention As explained above, the high-pressure vapor discharge lamp of the present invention can be used to light a metal halide lamp or high-pressure sodium lamp with a high starting voltage using a 200V commercial power supply.
By incorporating a lighting tube with a high pulse voltage of 1500V or more, a large number of pulse generation, and a short initial glow time into the outer tube, the starting voltage is reduced.
It is now possible to use a 200V commercial power supply in combination with an inexpensive chiyoke type ballast. In addition, even if the lighting tube is located in a high temperature area, the increase in closed circuit voltage during the movement is small, so the lamp mounting structure is simplified, and it has the advantage of being inexpensive and highly reliable. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるメタルハライ
ドランプの点灯回路の一例を示す図、第2図はこ
のメタルハライドランプに用いられる点灯管を示
す図、第3図は400Wメタルハライドランプの外
管に組込んだ点灯管の閉路電圧の変化を示す図、
第4図は点灯管を温度とゲツタ材の種類を変化さ
せて熱処理した場合の点灯管の閉路電圧変化を示
す図、第5図は本発明の一実施例であるメタルハ
ライドランプの正面図である。 1……発光管、2,3……主電極、4……補助
電極、5……点灯管、6……低抵抗、7……バイ
メタルスイツチ、8……高抵抗、9……インダク
タンス素子、11……気密容器、14……熱応動
素子、16……ゲツタ材、17……外管。
Fig. 1 is a diagram showing an example of a lighting circuit for a metal halide lamp which is an embodiment of the present invention, Fig. 2 is a diagram showing a lighting tube used in this metal halide lamp, and Fig. 3 is a diagram showing an outer tube of a 400W metal halide lamp. A diagram showing changes in the closed circuit voltage of the lighting tube incorporated in the
Fig. 4 is a diagram showing the change in closed-circuit voltage of the lighting tube when the lighting tube is heat-treated by varying the temperature and type of getter material, and Fig. 5 is a front view of a metal halide lamp which is an embodiment of the present invention. It is. 1... Arc tube, 2, 3... Main electrode, 4... Auxiliary electrode, 5... Lighting tube, 6... Low resistance, 7... Bimetal switch, 8... High resistance, 9... Inductance element , 11... Airtight container, 14... Thermal response element, 16... Getsuta material, 17... Outer tube.

Claims (1)

【特許請求の範囲】[Claims] 1 気密容器内に、少なくとも一方に熱応動素子
を有する電極を具備するとともに、ヘリウム−ア
ルゴン−水素、または、ヘリウム−水素の混合気
体を封入し、その封入ガス圧を20℃において35〜
70Torrに選定し、さらに前記気密容器の内壁に
ジルコニウム、チタン、バリウム、バリウム−ア
ルミウム合金、ジルコニウム−アルミニウム合
金、ジルコニウム−ニツケルの混合焼結物から選
択された一種または複数種のゲツタ材を被着した
点灯管を外管内に設けたことを特徴とする高圧蒸
気放電灯。
1 An airtight container is equipped with an electrode having a thermally responsive element on at least one side, and a mixed gas of helium-argon-hydrogen or helium-hydrogen is sealed, and the pressure of the sealed gas is set at 35 to 35°C at 20°C.
70 Torr, and one or more getter materials selected from zirconium, titanium, barium, barium-aluminum alloy, zirconium-aluminum alloy, and mixed sintered zirconium-nickel are applied to the inner wall of the airtight container. A high-pressure steam discharge lamp characterized by having a lighting tube inside the outer bulb.
JP9837183A 1983-06-02 1983-06-02 High pressure vapor electric discharge lamp Granted JPS59224044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9837183A JPS59224044A (en) 1983-06-02 1983-06-02 High pressure vapor electric discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9837183A JPS59224044A (en) 1983-06-02 1983-06-02 High pressure vapor electric discharge lamp

Publications (2)

Publication Number Publication Date
JPS59224044A JPS59224044A (en) 1984-12-15
JPH0480501B2 true JPH0480501B2 (en) 1992-12-18

Family

ID=14218017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9837183A Granted JPS59224044A (en) 1983-06-02 1983-06-02 High pressure vapor electric discharge lamp

Country Status (1)

Country Link
JP (1) JPS59224044A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532239A (en) * 2005-02-28 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Glow switch starter, lighting device and lighting system including starter, and method of using starter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661761A (en) * 1979-10-24 1981-05-27 Toshiba Corp Metal-vapor electric-discharge lamp
JPS5710079U (en) * 1980-06-16 1982-01-19
JPS5717596A (en) * 1980-05-20 1982-01-29 Philips Nv Flow discharge starter and discharge lamp with same starter
JPS57109295A (en) * 1980-12-26 1982-07-07 Iwasaki Electric Co Ltd High voltage metal vapor discharge lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661761A (en) * 1979-10-24 1981-05-27 Toshiba Corp Metal-vapor electric-discharge lamp
JPS5717596A (en) * 1980-05-20 1982-01-29 Philips Nv Flow discharge starter and discharge lamp with same starter
JPS5710079U (en) * 1980-06-16 1982-01-19
JPS57109295A (en) * 1980-12-26 1982-07-07 Iwasaki Electric Co Ltd High voltage metal vapor discharge lamp

Also Published As

Publication number Publication date
JPS59224044A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
US4179640A (en) Hid sodium lamp which incorporates a high pressure of xenon and a trigger starting electrode
US4812714A (en) Arc discharge lamp with electrodeless ultraviolet radiation starting source
JPH10503879A (en) Electrodeless low pressure discharge lamp
US3851207A (en) Stabilized high intensity sodium vapor lamp
US4061939A (en) Low noise sodium vapor lamp for sonic pulse operation
JPS64785B2 (en)
US3828214A (en) Plasma enshrouded electric discharge device
US4633135A (en) Starting aid for high pressure sodium vapor lamp
JPH0213422B2 (en)
US4433271A (en) High pressure discharge lamp
JPH0480501B2 (en)
US3737717A (en) High intensity lamp containing thermal shorting fuse
US4686421A (en) Glow discharge starter and arc discharge lamp containing same
US5001391A (en) Glow discharge starter
US5185557A (en) High-pressure discharge lamp
US2748308A (en) Low-pressure arc-discharge tube supplied with direct current
US4182976A (en) High pressure sodium vapor lamp with voltage rise compensator
US4761583A (en) Glow discharge starter containing radioactive alloy
US2069135A (en) Vapor or gaseous arc discharge lamp
RU2079183C1 (en) High-pressure discharge tube
JPS59224043A (en) High pressure vapor electric discharge lamp
JPS6364030B2 (en)
JPH0582018B2 (en)
US7915825B2 (en) Starting aid for discharge lamp
JPH0339385B2 (en)