JPH0480476A - Control method of dynamic vibration reducer device for building - Google Patents

Control method of dynamic vibration reducer device for building

Info

Publication number
JPH0480476A
JPH0480476A JP19043790A JP19043790A JPH0480476A JP H0480476 A JPH0480476 A JP H0480476A JP 19043790 A JP19043790 A JP 19043790A JP 19043790 A JP19043790 A JP 19043790A JP H0480476 A JPH0480476 A JP H0480476A
Authority
JP
Japan
Prior art keywords
building
control
dynamic vibration
actuator
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19043790A
Other languages
Japanese (ja)
Other versions
JP2889329B2 (en
Inventor
Nobuo Masaki
信男 正木
Takashi Fujita
隆史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP19043790A priority Critical patent/JP2889329B2/en
Publication of JPH0480476A publication Critical patent/JPH0480476A/en
Application granted granted Critical
Publication of JP2889329B2 publication Critical patent/JP2889329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To utilize the capacity of a dynamic vibration reducer at all times, and to inhibit vibrations extremely by installing a dynamic vibration reducer device enabling active control by an actuator and changing over control systems at three stages by the extent of the disturbance of a wind and an earthquake. CONSTITUTION:Added mass M13 is placed on the floor face 3 of the uppermost layer of a building 2 movably in the horizontal direction, and a spring 42 working in the horizontal direction, a damper 43 and an actuator 44 are interposed between a fixing member 41 unified with the floor face 2 and the added mass M13, and driven by the control of a control circuit 18, thus forming an active dynamic vibration reducer. The control circuit 18 adopts three kinds of control systems on the basis of the detecting signal of a vibration sensor 17 mounted to the ground 1, and complete active control is conducted in a weak shock of an earthquake of the 3rd degree of earthquake intensity or less, model matching control in a middle shock of the earthquake from the 3rd degree to the 5th degree and displacement is controlled in a severe shock of the earthquake of the 5th degree or more respectively.

Description

【発明の詳細な説明】 崖!上皇剋里丘団 本発明は、高層ビル、ペンシルビルおよび各種のタワー
等の柔構造建物の地震や風による揺れを低減する振動制
御に関し、特に建物用動吸振器の制御方法に関する。
[Detailed description of the invention] Cliff! TECHNICAL FIELD The present invention relates to vibration control for reducing vibrations caused by earthquakes and wind in flexible structures such as high-rise buildings, pencil buildings, and various towers, and particularly to a method for controlling dynamic vibration absorbers for buildings.

l米及街 高層ビル、ペンシルビルおよび各種タワー等の高い建築
物では、振動エネルギーを吸収して耐震強度を向上させ
るため柔構造が採用されている。
Tall buildings, such as high-rise buildings, pencil buildings, and various towers, use flexible structures to absorb vibration energy and improve seismic strength.

この柔構造の建物の場合、地震や強風時に建物自体が一
振動系をなして揺れるが、常風時においても揺れが大き
くなって居住性が害されるおそれがあるため、建物にば
ねを介して付加質量を取り付けて副ばねマス系を達成さ
せる方法が採られている。
In the case of buildings with this flexible structure, the building itself sways in a single vibration system during earthquakes and strong winds, but even in normal winds, the swaying becomes large and there is a risk that livability may be impaired. A method has been adopted in which an additional mass is attached to achieve a secondary spring mass system.

すなわち建物自体の主ばねマス系と上記側ばねマス系と
で固有振動数が略同じになるように設定することにより
、建物の揺れを打ち消す振動を発生させて吸振効果を実
現する動吸振器(ダイナミックダンパー)装置を設ける
ことが提案されている。
In other words, by setting the natural frequencies of the main spring mass system of the building itself and the side spring mass system to be approximately the same, a dynamic vibration absorber ( It has been proposed to provide a dynamic damper) device.

従来この種の建物用動吸振器装置ではマスダンパーにお
ける付加質量の設置床との相対変位および相対速度、建
物と地盤との相対変位および相対速度を測定し、制御器
にフィードバックして建物の絶対加速度を最小限にすべ
くアクチュエータを制御するいわゆる最適レギュレータ
制御が行われていた。
Conventionally, this type of dynamic vibration absorber device for buildings measures the relative displacement and relative speed of the additional mass in the mass damper with the installation floor, and the relative displacement and relative speed between the building and the ground, and feeds it back to the controller to determine the absolute So-called optimal regulator control has been used to control actuators to minimize acceleration.

例えば特開平2−85476号公報、特開平2−854
77号公報、特開平2−85478号公報、特開平2−
85479号公報等に記載されたものは、上記最適レギ
ュレータ制御を示しており、同制御による吸振効果によ
り建物の振動振幅を減少させ、建物の全体変形を小さ(
し、居住性を向上させようとしている。
For example, JP-A No. 2-85476, JP-A No. 2-854
No. 77, JP-A-2-85478, JP-A-Hei 2-
What is described in Publication No. 85479, etc. shows the above-mentioned optimal regulator control, which reduces the vibration amplitude of the building due to the vibration absorption effect of the control, and reduces the overall deformation of the building (
and are trying to improve livability.

