JPH0480381A - Aluminum type member excellent in laser weldability - Google Patents

Aluminum type member excellent in laser weldability

Info

Publication number
JPH0480381A
JPH0480381A JP2191615A JP19161590A JPH0480381A JP H0480381 A JPH0480381 A JP H0480381A JP 2191615 A JP2191615 A JP 2191615A JP 19161590 A JP19161590 A JP 19161590A JP H0480381 A JPH0480381 A JP H0480381A
Authority
JP
Japan
Prior art keywords
aluminum
laser
thickness
welding
type member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2191615A
Other languages
Japanese (ja)
Other versions
JPH0765193B2 (en
Inventor
Eiji Takahashi
英司 高橋
Seiji Sasabe
誠二 笹部
Shuhei Ido
井土 周平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2191615A priority Critical patent/JPH0765193B2/en
Publication of JPH0480381A publication Critical patent/JPH0480381A/en
Publication of JPH0765193B2 publication Critical patent/JPH0765193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To increase laser beam absorptivity and to improve laser weldability by forming a galvanizing layer of specific thickness on the surface of the body of an aluminum type member composed of aluminum or aluminum alloy. CONSTITUTION:As a body 1 of aluminum type member, a JIS A5083 aluminum sheet of 1.2mm thickness is prepared, and a galvanizing layer 2 of 0.05-0.30mum thickness is previously formed on the surface of this body 1. A couple of these bodies 1 are disposed so that their end faces abut each other, and then, welding is performed by irradiating the abutting zone with a laser beam 3 at 3KW output by using a CO2 laser. At this time, welding speed is 1m/min and a shielding gas has a composition consisting of 100% argon, and further, the flow rate of this shielding gas is 30l/min. As a result, a weld zone 4 having extremely superior shape can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は各種の産業において使用されているアルミニウ
ム又はアルミニウム合金からなるアルミニウム系部材に
おいて、そのレーザ溶接性を向上させたアルミニウム系
部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum-based member made of aluminum or an aluminum alloy used in various industries, and which has improved laser weldability.

[従来の技術] レーザはエネルギ密度が極めて高いという特長を有する
。このため、従来から用いられてきたアークを熱源とす
る溶接法に比してレーザ溶接法は、より高能率及び高速
度の溶接が可能である。従って、このレーザ溶接法は鋼
板等の溶接にはかなり使用されるようになった。
[Prior Art] Lasers are characterized by extremely high energy density. Therefore, compared to the conventional welding method using an arc as a heat source, the laser welding method allows for higher efficiency and higher speed welding. Therefore, this laser welding method has come to be widely used for welding steel plates and the like.

しかし、アルミニウム又はアルミニウム合金からなるア
ルミニウム系部材のようにレーザの反射率が高(、熱伝
導率が高い部材に対するレーザ溶接は困難とされてきた
However, it has been considered difficult to laser weld members with high laser reflectance (and high thermal conductivity), such as aluminum-based members made of aluminum or aluminum alloys.

これに対し、アルミニウム系被溶接物の表面に窒化ホウ
素(BN)(特開平2−19420 )又はグラファイ
ト等のレーザ吸収率が高い材料を塗布したり、シールド
ガス中にN2又は02等のガスを混入させてビーム吸収
率を向上させる方法(特開昭62−254992 >が
提案されている。
On the other hand, materials with high laser absorption such as boron nitride (BN) (JP-A-2-19420) or graphite are applied to the surface of aluminum-based workpieces, or gases such as N2 or 02 are added to the shielding gas. A method of improving the beam absorption rate by mixing it (Japanese Unexamined Patent Publication No. 62-254992) has been proposed.

[発明が解決しようとする課題] しかしながら、これらの方法には以下に示す問題点があ
る。
[Problems to be Solved by the Invention] However, these methods have the following problems.

即ち、アルミニウム系被溶接物の表面に窒化ホウ素又は
グラファイト等のレーザ吸収率が高い材料を塗布する方
法では、レーザ溶接工程の前に被溶接物の表面にこれら
の材料を塗布する工程を設け、レーザ溶接後には残存し
たレーザ吸収材を除去する工程が必要となる。このため
、作業性が阻害される。また、塗布物の膜厚を一定にす
ることが困難であるので、溶接部の溶込み深さが不安定
となりやすく、溶接継手の機械的性能にバラツキが生じ
やすいという欠点を有する。更に、グラファイト等の異
物が溶接金属中に混入し、この異物の混入により溶接継
手の性能が劣化する虞れがある。
That is, in a method of applying a material with a high laser absorption rate such as boron nitride or graphite to the surface of an aluminum-based workpiece, a step of applying these materials to the surface of the workpiece is provided before the laser welding process, After laser welding, a step is required to remove the remaining laser absorbing material. This impedes workability. Furthermore, since it is difficult to make the film thickness of the applied material constant, the penetration depth of the welded part tends to become unstable, which has the disadvantage that the mechanical performance of the welded joint tends to vary. Further, foreign matter such as graphite may be mixed into the weld metal, and the performance of the welded joint may deteriorate due to the foreign matter mixed in.

また、シールドガスにN2又は0゜等のガスを混合させ
る方法においては、これらのN2又は02ガスの存在に
より溶接金属中にブローホール等の欠陥が発生する可能
性がある。また、被溶接物として、鋼材とアルミニウム
系部材とが混在する場合には、シールドガスとして、鋼
材用の純アルゴンガスと、アルミニウム系部材用のアル
ゴンガスにN2又は02ガスを混合した混合ガスとの2
種類のガスを用意する必要がある。このため、実作業時
にはこのシールドガスの切替えが必要となり、作業性が
悪いという欠点がある。
Furthermore, in the method of mixing N2 or 0° gas with the shielding gas, defects such as blowholes may occur in the weld metal due to the presence of these N2 or 0° gases. In addition, when steel materials and aluminum-based members coexist as objects to be welded, the shielding gas may be pure argon gas for steel materials, and a mixed gas of N2 or 02 gas mixed with argon gas for aluminum-based materials. 2
It is necessary to prepare different types of gas. Therefore, during actual work, it is necessary to switch the shielding gas, which has the drawback of poor workability.

本発明はかかる問題点に鑑みてなされたものであって、
レーザ溶接法により溶接する際に、前処理及び後処理が
不要であると共に、シールドガス及び溶接装置として、
専用品では、なく、汎用的なものを使用することができ
るレーザ溶接性が優れたアルミニウム系部材を提供する
ことを目的とする。
The present invention has been made in view of such problems, and includes:
When welding using the laser welding method, pre-treatment and post-treatment are not required, and as a shielding gas and welding device,
The purpose of the present invention is to provide an aluminum-based member with excellent laser weldability that can be used not as a special-purpose product but as a general-purpose product.

[課題を解決するための手段] 本発明に係るレーザ溶接性が優れたアルミニウム系部材
は、アルミニウム又はアルミニウム合金からなるアルミ
ニウム系部材本体の表面に厚さが0.05乃至0.30
μmの亜鉛メッキ層を形成したことを特徴とする。
[Means for Solving the Problems] The aluminum-based member with excellent laser weldability according to the present invention has a thickness of 0.05 to 0.30 on the surface of the aluminum-based member main body made of aluminum or aluminum alloy.
It is characterized by the formation of a μm thick galvanized layer.

[作用コ 本発明においては、溶接せんとするアルミニウム系部材
本体の表面に0.05乃至0.30μmの厚さの亜鉛メ
ッキ層が形成されている。これにより、レーザビームの
吸収率が高くなり、レーザ溶接が可能となる。
[Operations] In the present invention, a galvanized layer with a thickness of 0.05 to 0.30 μm is formed on the surface of the aluminum member body to be welded. This increases the absorption rate of the laser beam and enables laser welding.

亜鉛メッキ層は、アルミニウム系材料の素材の製造段階
でメッキ処理により形成することができるので、溶接作
業時にはグラファイト等の塗布(前工程)及び除去(後
工程)等の余分な工程が不要である。このため、溶接作
業性が優れている。
The galvanized layer can be formed by plating at the manufacturing stage of aluminum-based materials, so extra processes such as coating (pre-process) and removal (post-process) of graphite etc. are not required during welding work. . Therefore, welding workability is excellent.

また、メッキ処理により亜鉛層を形成するので、その厚
さは均一であり、機械的性能のバラツキが少ない溶接継
手が得られる。更に、異物が溶接金属中に混入すること
もない。更にまた、溶接作業時には、通常の鋼板等をレ
ーザ溶接する場合と同様のシールドガスを使用して同様
の工法で施工することができる。
Furthermore, since the zinc layer is formed by plating, its thickness is uniform, and a welded joint with less variation in mechanical performance can be obtained. Furthermore, foreign matter will not be mixed into the weld metal. Furthermore, during the welding work, it is possible to use the same shielding gas and the same method as when laser welding ordinary steel plates or the like.

次に、亜鉛メッキ層の厚さの限定理由について説明する
Next, the reason for limiting the thickness of the galvanized layer will be explained.

レーザビームの吸収率が高い゛と共に、溶接部に欠陥が
生じないような亜鉛メッキ層の厚さを見い出すべく、亜
鉛メッキ層の厚さを種々変えて実験し、レーザビームの
吸収率及び溶接欠陥の有無と亜鉛メッキ層の厚さとの関
係を調べた。その結果、下記第1表に示すように、レー
ザビームの吸収率は亜鉛メッキ層の厚さが0.04μm
以下の場合は不十分であるが、亜鉛メッキ層の厚さが0
.05μm以上の場合には、通常のグラファイトと同等
以上のレーザ吸収性を有する。
In order to find the thickness of the galvanized layer that has a high absorption rate of the laser beam and does not cause defects in the welded area, we conducted experiments with various thicknesses of the galvanized layer. The relationship between the presence or absence of galvanized steel and the thickness of the galvanized layer was investigated. As a result, as shown in Table 1 below, the laser beam absorption rate was 0.04 μm thick when the galvanized layer was 0.04 μm thick.
Although it is insufficient in the following cases, the thickness of the galvanized layer is 0
.. When the thickness is 0.05 μm or more, it has a laser absorption property equal to or higher than that of normal graphite.

第  1  表 一方、溶接欠陥については、亜鉛メッキ層の厚さが薄い
方が欠陥が発生しにくい。亜鉛メッキ層の厚さが0.3
0μm以下の場合には、このメッキ層を構成する亜鉛は
レーザビームの照射により瞬時に蒸発し、溶接金属中に
は残留しない。このため、溶接継手部の性能には何ら悪
影響を与えない。しかし、亜鉛メッキ層の厚さが0.3
5μm以上になると、レーザビームの照射により発生す
る亜鉛蒸気の全量が溶接金属から離脱するということは
できず、溶接金属中に残存する亜鉛蒸気によりブローホ
ール状の欠陥が発生することがある。
Table 1 On the other hand, regarding welding defects, the thinner the galvanized layer, the less likely they are to occur. The thickness of the galvanized layer is 0.3
When the thickness is 0 μm or less, the zinc constituting the plating layer is instantaneously evaporated by laser beam irradiation and does not remain in the weld metal. Therefore, there is no adverse effect on the performance of the welded joint. However, the thickness of the galvanized layer is 0.3
When the thickness is 5 μm or more, the entire amount of zinc vapor generated by laser beam irradiation cannot be removed from the weld metal, and blowhole-like defects may occur due to the zinc vapor remaining in the weld metal.

このような理由で、亜鉛メッキ層の厚さは0.05乃至
0.30μmにする。
For this reason, the thickness of the galvanized layer is set to 0.05 to 0.30 μm.

なお、レーザ溶接施工は、CO2レーザ又はYAGレー
ザ等、種々の方法により実施することができる。このC
O2レーザ又はYAGレーザのいずれの場合も、出力は
IKW以上とすることが好ましい。出力がIKW未満で
は、亜鉛メッキを施しても、アルミニウム系部材本体を
溶融させることが困難である。
Note that laser welding can be performed by various methods such as CO2 laser or YAG laser. This C
In either case of an O2 laser or a YAG laser, it is preferable that the output is greater than or equal to IKW. If the output is less than IKW, it is difficult to melt the aluminum-based member body even if galvanized.

[実施例コ 次に、本発明の実施例について添付の図面を参照して説
明する。
[Embodiments] Next, embodiments of the present invention will be described with reference to the accompanying drawings.

実」1例」− 第1図に示すように、アルミニウム系部材本体1として
、厚さが1.211111のJ I S A3083ア
ルミニウム板を用意し、この本体1の表面に厚さが0.
10μmの亜鉛メッキ層2を予め形成した。
Example 1 - As shown in FIG. 1, a JIS A3083 aluminum plate with a thickness of 1.211111 mm is prepared as the aluminum-based member main body 1, and a surface of the main body 1 with a thickness of 0.2 mm is prepared.
A galvanized layer 2 of 10 μm was formed in advance.

この一対の本体1をその端面同士を突き合わせて配置し
、CO2レーザを使用し、3Kwの出力でレーザビーム
3を突き合わせ部に照射して溶接を行った。溶接速度は
1m/分、シールドガスの組成はアルゴン 100%、
シールドガス流量は30)7分である。
The pair of main bodies 1 were placed with their end faces abutting each other, and welding was performed by irradiating the abutted portions with a laser beam 3 using a CO2 laser with an output of 3 Kw. Welding speed is 1 m/min, shielding gas composition is 100% argon,
The shielding gas flow rate was 30)7 minutes.

その結果、第2図に示すように、極めて良好な形状の溶
接接合部4が得られた。
As a result, as shown in FIG. 2, a welded joint 4 with an extremely good shape was obtained.

一方、比較のために、表面に亜鉛メッキを施さないアル
ミニウム系部材本体1同士をその端面同士を突き合わせ
て溶接施工した。この本体1は厚さが1.2mmのJ 
I S A3083アルミニウム板である。
On the other hand, for comparison, aluminum-based member bodies 1 whose surfaces were not galvanized were welded together with their end surfaces butted against each other. This main body 1 has a thickness of 1.2 mm.
It is an ISA3083 aluminum plate.

レーザ溶接条件は第1図の場合と同様である。その結果
、第3図に示すように、溶接ビード5が接合面全体に亘
って形成されるということがなく、接合不良であった。
The laser welding conditions are the same as in the case of FIG. As a result, as shown in FIG. 3, the weld bead 5 was not formed over the entire joint surface, resulting in a poor joint.

支り旌1 厚さが1.0關のJ I S A3052アルミニウム
板からなるアルミニウム系部材本体1の表面及び裏面に
夫々0.15μmの厚さの亜鉛メッキ層2を形成した。
Support 1 Galvanized layers 2 with a thickness of 0.15 μm were formed on the front and back surfaces of an aluminum member body 1 made of a JIS A3052 aluminum plate with a thickness of about 1.0 μm, respectively.

そして、一方のアルミニウム系部材の表面と他方のアル
ミニウム系部材の裏面とを一部だけ相互に重ね合わせ、
この重ね合わせた部分にレーザビーム3を照射した。使
用したレーザは−CO2レーザであり、出力は2.5K
Wである。また、溶接速度は1m/分、シールドガスの
組成はアルゴンガス 100%、シールドガスの流量は
30ノ/分である。
Then, the surface of one aluminum-based member and the back surface of the other aluminum-based member are partially overlapped with each other,
A laser beam 3 was irradiated onto this overlapped portion. The laser used was a -CO2 laser with an output of 2.5K.
It is W. Further, the welding speed was 1 m/min, the composition of the shielding gas was 100% argon gas, and the flow rate of the shielding gas was 30 m/min.

この条件で溶接した結果、第5図に示すように、極めて
優れた溶接接合部6が得られた。
As a result of welding under these conditions, an extremely excellent welded joint 6 was obtained as shown in FIG.

一方、比較のために、表面にメツ・キを施していないア
ルミニウム系部材本体1をその厚さ方向に一部で重ね合
わせて、第4図と同様の条件でレーザビームを照射した
。本体1は厚さが1.OmmのJI S A3052ア
ルミニウム板である。その結果、第6図に示すように、
ビード7は上層の本体1の表面にのみ形成され、本体1
間の境界にまではビード7が到達していない。従って、
接合できなかった。
On the other hand, for comparison, aluminum-based member main bodies 1 whose surfaces were not etched were partially overlapped in the thickness direction and irradiated with a laser beam under the same conditions as in FIG. 4. The thickness of the main body 1 is 1. Omm JI S A3052 aluminum plate. As a result, as shown in Figure 6,
The bead 7 is formed only on the surface of the upper body 1, and
The bead 7 does not reach the boundary between them. Therefore,
Could not be joined.

更に、比較のために、第7図に示すように、厚さが1.
On+mのJ I S A3052アルミニウム系部材
本体1の表面及び裏面に厚さが0.50μmの亜鉛メッ
キ層8を形成した1対のアルミニウム系部材をその一部
で相互に重ね合わせ、第4図の場合と同一の溶接条件で
レーザ溶接した。その結果、得られた溶接接合部9はア
ルミニウム系部材の厚さ方向に貫通するものであったが
、その重ね合わせ面の近傍にブローホール10が存在し
、接合部9に欠陥が認められた。
Furthermore, for comparison, as shown in FIG. 7, the thickness was 1.
A pair of aluminum members having a galvanized layer 8 with a thickness of 0.50 μm formed on the front and back surfaces of the JIS A3052 aluminum member main body 1 of On+m are partially overlapped with each other, and the parts shown in FIG. Laser welding was performed under the same welding conditions as in the case. As a result, the obtained welded joint 9 penetrated through the aluminum member in the thickness direction, but there was a blowhole 10 near the overlapping surface, and defects were observed in the joint 9. .

なお、上記各実施例は、いずれもCO2レーザを使用し
たものであるが、YAGレーザ等の他のレーザ溶接にお
いても、同様の効果がある。
It should be noted that although each of the above embodiments uses a CO2 laser, similar effects can be obtained in other laser welding such as a YAG laser.

また、アルミニウム系部材同士の溶接の場合に限らず、
アルミニウム系部材と鋼材等の他の材料との間のレーザ
溶接にも本発明を適用できる。
In addition, it is not limited to welding aluminum-based members together.
The present invention can also be applied to laser welding between aluminum-based members and other materials such as steel.

[発明の効果コ 本発明によれば、アルミニウム系部材本体の表面に亜鉛
メッキ層を形成したから、レーザ溶接作業の前又は後に
格別の処理工程を設ける必要がなく、鋼板等の他の材料
の場合と同様の方法でレーザ溶接することができる。即
ち、本発明に係るアルミニウム系部材を使用すれば、汎
用のレーザ装置及び汎用のシールドガスを使用して通常
の溶接条件でアルミニウム系部材同士又はアルミニウム
系部材と他の材料との間の溶接を行うことができる。
[Effects of the Invention] According to the present invention, since a galvanized layer is formed on the surface of the aluminum-based member body, there is no need to provide a special treatment process before or after laser welding work, and it is possible to use other materials such as steel plates. It can be laser welded in the same way as the case. That is, by using the aluminum-based member according to the present invention, welding between aluminum-based members or between an aluminum-based member and another material can be performed under normal welding conditions using a general-purpose laser device and a general-purpose shielding gas. It can be carried out.

また、重ね溶接であっても部材間の溶接部にブローホー
ル等の欠陥が発生しない。
Further, even when lap welding is performed, defects such as blowholes do not occur in the welded portion between members.

更に、亜鉛メッキ層は、アルミニウム系部材の製造時に
形成されるため、その厚さは極めて高精度且つ均一であ
り、レーザの吸収率の局部的バラツキは極めて少ない。
Furthermore, since the galvanized layer is formed during the manufacture of the aluminum-based member, its thickness is extremely precise and uniform, and local variations in laser absorption are extremely small.

このため、安定した品質の溶接接合部が得られる。Therefore, welded joints of stable quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は実施例1を示す側面図、第3図はそ
の比較例を示す側面図、第4図及び第5図は実施例2を
示す側面図、第6図及び第7図はその比較例を示す側面
図である。 1;アルミニウム系部材本体、2,8;亜鉛メッキ層、
4.6.9;溶接接合部、5,6;ビード、10;ブロ
ーホール 第 図 ] 第 図 第 図 第 図
1 and 2 are side views showing Example 1, FIG. 3 is a side view showing a comparative example, FIGS. 4 and 5 are side views showing Example 2, and FIGS. 6 and 7 are side views showing Example 1. The figure is a side view showing a comparative example. 1; Aluminum-based member body, 2, 8; Galvanized layer,
4.6.9; Weld joint, 5, 6; Bead, 10; Blowhole diagram]

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム又はアルミニウム合金からなるアル
ミニウム系部材本体の表面に厚さが0.05乃至0.3
0μmの亜鉛メッキ層を形成したことを特徴とするレー
ザ溶接性が優れたアルミニウム系部材。
(1) The surface of the aluminum-based member body made of aluminum or aluminum alloy has a thickness of 0.05 to 0.3
An aluminum-based member with excellent laser weldability, characterized by having a 0 μm galvanized layer formed thereon.
JP2191615A 1990-07-19 1990-07-19 Aluminum-based parts for laser welding Expired - Fee Related JPH0765193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2191615A JPH0765193B2 (en) 1990-07-19 1990-07-19 Aluminum-based parts for laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2191615A JPH0765193B2 (en) 1990-07-19 1990-07-19 Aluminum-based parts for laser welding

Publications (2)

Publication Number Publication Date
JPH0480381A true JPH0480381A (en) 1992-03-13
JPH0765193B2 JPH0765193B2 (en) 1995-07-12

Family

ID=16277583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191615A Expired - Fee Related JPH0765193B2 (en) 1990-07-19 1990-07-19 Aluminum-based parts for laser welding

Country Status (1)

Country Link
JP (1) JPH0765193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274333A (en) * 2007-04-26 2008-11-13 Sumitomo Light Metal Ind Ltd Aluminum or aluminum alloy member for laser welding
WO2021117209A1 (en) * 2019-12-13 2021-06-17 新電元工業株式会社 Welding method and welding structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64280A (en) * 1987-03-18 1989-01-05 Kobe Steel Ltd Method for coating zinc on perforated aluminum pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64280A (en) * 1987-03-18 1989-01-05 Kobe Steel Ltd Method for coating zinc on perforated aluminum pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274333A (en) * 2007-04-26 2008-11-13 Sumitomo Light Metal Ind Ltd Aluminum or aluminum alloy member for laser welding
WO2021117209A1 (en) * 2019-12-13 2021-06-17 新電元工業株式会社 Welding method and welding structure
JPWO2021117209A1 (en) * 2019-12-13 2021-12-09 新電元工業株式会社 Welding method and welding structure
CN114555279A (en) * 2019-12-13 2022-05-27 新电元工业株式会社 Welding method and welding structure
CN114555279B (en) * 2019-12-13 2024-06-11 新电元工业株式会社 Welding method and welding structure

Also Published As

Publication number Publication date
JPH0765193B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
Atabaki et al. Welding of aluminum alloys to steels: an overview
CN110914014B (en) Method for laser welding metal workpieces using a combination of welding paths
JP2005334974A (en) Laser welding method
JP2008126315A (en) Laser welding process with improved penetration
JPH08300172A (en) Manufacture of welded steel tube
JP2005504641A (en) Method and apparatus for overlap welding two coated metal sheets with high energy density beams
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JPH0596392A (en) Method for laser welding of zinc plated steel
JP2004298964A (en) EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP3157373B2 (en) Laser welding method for multi-layer steel plate
JP2002178178A (en) Laser lap welding method for metal with surface coating
Atabaki et al. Welding of aluminum alloys to steels: an overview
Xiao et al. Influence of wire addition direction in C02 laser welding of aluminum
JP2007260701A (en) Method for joining different kinds of materials
JP4931506B2 (en) Dissimilar material joining method
JPH0480381A (en) Aluminum type member excellent in laser weldability
JP4518892B2 (en) Dissimilar material joining method
JPH10328861A (en) Laser lap welding method
JP3145332B2 (en) Laser welding method for aluminum plated steel sheet
JP2009045628A (en) Laser welding method for steel plate
JPH04138889A (en) Head device for laser beam machining
JP2006116600A (en) Method for joining different materials
JPH03165968A (en) Method for joining galvanized steel plates
JPH08309567A (en) Method for welding aluminum alloy
JP2792340B2 (en) Laser welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees