JPH0480101B2 - - Google Patents

Info

Publication number
JPH0480101B2
JPH0480101B2 JP2121384A JP2121384A JPH0480101B2 JP H0480101 B2 JPH0480101 B2 JP H0480101B2 JP 2121384 A JP2121384 A JP 2121384A JP 2121384 A JP2121384 A JP 2121384A JP H0480101 B2 JPH0480101 B2 JP H0480101B2
Authority
JP
Japan
Prior art keywords
fins
corrosion
corrosion resistance
radiator
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2121384A
Other languages
Japanese (ja)
Other versions
JPS60165333A (en
Inventor
Kenichi Komata
Kiichi Akasaka
Yoshimasa Ooyama
Akihiro Ooguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2121384A priority Critical patent/JPS60165333A/en
Publication of JPS60165333A publication Critical patent/JPS60165333A/en
Publication of JPH0480101B2 publication Critical patent/JPH0480101B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車のラジエーター及びヒーター等
熱交換器のフイン用銅合金に関するもので特に耐
食性に優れ、ラジエーターの寿命を向上し、軽量
化を可能にしたものである。 自動車用ラジエーターはエンジン部の温度上昇
を防止するもので、エンジン部とラジエーター間
に冷却媒体である水を循環させ、エンジン部で温
度上昇した水をラジエーターで放熱させることに
よりエンジン部の冷却を行なつている。ラジエー
ターは通常、水の通るチユーブと該チユーブより
伝熱により熱を大気中に放散させるフインとから
なり、これに空気を強制的に吹きつけて放熱を促
進させている。 従来このようなラジエーターのフインにはCu
にCd又はSnを0.1〜1.0wt%含有せしめた厚さ0.03
〜0.2mmの銅合金薄板が用いられていたが、最近
空気中に塩素、窒素酸化物、亜硫酸ガス等が増加
し、道路には凍結防止剤として塩素化合物が散布
されるなど、自動車の走行環境が著しく悪化し、
自動車は勿論、自動車に装着したラジエーターの
腐食は加速の一途をたどつている。 即ち、ラジエーターは放熱性を向上するため通
常自動車の前部に取付け前記汚染空気を吹き付け
ており更に道路からは凍結防止剤が跳上りなどに
より汚染空気に混入し、これがラジエーターのフ
インと直接接触することになる。従つてラジエー
ターのフインには前記腐食性物質と接触する厳し
い腐食条件下におかれており、フインが腐食する
とラジエーターの放熱性が劣化し、更に腐食が進
むとチユーブよりフインが脱落しラジエーターは
使用できなくなる。 近年、自動車は省エネルギー、排ガス等の対策
から軽量化が要求され、自動車の一部であるラジ
エーター及びヒーターにおいても例外ではなく、
その構成部材であるフインにおいても薄肉軽量化
が求められている。従つてフインには単位面積あ
たりの放熱性の向上と、その寿命維持が重要な課
題となつている。 このような状況において、現用のフイン材料で
あるCuにCd又はSnを添加した前記銅合金では腐
食に対する抵抗がほとんどなく、耐食性の改善が
強く望まれている。 本発明はこれに鑑みフインの腐食状態を詳細に
観察した結果腐食はフインの金属表面に酸化物
Cu2Oが多層に重なりCu2Oと金属との界面に塩
素及び硫黄が凝集し、更に腐食面は一般に乾燥状
態で水分が微量であることを知見し、このような
条件下における耐食材料について研究を重ねた結
果熱伝導性及び耐食性が優れ、かつ加工性が良好
な自動車用ラジエーター及びヒーターのフイン用
銅合金を開発したものでY0.005〜1.0wt%、
Mg0.005〜1.0wt%、残部Cuからなることを特徴
とするものである。 即ち本発明はCuに少量のY、Mgを添加するこ
とによりCu特有の熱伝導性をあまり低下せしめ
ることなく、塩素、窒素酸化物、亜硫酸ガス等の
混在する空気中における亜酸化銅の生成及び増殖
を抑制して耐食性を向上せしめたものである。 しかして、本発明の合金組成を前記の如く限定
したのは次の理由によるものである。 Y含有量を0.005〜1.0wt%と限定したのは、Y
含有量が0.005wt%未満では亜酸化銅の生成、増
殖を抑制する作用が充分でなく1.0wt%を越える
と耐食性向上の効果が飽和してしまう為とフイン
として重要な熱伝導性を低下させてしまう為及び
薄板圧延加工性を劣化させてしまうからである。 次にMg含有量を0.005〜1.0wt%と限定したの
は、Mg含有量が0.005wt%未満ではYと同様に
亜酸化銅の生成、増殖を抑制する作用が充分でな
く、1.0wt%を越えると熱伝導性を大巾に低下さ
せてしまう為でありYとMgの相剰効果により熱
伝導性を大巾に低下させることなく耐食性を大
きく向上させる為には上記限定の如くY0.005〜
1.0wt%、Mg0.005〜1.0wt%の範囲が好ましい。 以下本発明合金を実施例をもつて具体的に説明
する。 黒鉛ルツボを用いてCuを溶解し、湯面を木炭
粉末で被覆した後各添加元素を挿入し、これを金
型に鋳造して第1表に示す組成の厚さ25mm、巾
250mm、長さ250mmの鋳塊を得た。次にこの鋳塊を
一面あたり2.5mm面削した後常法に従つて熱間圧
延を加えた後、中間焼鈍と冷間圧延とを繰り返し
て厚さ0.5mm(最終加工率=40%)の板に仕上げ
た。 この板より腐食試験用サンプルと熱伝導度用サ
ンプルを採取し耐食性及び伝熱性を測定した。そ
の結果を第一表に示した。 耐食性は縦100mm、横100mmのサンプルを切り出
し、0.3%SO2ガスと、0.3%cl2ガスを含む空気中
に48時間暴露し、続いて温度60℃、湿度80%の恒
温恒湿槽内に96時間保持することを繰り返し、そ
の後サンプル表面の腐食生成物であるCu2Oを除
去して重量を測定して試験前後の重量より腐食減
量を求め、単位面積あたりの腐食減量を算出し
た。 また、薄板の圧延加工性を測定する為に、前述
の厚さ0.5mmの板を圧延焼鈍し0.1mmの厚さの板を
作り、これを0.020mmの厚さまで圧延し、0.1mmの
厚さの板で100mmの圧延中に圧延切れを発生した
回数をもつて圧延加工性を測定し、第1表に併記
した。
The present invention relates to a copper alloy for the fins of heat exchangers such as automobile radiators and heaters, and is particularly excellent in corrosion resistance, improving the life of the radiator and making it possible to reduce the weight. An automobile radiator prevents the temperature of the engine from rising.It cools the engine by circulating water, which is a cooling medium, between the engine and the radiator, and radiating heat from the water that has risen in temperature in the engine. It's summery. A radiator usually consists of a tube through which water passes and fins that dissipate heat into the atmosphere through heat transfer, and air is forcedly blown onto the fins to promote heat dissipation. Conventionally, the fins of such radiators were made of Cu.
with a thickness of 0.03 containing 0.1 to 1.0 wt% of Cd or Sn.
~0.2mm copper alloy thin plates were used, but recently the environment in which cars drive has changed, with chlorine, nitrogen oxides, sulfur dioxide, etc. increasing in the air, and chlorine compounds being sprayed on roads as antifreeze agents. has significantly worsened,
Corrosion not only in cars but also in the radiators installed in cars is accelerating. That is, in order to improve heat dissipation, the radiator is usually attached to the front of the car and blows the contaminated air onto it, and anti-freezing agent jumps up from the road and mixes with the contaminated air, which comes into direct contact with the fins of the radiator. It turns out. Therefore, the fins of the radiator are exposed to severe corrosive conditions as they come into contact with the above-mentioned corrosive substances. When the fins corrode, the heat dissipation performance of the radiator deteriorates, and as the corrosion progresses, the fins fall off from the tube and the radiator is no longer used. become unable. In recent years, automobiles have been required to be lighter to save energy and reduce exhaust gas, and radiators and heaters, which are part of automobiles, are no exception.
The fins that are the constituent members of these devices are also required to be thinner and lighter. Therefore, improving the heat dissipation per unit area and maintaining the service life of the fins are important issues. Under these circumstances, the copper alloys that are currently used as fin materials, which are made by adding Cd or Sn to Cu, have almost no resistance to corrosion, and there is a strong desire to improve the corrosion resistance. In view of this, the present invention has carefully observed the corrosion state of the fins and found that corrosion is caused by oxides on the metal surface of the fins.
It was discovered that Cu 2 O overlaps in multiple layers and chlorine and sulfur aggregate at the interface between Cu 2 O and the metal, and that corroded surfaces are generally dry with only a trace amount of moisture. As a result of repeated research, we have developed a copper alloy for automotive radiators and heater fins that has excellent thermal conductivity, corrosion resistance, and good workability.
It is characterized by consisting of 0.005 to 1.0 wt% Mg and the balance Cu. That is, the present invention adds a small amount of Y and Mg to Cu, without significantly reducing the thermal conductivity characteristic of Cu, and suppresses the formation of cuprous oxide in air containing chlorine, nitrogen oxides, sulfur dioxide, etc. It suppresses proliferation and improves corrosion resistance. The reason why the alloy composition of the present invention is limited as described above is as follows. The Y content was limited to 0.005-1.0wt% because Y
If the content is less than 0.005wt%, the effect of suppressing the formation and proliferation of cuprous oxide is insufficient, and if it exceeds 1.0wt%, the effect of improving corrosion resistance will be saturated and the thermal conductivity, which is important as a fin, will be reduced. This is because the rolling processability of the thin plate is deteriorated. Next, we limited the Mg content to 0.005 to 1.0 wt% because if the Mg content is less than 0.005 wt%, the effect of suppressing the production and proliferation of cuprous oxide is insufficient, similar to Y. If it exceeds Y0.005, the thermal conductivity will be greatly reduced.In order to greatly improve the corrosion resistance without significantly reducing the thermal conductivity due to the mutual effect of Y and Mg, the above limitation is Y0.005. ~
1.0wt%, Mg preferably in the range of 0.005 to 1.0wt%. The alloy of the present invention will be specifically explained below with reference to Examples. After melting Cu using a graphite crucible and coating the hot water surface with charcoal powder, each additive element was inserted, and this was cast into a mold with a thickness of 25 mm and a width as shown in Table 1.
An ingot with a length of 250 mm and a length of 250 mm was obtained. Next, this ingot was face-milled by 2.5 mm per side, hot-rolled according to a conventional method, and then intermediate annealing and cold rolling were repeated to obtain a thickness of 0.5 mm (final processing rate = 40%). Finished on a board. A corrosion test sample and a thermal conductivity sample were taken from this plate and their corrosion resistance and heat conductivity were measured. The results are shown in Table 1. Corrosion resistance was measured by cutting a sample 100 mm long and 100 mm wide, exposing it to air containing 0.3% SO 2 gas and 0.3% Cl 2 gas for 48 hours, and then placing it in a constant temperature and humidity chamber at a temperature of 60°C and humidity of 80%. Holding was repeated for 96 hours, and then Cu 2 O, which is a corrosion product on the sample surface, was removed, the weight was measured, and the corrosion loss was determined from the weight before and after the test, and the corrosion loss per unit area was calculated. In addition, in order to measure the rolling workability of a thin plate, the 0.5 mm thick plate mentioned above was rolled and annealed to make a 0.1 mm thick plate, which was rolled to a thickness of 0.020 mm, and then rolled to a thickness of 0.1 mm. The rolling workability was measured based on the number of times rolling breaks occurred during rolling of 100 mm of the plate, and the results are also listed in Table 1.

【表】【table】

【表】 第1表から明らかな如く本発明合金(No.1〜No.
7)は何れも充分な熱伝導性を有し、従来合金
(No.13)に比較して耐食性が優れている。これに
対し本発明合金の成分範囲よりY、又はMg含有
量の少ない比較合金(No.8、9)は充分な熱伝導
性を有していても耐食性の向上が不充分であり、
又Y又はMg含有量が本発明における成分範囲よ
り多い比較合金(No.10〜12)は耐食性は良好であ
るが、フイン材として重要な熱伝導性が低下して
しまうことや圧延加工性が悪くなり製造コストが
大巾に高くなり工業的な価値がなくなつてしま
う。 なお、本発明合金における成分範囲においては
O2量が50ppm以下においても同様の特性が有さ
れており、このように本発明合金は塩素及び硫黄
の混在する腐食環境において優れた耐食性を示す
もので自動車、熱交換器のラジエーター及びヒー
ター用のフインに使用しラジエーターの寿命を増
大し軽量化を可能にする顕著な効果を奏するもの
である。
[Table] As is clear from Table 1, the alloys of the present invention (No. 1 to No.
All 7) have sufficient thermal conductivity and are superior in corrosion resistance compared to the conventional alloy (No. 13). On the other hand, comparative alloys (Nos. 8 and 9) with lower Y or Mg content than the composition range of the present alloy have sufficient thermal conductivity but insufficient improvement in corrosion resistance.
Comparative alloys (Nos. 10 to 12) with a higher Y or Mg content than the component range in the present invention have good corrosion resistance, but have a lower thermal conductivity, which is important as a fin material, and poor rolling workability. As a result, the manufacturing cost becomes extremely high and there is no industrial value. In addition, in the composition range of the present invention alloy,
Similar characteristics are exhibited even when the amount of O 2 is 50 ppm or less, and the alloy of the present invention exhibits excellent corrosion resistance in a corrosive environment containing chlorine and sulfur, making it suitable for use in radiators and heaters of automobiles and heat exchangers. When used in the fins of radiators, it has the remarkable effect of extending the life of the radiator and making it possible to reduce its weight.

Claims (1)

【特許請求の範囲】[Claims] 1 Y0.005〜1.0wt%、Mg0.005〜1.0wt%、残部
Cuからなることを特徴とする自動車熱交換器の
フイン用銅合金。
1 Y0.005~1.0wt%, Mg0.005~1.0wt%, balance
A copper alloy for automotive heat exchanger fins, characterized by being made of Cu.
JP2121384A 1984-02-08 1984-02-08 Copper alloy for fin of heat exchanger of automobile Granted JPS60165333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121384A JPS60165333A (en) 1984-02-08 1984-02-08 Copper alloy for fin of heat exchanger of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121384A JPS60165333A (en) 1984-02-08 1984-02-08 Copper alloy for fin of heat exchanger of automobile

Publications (2)

Publication Number Publication Date
JPS60165333A JPS60165333A (en) 1985-08-28
JPH0480101B2 true JPH0480101B2 (en) 1992-12-17

Family

ID=12048716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121384A Granted JPS60165333A (en) 1984-02-08 1984-02-08 Copper alloy for fin of heat exchanger of automobile

Country Status (1)

Country Link
JP (1) JPS60165333A (en)

Also Published As

Publication number Publication date
JPS60165333A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JPH0480101B2 (en)
JPS5821017B2 (en) Copper alloy for automotive radiator fins
JPS61147830A (en) Copper alloy for fin of heat exchanger for automobile
JPH0525930B2 (en)
JPS5852453A (en) Copper alloy for fin of radiator for car
JPS593529B2 (en) Copper alloy for automotive radiator fins
JPS5928546A (en) Copper alloy for radiator fin of automobile
JPH0525931B2 (en)
JPS61119633A (en) Copper alloy for fin of automotive heat exchanger
JPS61127837A (en) Copper alloy for fin of heat exchanger for automobile
JPS61119634A (en) Copper alloy for fin of automotive heat exchanger
JPS61117239A (en) Copper alloy for fin of heat exchanger for automobile
JPS5928547A (en) Copper alloy for radiator fin of automobile
JPS60165336A (en) Copper alloy for fin of radiator of automobile
CA1267302A (en) High potent and high electroconductive copper alloy suitable for fin material of heat-exchanger
JPS61266543A (en) Copper alloy for fin of heat exchanger for automobile
JPH0674468B2 (en) Copper alloy for automobile radiator fins
JPS5834153A (en) Copper alloy for fin of radiator for car
JPS61119635A (en) Copper alloy for fin of automotive heat exchanger
JPH0674467B2 (en) Copper alloy for automobile radiator fins
JPH0674464B2 (en) Copper alloy for automobile radiator fins
JPS61113739A (en) Copper alloy having superior corrosion resistance
JPS61261450A (en) Copper alloy having high electric conductivity and superior corrosion resistance
JPS6232256B2 (en)
JPS62243729A (en) High conductivity and highly heat resistant copper alloy excellent in corrosion resistance