゛ しよ°と る゛ しかし従来は常に最適レギュレータ制御を行なうもので
あって、震度3程度までの弱震および風による外乱を受
ける場合は、建物全体の振動を制御することができて大
きな効果を得られるが、震度3を越える中震および強震
の場合においては、マスダンパーのストロークが過大に
なるばかりか、最適制御するためにはマスダンパーのア
クチュエータに極めて過大な駆動力を要求され実現が困
難となる問題があった。
However, in the past, optimal regulator control was always performed, and when a building is subject to weak earthquakes up to about 3 on the seismic intensity scale and disturbances due to wind, it is possible to control the vibration of the entire building, which is very effective. However, in the case of moderate and strong earthquakes exceeding seismic intensity 3, not only does the stroke of the mass damper become excessive, but optimal control requires extremely excessive driving force from the mass damper actuator, making it difficult to achieve. There was a problem.

本発明は、かかる点に鑑みなされたもので、その目的と
する処は、震度3以上の地震に対しては制御方式を変え
ることで対応し常に動吸振器装置を有効に作動させて建
物の振動低減を図ることができる建物用動吸振器装置の
制御方法を供する点にある。
The present invention was made in view of the above, and its purpose is to respond to earthquakes with a seismic intensity of 3 or higher by changing the control method, and to constantly operate the dynamic vibration absorber effectively to protect buildings. The object of the present invention is to provide a method for controlling a dynamic vibration absorber device for a building that can reduce vibrations.

るための  および 上記目的を達成するために、本発明は建物の屋上または
その近傍階にアクチュエータにより能動的制御が可能な
動吸振器装置を備え、同動吸振器装置の付加質量、建物
および地面の各振動を検出する振動センサーからの検出
信号に基づき前記動吸振器装置のアクチュエータを駆動
制御する方法において、震度3程度までの弱震または風
による外乱を受ける場合は建物の絶対加速度が最小にな
るようにアクチュエータを制御する最適レギュレータ制
御をなし、震度3から震度5程度までの中震の場合は建
物の絶対加速度から建物の固有振動数を同定し付加質量
部を最適設定されたパッシブな動吸振器の動きと等しく
アクチュエータを制御するモデルマツチング制御をなし
、震度5程度以上の強震の場合は付加質量の設置床部に
対する相対変位が所定の変位を越えないようにアクチュ
エータを制御する変位制御またはアクチュエータの制御
を中止してパッシブな動吸振器として動作させる建物用
動吸振器装置の制御方法である。
In order to achieve the above objects, the present invention provides a dynamic vibration absorber device that can be actively controlled by an actuator on the rooftop of a building or a floor near it, and the additional mass of the dynamic vibration absorber device is removed from the building and the ground. In the method of driving and controlling the actuator of the dynamic vibration absorber device based on the detection signal from the vibration sensor that detects each vibration, the absolute acceleration of the building is minimized when the building is subjected to a weak earthquake of up to about 3 on the seismic intensity scale or disturbance due to wind. In the case of moderate earthquakes from seismic intensity 3 to seismic intensity 5, the natural frequency of the building is identified from the building's absolute acceleration, and the additional mass is optimally set for passive dynamic vibration absorption. Model matching control is used to control the actuator equally with the movement of the device, and in the case of a strong earthquake with a seismic intensity of about 5 or higher, displacement control is used to control the actuator so that the relative displacement of the additional mass to the installation floor does not exceed a predetermined displacement. This is a control method for a dynamic vibration absorber device for a building, in which control of an actuator is stopped and the device operates as a passive dynamic vibration absorber.

弱震時および風による外乱を受ける場合は、最適レギュ
レータ制御により大きな振動低減効果が得られ、中震時
にはモデルマツチング制御により制御力を非常に小さく
して最適同調させたパッシブなマスダンパーのように作
動して振動を低減させることができ、強震時には変位制
御またはパンシブな動吸振器としてマスダンパーの過大
変位を防止して極力安全確保を図ることができる。
During weak earthquakes and when wind disturbances occur, large vibration reduction effects can be obtained through optimal regulator control, and during moderate earthquakes, the control force is minimized and optimally tuned using model matching control, similar to a passive mass damper. It can be activated to reduce vibrations, and in the event of a strong earthquake, it can be used as a displacement control or as a passive dynamic vibration absorber to prevent excessive displacement of the mass damper and ensure safety as much as possible.

2施■ 以下第1図ないし第1O図に図示した本発明に係る一実
施例について説明する。
2. Hereinafter, one embodiment of the present invention illustrated in FIGS. 1 to 1O will be described.

第1図は本実施例の振動制御装置を備えた建物の模式的
立面図である。
FIG. 1 is a schematic elevational view of a building equipped with the vibration control device of this embodiment.

地盤1上にタワー状の建物2が構築されており、該建物
2の最上階に本発明の係る振動制御装置10が設置され
ている。
A tower-shaped building 2 is constructed on a ground 1, and a vibration control device 10 according to the present invention is installed on the top floor of the building 2.

建物2としては、例えば−辺が10〜25m程度の正方
形、長方形または菱形等の床面を有し、高さが60〜1
50mに達する鉄骨構造で構築され、風圧を受けて例え
ば2秒程度の固有周期および数10mm程度の振幅で揺
れる建物を典型例として挙げることができ、本実施例も
かかる建物を対象としている。
The building 2 has, for example, a square, rectangular, or diamond-shaped floor surface with sides of about 10 to 25 m, and a height of 60 to 1 m.
A typical example is a building constructed with a steel frame structure that is up to 50 meters long and shakes with a natural period of about 2 seconds and an amplitude of several tens of millimeters due to wind pressure, and this embodiment is also targeted at such a building.

該建物2の最上階床面3上には水平ばね手段12を介し
て付加質量M13が保持された動吸振器11が設置され
ている。
A dynamic vibration reducer 11 is installed on the floor surface 3 of the uppermost floor of the building 2, with an additional mass M13 held therein via horizontal spring means 12.

付加質量M13には、別途建物2に固定されたアクチュ
エータたる油圧シリンダー14のロンド先端が固着され
ていて、油圧シリンダー14の駆動により付加質量M1
3は床面3に対して平行に移動可能である。
The rond end of a hydraulic cylinder 14, which is an actuator separately fixed to the building 2, is fixed to the additional mass M13, and the additional mass M1 is driven by the hydraulic cylinder 14.
3 is movable parallel to the floor surface 3.

そして建物2の床面3、付加質量M13および地盤1に
それぞれ振動センサー15.16.17が設置され、振
動センサー15は建物2の振動、振動センサー16は付
加質量M13の振動、振動センサー17は地盤1の振動
をそれぞれ検出する。
Vibration sensors 15, 16, and 17 are installed on the floor 3 of the building 2, the additional mass M13, and the ground 1, respectively. Each vibration of the ground 1 is detected.

振動センサー15.16.17の検出信号は、制御回路
18に入力され、同検出信号に基づいて制御回路18は
制御信号を生成して、前記油圧シリンダー14に出力し
油圧シリンダー14の駆動を制御する。
The detection signals of the vibration sensors 15, 16, and 17 are input to the control circuit 18, and based on the detection signals, the control circuit 18 generates a control signal and outputs it to the hydraulic cylinder 14 to control the drive of the hydraulic cylinder 14. do.

振動制御装置lOは以上のように構成されおり、制御回
路18が振動センサー15.16.17の検出信号を入
力して分析し、建物2の揺れを低減するよう油圧シリン
ダー14を駆動制御すると、油圧シリンダー14は付加
質量M13を床面3に対し水平に変位させてアクティブ
な動吸振器として働らき、建物2の揺れを抑制すること
ができる。
The vibration control device IO is configured as described above, and when the control circuit 18 inputs and analyzes the detection signals of the vibration sensors 15, 16, and 17 and controls the hydraulic cylinder 14 to reduce the shaking of the building 2, The hydraulic cylinder 14 displaces the additional mass M13 horizontally with respect to the floor surface 3 and functions as an active dynamic vibration absorber, thereby suppressing the shaking of the building 2.

すなわち振動制御装置lOは、柔構造をなす建物2を主
振動系とし、水平ばね手段12および付加質量M13か
らなる動吸振器11を略同じ振動周期を有する副ばねマ
ス系として連成させるとともに、油圧シリンダー14に
より強制的に付加質量M13を加振することにより、建
物2が種々の広い周波数帯域の励振力を受けて揺れる場
合でも、揺れを効果的に低減させるよう制御可能である
That is, the vibration control device 1O uses the building 2 having a flexible structure as a main vibration system, and connects the dynamic vibration absorber 11 consisting of the horizontal spring means 12 and the additional mass M13 as a sub-spring mass system having approximately the same vibration period. By forcibly exciting the additional mass M13 with the hydraulic cylinder 14, even if the building 2 sways due to excitation forces in various wide frequency bands, control can be performed to effectively reduce the sway.

第2図および第3図は、該副ばねマス系の動吸振器11
の正面図および横断面図である。
FIG. 2 and FIG. 3 show the dynamic vibration absorber 11 of the sub-spring mass system.
FIG. 2 is a front view and a cross-sectional view of

水平ばね手段12は、床面3と付加質量M13との間に
積層弾性体(積層ゴム)20と安定板21とが交互に重
なり4段に積み重ねられた多数段式弾性ユニットとして
構成されて正方形状をなして各上下面の4箇所に積層弾
性体20が固着されている。
The horizontal spring means 12 is configured as a multi-stage elastic unit in which laminated elastic bodies (laminated rubber) 20 and stabilizing plates 21 are alternately stacked in four stages between the floor surface 3 and the additional mass M13. A laminated elastic body 20 is fixed at four locations on each upper and lower surface.

3枚の安定板21は、正方形状をなして各上下面の4箇
所に積層弾性体20が固着されて対応する積層弾性体2
0の上下端を連結する剛体の連結板であって、地震や風
で横荷重を受けた場合に座屈を生じることなく弾性変化
する水平方向変位能力を増大させるために介装されてい
る。
The three stabilizing plates 21 have a square shape, and the laminated elastic bodies 20 are fixed to four places on each upper and lower surface, so that the corresponding laminated elastic bodies 2
This is a rigid connecting plate that connects the upper and lower ends of the 0, and is interposed to increase the horizontal displacement ability to elastically change without buckling when subjected to lateral loads due to earthquakes or wind.

そして互いに対向する上下の安定板21の間に、水平方
向の振動を減衰させるための減衰器22が所定の配列で
組み込まれている。
Dampeners 22 for damping horizontal vibrations are installed in a predetermined arrangement between the upper and lower stabilizers 21 that face each other.

ここに積層弾性体20は、第4図および第5図に図示す
るように、ゴムその他のエラストマー材25と金属製の
補強板26とが交互に積層して円筒状に一体化したもの
で、上下方向には剛性が高く、水平方向には弾性を有す
る構造をしている。
As shown in FIGS. 4 and 5, the laminated elastic body 20 is formed by alternately laminating rubber or other elastomer materials 25 and metal reinforcing plates 26 and integrating them into a cylindrical shape. It has a structure that is highly rigid in the vertical direction and elastic in the horizontal direction.

なお積層弾性体20の上下面には矩形のフランジプレー
ト27が一体に固着され、同フランジプレート27の4
隅に穿設された取付孔28にボルトを貫入してフランジ
プレート27を床面3、付加質量M13または安定板2
1に固着せしめることができる。
Note that rectangular flange plates 27 are integrally fixed to the upper and lower surfaces of the laminated elastic body 20, and the 4
By inserting bolts into the mounting holes 28 drilled in the corners, the flange plate 27 is attached to the floor surface 3, the additional mass M13, or the stabilizer plate 2.
It can be fixed to 1.

次に油圧シリンダー14を駆動制御する制御回路18の
構成を第6図にブロック図で示す。
Next, the configuration of the control circuit 18 for driving and controlling the hydraulic cylinder 14 is shown in a block diagram in FIG.

各所定位置に設置された振動センサー15.16.17
から検出信号は、まずチャージアンプ31に入力されて
増幅され、ローパスフィルタLPF32を経て低周波域
の信号を抽出し、次いでA/Dコンバータ33によりデ
ジタル信号として信号処理器34に各信号が入力される
Vibration sensors installed at each predetermined position 15.16.17
The detection signal is first input to a charge amplifier 31 and amplified, passes through a low-pass filter LPF 32 to extract signals in the low frequency range, and then each signal is input to a signal processor 34 as a digital signal by an A/D converter 33. Ru.

信号処理器34は制御回路18の中で最も重要な制御信
号生成の機能を果たすものであり、該制御信号はD/A
コンバータ35に出力されてアナログ信号に変換され、
次いでローパスフィルターLPF36を経て低周波域信
号を抽出されパワーアップ37で増幅されて油圧シリン
ダー14に駆動信号として出力される。
The signal processor 34 performs the most important control signal generation function in the control circuit 18, and the control signal is a D/A
It is output to the converter 35 and converted into an analog signal,
Next, a low frequency band signal is extracted through a low pass filter LPF 36, amplified by a power up 37, and outputted to the hydraulic cylinder 14 as a drive signal.

油圧シリンダー14は、この駆動信号にしたがって駆動
し付加質量M13を加振する。
The hydraulic cylinder 14 is driven according to this drive signal to vibrate the additional mass M13.

本実施例は、以上のような構成からなり、全体の系を模
式図で示すと第7図のように表示することができる。
The present embodiment has the above-mentioned configuration, and the entire system can be schematically displayed as shown in FIG. 7.

地盤1に立つ建物2の最上層床面3に水平方向に移動自
在に付加質量M13が載置され、床面3と一体の固定部
材41と付加質量M13との間に水平方向に作用するバ
ネ42、ダンパー43およびアクチュエータ44が介在
する。
An additional mass M13 is placed on the uppermost floor 3 of the building 2 that stands on the ground 1 so as to be movable in the horizontal direction, and a spring acts horizontally between the fixed member 41 that is integrated with the floor 3 and the additional mass M13. 42, a damper 43, and an actuator 44 are interposed.

ここにバネ42とダンパー43は積層弾性体20の弾性
および減衰能力に基づくものであり、アクチュエータ4
4は油圧シリンダー14に相当する。
Here, the spring 42 and the damper 43 are based on the elasticity and damping ability of the laminated elastic body 20, and the actuator 4
4 corresponds to the hydraulic cylinder 14.

アクチュエータ44がない状態ではパッシブな動吸振器
を構成し、アクチエエータ44が加わって制御回路18
の制御により駆動されることでアクティブな動吸振器を
構成する。
When the actuator 44 is not present, it forms a passive dynamic vibration absorber, and when the actuator 44 is added, the control circuit 18
An active dynamic vibration absorber is constructed by being driven under the control of

以下本実施例の制御回路18による制御方法について説
明する。
The control method by the control circuit 18 of this embodiment will be explained below.

制御回路18は、地盤1に設置された振動センサー17
の検出信号に基づき3種類の制御方式が採られており、
震度3(地動加速度50ガル)以下の弱震では完全なア
クティブ制?Il(最適レギュレータ制?Il)がなさ
れ、震度3から震度5(50〜200ガル)までの中震
ではセミアクティブ制fD(モデルマツチング制?I)
がなされ、震度5 (200ガル)以上の強震では変位
制御がなされる。
The control circuit 18 includes a vibration sensor 17 installed on the ground 1.
Three types of control methods are adopted based on the detection signal of
Is there a complete active system for weak earthquakes below seismic intensity 3 (ground motion acceleration 50 gal)? Il (optimal regulator system? Il) is implemented, and semi-active system fD (model matching system? I) is used for moderate earthquakes from seismic intensity 3 to seismic intensity 5 (50 to 200 gal).
In the case of strong earthquakes with a seismic intensity of 5 (200 gal) or higher, displacement control is carried out.

この3種類の制御方式による建物の見かけの減衰率は第
8図に図示する如くであり、アクティブ制御、セミアク
ティブ制御、変位制御の順に見かけの減衰率は段階的に
減少している。
The apparent attenuation rate of the building under these three types of control methods is as shown in FIG. 8, and the apparent attenuation rate decreases stepwise in the order of active control, semi-active control, and displacement control.

なお風による外乱を受けるときはアクティブ制御がなさ
れる。
Note that active control is performed when wind disturbances occur.

まず弱震のときのアクティブ制御は、付加質量M13の
床面3に対する相対変位と相対速度を振動センサー15
.16の検出信号から測定すると同時に建物2の地盤1
に対する相対変位と相対速度を振動センサー15.17
の検出信号から測定し、建物2の絶対加速度が最小とな
るように、アクチュエータ44(油圧シリンダ14)を
駆動制御する最適レギュレータ制御を行う。
First, during active control during a weak earthquake, the vibration sensor 15 detects the relative displacement and relative velocity of the additional mass M13 with respect to the floor surface 3.
.. At the same time as measuring from the detection signal of 16, the ground 1 of building 2
Vibration sensor 15.17
Optimum regulator control is performed to drive and control the actuator 44 (hydraulic cylinder 14) so that the absolute acceleration of the building 2 is minimized.

大きな振動減衰率を示しく第8図参照)、第9図に示す
如く建物2の揺れの振幅を小さく抑えることができる。
(see FIG. 8, which shows a large vibration damping rate), the amplitude of the shaking of the building 2 can be suppressed to a small level as shown in FIG. 9.

第9図では上段が最適レギュレータ制御をしない場合で
、下段が最適レギュレータ制御をした場合で振幅が大幅
に減少している。
In FIG. 9, the upper row shows the case where optimal regulator control is not performed, and the lower row shows the case where optimal regulator control is performed, and the amplitude is significantly reduced.

しかしこの最適レギュレータ制御は、建物2の絶対加速
度を最小にしようとするものであり、中震以上の振動(
It度度板以上に対処しようとなると、付加質量M13
のストロークに余裕がなくなり、油圧シリンダー14の
負担が限界を越えるようになるため実現が困難である。
However, this optimal regulator control attempts to minimize the absolute acceleration of the building 2, and is designed to minimize vibrations of moderate earthquakes or higher (
If you try to deal with more than the It scale, the additional mass M13
This is difficult to realize because there is no margin in the stroke and the load on the hydraulic cylinder 14 exceeds its limit.

そこで中震においては、建物2の絶対加速度を測定し、
絶対加速度から建物2の固有振動数を同定し、付加質量
M13が最適に調整された状態のパッシブな動吸振器の
動きと等しく油圧シリンダ14を制御するモデルマツチ
制御制御を行なう。
Therefore, in the case of a medium earthquake, the absolute acceleration of building 2 is measured,
The natural frequency of the building 2 is identified from the absolute acceleration, and model match control is performed to control the hydraulic cylinder 14 equally to the movement of the passive dynamic vibration reducer with the additional mass M13 optimally adjusted.

例えば付加質IFM13が最適に調整された状態とは、
動吸振器の減衰比ζdと固有円振動数ωdの以下に示す
(1)、(2)式から求めることによって得られる。
For example, the state in which the additional quality IFM 13 is optimally adjusted is as follows.
It is obtained by calculating the damping ratio ζd and the natural circular frequency ωd of the dynamic vibration absorber from equations (1) and (2) shown below.

ぐd = [3ρ/(8(1+ρ>  >  ]”+(
0,130+0.12ρ+0.4  ρ2)ζ3−(0
,01+0.9  ρ+3ρ2)ζ、2−・−・・(1
)ωd/ωg=1/(1+ρ) −(0,241+ 1.74ρ−2,6ρすζ$−(1
,00−1,9ρ+ρ2)ζ 1 ・−・−(2)ここ
にρ=M(付加質量)/M、(建物の質量ζ、は建物の
減衰比、ωヨは建物の固有振動数である。
Gud = [3ρ/(8(1+ρ>> ]”+(
0,130+0.12ρ+0.4 ρ2)ζ3-(0
,01+0.9 ρ+3ρ2)ζ,2−・−・・(1
)ωd/ωg=1/(1+ρ) −(0,241+ 1.74ρ−2,6ρsuζ$−(1
,00-1,9ρ+ρ2)ζ 1 ・−・−(2) Here, ρ=M (added mass)/M, (building mass ζ is the damping ratio of the building, and ωyo is the natural frequency of the building. .

このように制御することで、動吸振器11は付加質量M
13を最適に調整されたパッシブな動吸振器の如くに作
動し、建物の見掛けの等価減衰率も相当程度あり(第8
図参照)、建物の振動応答倍率をみると、第1θ図に示
す如く、最適調整前には固有振動数において共振して突
出していた部分(第10図(a))が本モデルマツチン
グ制御により調整後は大幅に減少している(第10図ら
))。
By controlling in this way, the dynamic vibration absorber 11 has an additional mass M
13 operates like an optimally adjusted passive dynamic vibration absorber, and the apparent equivalent damping rate of the building is also quite high (No. 8
), and looking at the vibration response magnification of the building, as shown in Figure 1θ, the part that resonated and stood out at the natural frequency before the optimal adjustment (Figure 10(a)) was affected by this model matching control. (Figure 10, etc.)).

しかるに震度5を越える強震の場合は、上記モデルマツ
チ制御によっても効果は期待できなくなるので、この場
合は付加質量M13の床面3に対する相対変位および相
対速度を測定し、これらの情報を制御回路18にフィー
ドバックして付加質量M13の相対変位が所定の変位を
越えないように制御する変位制御を行なうことで対処す
る。
However, in the case of a strong earthquake exceeding seismic intensity 5, the model matching control described above cannot be expected to be effective. This is dealt with by performing displacement control that controls the relative displacement of the additional mass M13 so as not to exceed a predetermined displacement through feedback.

もしくは付加質量M13が一定以上の相対速度および相
対変位をIiしたときには、制御を中止し、単にパッシ
ブな動吸振器として使用する。
Alternatively, when the additional mass M13 has a relative velocity and relative displacement Ii of a certain level or more, the control is stopped and it is simply used as a passive dynamic vibration absorber.

この場合油圧シリンダ14の油圧回路を切換えてバイパ
スを設けた絞り弁によって大きな減衰力を発生させ、す
なわち油圧シリンダ14を減衰器として使用して付加質
量M13の変位をできるだけ抑制してもよい。
In this case, the hydraulic circuit of the hydraulic cylinder 14 may be switched to generate a large damping force using a throttle valve provided with a bypass, that is, the hydraulic cylinder 14 may be used as a damper to suppress the displacement of the additional mass M13 as much as possible.

以上のように本実施例によれば風による外乱および地震
の大きさにより3段階に制御方式を切り替えることによ
り、動吸振器11の能力を有効に利用して常に最適な振
動抑制効果を得ることができる。
As described above, according to this embodiment, by switching the control method in three stages depending on the magnitude of wind disturbance and earthquake, the ability of the dynamic vibration absorber 11 can be effectively used to always obtain the optimum vibration suppression effect. I can do it.

発1坏l丸釆 本発明は、建物用動吸振器装置において、風による外乱
を受ける場合および弱震では最適レギュレータ制御を行
い振動低減効果を向上させ、最適レギュレータ制御が不
能な中震ではモデルマツチング制御を行い最適同調させ
た動吸振器として作用させて小さな制御力で振動を抑制
し、強震では変位制御またはパッシブな動吸振器として
作用させて付加質量の過大変位を防止して安全性を可及
的に高めることができる。
The present invention improves the vibration reduction effect by performing optimal regulator control in a dynamic vibration absorber device for a building when it is subjected to wind disturbance or in weak earthquakes, and uses model pine in case of moderate earthquakes where optimal regulator control is not possible. It performs vibration control and acts as an optimally tuned dynamic vibration absorber to suppress vibration with a small control force, and in the case of strong earthquakes, it acts as a displacement control or passive dynamic vibration absorber to prevent excessive displacement of the added mass and improve safety. can be increased as much as possible.

以上のように風の外乱および地震の程度により3段階に
制御方式を切り替えることで地震の大きさによらず常に
動吸振器の能力を最大限に活かして振動を極力抑制する
ことができる。
As described above, by switching the control method in three stages depending on the degree of wind disturbance and earthquake, it is possible to always maximize the ability of the dynamic vibration absorber and suppress vibrations as much as possible, regardless of the magnitude of the earthquake.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例の振動制御装置を備えた
建物の模式的立面図、第2図は同実施例の動吸振器の正
面図、第3図は第2図の■−■断面図、第4図は積層弾
性体の正面図、第5図は第4図のV−■断面図、第6図
は同実施例の制御回路のブロック図を示す図、第7図は
同実施例の全体系の模式図、第8図は同実施例の制御方
法による建物の見かけの減衰率を示す図、第9図は同じ
く振幅変化を示す図、第10図はモデルマツチング制御
による効果を示す図である。 1・・・地盤、2・・・建物、3・・・床面、10・・
・振動制御装置、11・・・動吸振器、12・・・水平
ばね手段、13・・・付加質量M、14・・・油圧シリ
ンダ、15゜16、 IT・・・振動センサー、18・
・・制御回路、20・・・積層弾性体、21・・・安定
板、22・・・減衰器、25・・・エラストマー材、2
6・・・補強板、27・・・フランジプレート、28・
・・取付孔、 31・・・チャージアンプ、32・・・ローパスフィル
タLPF、33・・・A/Dコンバータ、34・・・信
号処理器、35・・・D/Aコンバータ、36・・・ロ
ーパスフィルタLPF、37・・・パワーアンプ、 41・・・固定部材、42・・・バネ、43・・・ダン
パー、44・・・アクチュエータ。
FIG. 1 is a schematic elevational view of a building equipped with a vibration control device according to an embodiment of the present invention, FIG. 2 is a front view of a dynamic vibration absorber of the same embodiment, and FIG. -■ sectional view, FIG. 4 is a front view of the laminated elastic body, FIG. 5 is a V-■ sectional view of FIG. 4, FIG. 6 is a block diagram of the control circuit of the same embodiment, and FIG. is a schematic diagram of the overall system of the same example, Figure 8 is a diagram showing the apparent attenuation rate of the building due to the control method of the same example, Figure 9 is a diagram also showing amplitude changes, and Figure 10 is model matching. It is a figure which shows the effect by control. 1...Ground, 2...Building, 3...Floor surface, 10...
- Vibration control device, 11... Dynamic vibration absorber, 12... Horizontal spring means, 13... Additional mass M, 14... Hydraulic cylinder, 15° 16, IT... Vibration sensor, 18.
... Control circuit, 20 ... Laminated elastic body, 21 ... Stabilizer, 22 ... Attenuator, 25 ... Elastomer material, 2
6... Reinforcement plate, 27... Flange plate, 28.
...Mounting hole, 31...Charge amplifier, 32...Low pass filter LPF, 33...A/D converter, 34...Signal processor, 35...D/A converter, 36... Low pass filter LPF, 37... Power amplifier, 41... Fixed member, 42... Spring, 43... Damper, 44... Actuator.

Claims (1)

【特許請求の範囲】 建物の屋上またはその近傍階にアクチュエータにより能
動的制御が可能な動吸振器装置を備え、同動吸振器装置
の付加質量、建物および地面の各振動を検出する振動セ
ンサーからの検出信号に基づき前記動吸振器装置のアク
チュエータを駆動制御する方法において、 震度3程度までの弱震または風による外乱を受ける場合
は建物の絶対加速度が最小になるようにアクチュエータ
を制御する最適レギュレータ制御をなし、 震度3から震度5程度までの中震の場合は建物の絶対加
速度から建物の固有振動数を同定し付加質量部を最適設
定されたパッシブな動吸振器の動きと等しくアクチュエ
ータを制御するモデルマッチング制御をなし、 震度5程度以上の強震の場合は付加質量の設置床部に対
する相対変位が所定の変位を越えないようにアクチュエ
ータを制御する変位制御またはアクチュエータの制御を
中止してパッシブな動吸振器として動作させることを特
徴とする建物用動吸振器装置の制御方法。
[Claims] A dynamic vibration absorber device that can be actively controlled by an actuator is provided on the roof of a building or a floor near it, and a vibration sensor detects each vibration of the added mass of the dynamic vibration absorber device, the building, and the ground. In the method of driving and controlling the actuator of the dynamic vibration absorber device based on the detection signal of the seismic intensity, the optimal regulator control controls the actuator so that the absolute acceleration of the building is minimized when the building is subjected to a weak earthquake of up to about 3 on the seismic intensity scale or a disturbance due to wind. In the case of a moderate earthquake from seismic intensity 3 to seismic intensity 5, the building's natural frequency is identified from the building's absolute acceleration, and the actuator is controlled to equalize the movement of the passive dynamic vibration absorber with the added mass part optimally set. Model matching control is used, and in the case of a strong earthquake with a seismic intensity of about 5 or higher, displacement control is performed to control the actuator so that the relative displacement of the additional mass to the installation floor does not exceed a predetermined displacement, or actuator control is stopped and passive movement is performed. A method for controlling a dynamic vibration absorber device for a building, characterized in that it operates as a vibration absorber.
JP19043790A 1990-07-20 1990-07-20 Control method of dynamic vibration absorber device for building Expired - Fee Related JP2889329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19043790A JP2889329B2 (en) 1990-07-20 1990-07-20 Control method of dynamic vibration absorber device for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19043790A JP2889329B2 (en) 1990-07-20 1990-07-20 Control method of dynamic vibration absorber device for building

Publications (2)

Publication Number Publication Date
JPH0480476A true JPH0480476A (en) 1992-03-13
JP2889329B2 JP2889329B2 (en) 1999-05-10

Family

ID=16258123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19043790A Expired - Fee Related JP2889329B2 (en) 1990-07-20 1990-07-20 Control method of dynamic vibration absorber device for building

Country Status (1)

Country Link
JP (1) JP2889329B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205471A (en) * 2006-02-02 2007-08-16 Hitachi Constr Mach Co Ltd Active vibration control device
JP2008106474A (en) * 2006-10-24 2008-05-08 Takenaka Komuten Co Ltd Wall-surface expansion joint of highrise building
JP2008106473A (en) * 2006-10-24 2008-05-08 Takenaka Komuten Co Ltd Wall-surface expansion joint
US7996995B2 (en) 2006-07-21 2011-08-16 Panasonic Electric Works Co., Ltd. Electric shaver
JP2011174509A (en) * 2010-02-23 2011-09-08 Mitsubishi Heavy Ind Ltd Damping device
JP2013087857A (en) * 2011-10-18 2013-05-13 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Vibration damping system and vibration damping method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205471A (en) * 2006-02-02 2007-08-16 Hitachi Constr Mach Co Ltd Active vibration control device
JP4713355B2 (en) * 2006-02-02 2011-06-29 日立建機株式会社 Active vibration control device
US7996995B2 (en) 2006-07-21 2011-08-16 Panasonic Electric Works Co., Ltd. Electric shaver
JP2008106474A (en) * 2006-10-24 2008-05-08 Takenaka Komuten Co Ltd Wall-surface expansion joint of highrise building
JP2008106473A (en) * 2006-10-24 2008-05-08 Takenaka Komuten Co Ltd Wall-surface expansion joint
JP2011174509A (en) * 2010-02-23 2011-09-08 Mitsubishi Heavy Ind Ltd Damping device
JP2013087857A (en) * 2011-10-18 2013-05-13 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Vibration damping system and vibration damping method

Also Published As

Publication number Publication date
JP2889329B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
JP2617106B2 (en) Building vibration control device
CA1323410C (en) Damping support structure
US8127904B2 (en) System and method for tuning the resonance frequency of an energy absorbing device for a structure in response to a disruptive force
US20130105660A1 (en) Vibration isolation
JPH04350274A (en) Vibration controller for structure
CN107060455B (en) Rolling ball type multidirectional vibration reduction control device
JPH04360976A (en) Vibration controller
JPH0480476A (en) Control method of dynamic vibration reducer device for building
JP2660340B2 (en) Dynamic vibration absorber for buildings
CN110745187A (en) Vehicle with a steering wheel
JP4138534B2 (en) Semi-fixing device for seismic isolation structure
JP2001012106A (en) Base isolation system
JP3136325B2 (en) Hybrid dynamic vibration absorber
CN211196402U (en) Vehicle with a steering wheel
Iemura et al. Experimental verification and numerical studies of an autonomous semi‐active seismic control strategy
JP2938095B2 (en) Dynamic vibration absorber for buildings
JPH03247872A (en) Vibration isolator for structure
JP2513296B2 (en) Active damping system with variable stiffness and variable damping mechanism
Tsujiuchi et al. Characterization and performance evaluation of a vertical seismic isolator using link and crank mechanism
JP2903075B2 (en) Multi-degree-of-freedom dynamic vibration absorber
CN107783382A (en) Shock absorber, the method and litho machine for reducing interference vibration
JPH0542202Y2 (en)
JPH0689615B2 (en) Stopper device for building vibration control device
JP3021447U (en) Seismic isolation device
JPH06229441A (en) Antiresonance-type active dynamic vibration reducer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees