JPH0480056B2 - - Google Patents

Info

Publication number
JPH0480056B2
JPH0480056B2 JP31061689A JP31061689A JPH0480056B2 JP H0480056 B2 JPH0480056 B2 JP H0480056B2 JP 31061689 A JP31061689 A JP 31061689A JP 31061689 A JP31061689 A JP 31061689A JP H0480056 B2 JPH0480056 B2 JP H0480056B2
Authority
JP
Japan
Prior art keywords
group
foam
polyimide
carbon atoms
fused polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31061689A
Other languages
Japanese (ja)
Other versions
JPH02255841A (en
Inventor
Hiroshi Ezawa
Toshuki Nakakura
Takayuki Watanabe
Takaaki Tsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1310616A priority Critical patent/JPH02255841A/en
Publication of JPH02255841A publication Critical patent/JPH02255841A/en
Publication of JPH0480056B2 publication Critical patent/JPH0480056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性、耐炎性、耐摩耗性に優れ、
且つ二次加工性の良い熱可塑性ポリイミド発泡体
に関する。
[Detailed description of the invention] [Industrial application field] The present invention has excellent heat resistance, flame resistance, and abrasion resistance.
The present invention also relates to a thermoplastic polyimide foam with good secondary processability.

〔従来の技術〕[Conventional technology]

従来、高分子材料を原料とする発泡体には、大
別して(1)熱可塑性樹脂、例えばポリスチレン、ポ
リ塩化ビニル、ポリプロピレン、ポリエチレン等
を原料とする発泡体、および(2)熱硬化性樹脂、例
えばポリウレタン樹脂、フエノール樹脂、尿素、
メラミン樹脂、イミド樹脂等を原料とする発泡体
が開発されている。
Conventionally, foams made from polymer materials can be roughly divided into (1) foams made from thermoplastic resins such as polystyrene, polyvinyl chloride, polypropylene, polyethylene, etc.; and (2) thermosetting resins. For example, polyurethane resin, phenolic resin, urea,
Foams made from melamine resin, imide resin, etc. have been developed.

前者の発泡体は、耐摩耗性および二次加工性に
優れている為、発泡体が有する耐熱性、軽量性等
の特性を活かし、自動車、建築、あるいは電子・
電気分野に広く利用されているが、耐熱性、特に
耐炎性に問題がある。即ち、例えば150℃以上の
ような高温度で発泡体の形状が大幅に変形し、発
泡体としての機能を消失する。また、火炎に接す
ると発泡体の表面より燃焼し、難燃剤等で難燃性
を付与しても火炎に接する部分より直ちに溶融
し、流下することにより、次ぎ次ぎに発泡体が溶
融し、遂には発泡体の大半が消失する結果とな
る。かかる欠点により建材用および航空機用材料
等の耐炎性が問題となる分野には適用できない。
The former foam has excellent wear resistance and secondary processability, so it can be used in automobiles, architecture, electronics, etc. by taking advantage of the properties of foam such as heat resistance and light weight.
Although it is widely used in the electrical field, it has problems with heat resistance, especially flame resistance. That is, at high temperatures such as 150° C. or higher, the shape of the foam is significantly deformed and the foam loses its function. In addition, when it comes into contact with flame, the surface of the foam burns, and even if it is made flame retardant with flame retardants, it immediately melts from the part that comes in contact with the flame, and as it flows down, the foam melts one after another, and finally results in most of the foam disappearing. Due to these drawbacks, it cannot be applied to fields where flame resistance is a problem, such as building materials and aircraft materials.

また後者の熱硬化性樹脂を原料とする発泡体、
例えばポリウレタン樹脂発泡体においても上記の
火炎に対する問題は解消されていない。またフエ
ノール樹脂、尿素、メラミン樹脂を原料とする発
泡体は、火炎に対して溶融せず優れた耐炎性を有
するが、発泡体としての耐摩耗性が悪く、発泡体
がひび割れしやすく、二次加工が不可能である等
の問題があり、用途面での制約を受けていた。
In addition, foams made from the latter thermosetting resin,
For example, even in polyurethane resin foams, the above-mentioned problem regarding flames has not been solved. In addition, foams made from phenolic resin, urea, and melamine resin do not melt in flames and have excellent flame resistance, but they have poor abrasion resistance as foams, easily crack, and There were problems such as the impossibility of processing, and there were restrictions in terms of use.

ポリイミド樹脂を原料とする発泡体も開発され
ている。ポリイミド樹脂としては、インタナシヨ
ナルハーベスタ社の芳香族カルボン酸二無水物を
アルコールでエステル化した後、ジアミン類を添
加してプレポリマーを作成し、それをベースとし
た発泡体Aあるいはエーテル結合を分子内に有す
るテトラカルボン酸二無水物を原料とするポリエ
ーテルイミド(米国ゼネラルエレクトリツク社
製、商標ULTEM1000等)をベースとした発泡体
Bが代表的である。
Foams made from polyimide resins have also been developed. For polyimide resin, after esterifying aromatic carboxylic dianhydride manufactured by International Harvester Co., Ltd. with alcohol, diamines are added to create a prepolymer, and foam A or ether bonding is made based on the prepolymer. Foam B is representative, which is based on polyetherimide (manufactured by General Electric Company, USA, trademark ULTEM 1000, etc.) which is made from tetracarboxylic dianhydride contained in the molecule.

発泡体Aは特に200℃以下の温度で発泡体の形
状が変化せず、優れた耐熱性を有し、さらに火炎
に対しても溶融せず、優れた材料である。しか
し、耐摩耗性が不十分であり、また二次加工が不
可能であり、一旦発泡体にした後、二次加工して
多用な用途に使用することができず、この点での
制約もあつた。
Foam A is an excellent material because its shape does not change particularly at temperatures below 200° C., has excellent heat resistance, and does not melt even when exposed to flame. However, it has insufficient wear resistance and cannot be subjected to secondary processing, so once it is made into a foam, it cannot be processed and used for a variety of purposes, and there are limitations in this respect. It was hot.

さらに発泡体Bは耐炎性、耐摩耗性や二次加工
性が改善されているものの、耐熱性が未だ充分と
は言えない。
Furthermore, although foam B has improved flame resistance, abrasion resistance, and secondary processability, its heat resistance is still not sufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、熱可塑性樹脂を原料とする発
泡体の長所である耐摩耗性と二次加工性に加え、
熱硬化性樹脂を原料とする発泡体の長所、耐炎性
および耐熱性を共に付与することを目的とする新
しいポリイミド発泡体を得ることである。
The purpose of the present invention is to achieve the advantages of foams made from thermoplastic resins, such as wear resistance and secondary processability.
The object of the present invention is to obtain a new polyimide foam that provides the advantages of foams made from thermosetting resins, flame resistance and heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、新規な熱可塑性ポリイミド発泡
体の提供に関して種々の検討を重ねた結果、特定
のポリイミドを選択することにより、前述のよう
な従来品の欠点が解消され、著しく優れた性能を
有するポリイミド発泡体が得られることを見出
し、本発明を完成した。
As a result of various studies regarding the provision of a new thermoplastic polyimide foam, the present inventors have found that by selecting a specific polyimide, the drawbacks of conventional products as described above can be overcome and extremely superior performance can be achieved. The present invention was completed based on the discovery that a polyimide foam having the following properties can be obtained.

すなわち、本発明は下記()の繰り返し構造
単位を有し、見掛け密度が0.02〜0.2g/c.c.である
熱可塑性ポリイミド発泡体である。
That is, the present invention is a thermoplastic polyimide foam having the following repeating structural unit () and an apparent density of 0.02 to 0.2 g/cc.

(式中、Xは直結、炭素数1〜10の二価の炭化
水素基、六フツ素化されたイソプロピリデン基、
カルボニル基、チオ基、またはスルホニル基であ
り、またRは炭素数2以上の脂肪族基、環式脂肪
族基、単環式芳香族基、縮合多環式芳香族基、お
よび芳香族基が直接または架橋員により相互に連
結された非縮合多環式芳香族基からなる群より選
ばれた4価の基を表わす。) 上記した本発明の熱可塑性ポリイミドは、式
()に示すエーテルジアミンと、 (式中、Xは前に同じ) 式()に示すテトラカルボン酸二無水物の一
種以上とを反応させて得られるポリイミドであ
り、 (式中、Rは前に同じ) エーテル結合を有するジアミンを原料として用
いることに特徴がある。具体的には特開昭61−
143478、同62−68817、同62−86021(米国特許第
4847349号)等に記載の方法により容易に製造で
き、これらの方法により製造された熱可塑性ポリ
イミドの全てが本発明に使用できる。
(wherein, X is a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group,
A carbonyl group, a thio group, or a sulfonyl group, and R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a fused polycyclic aromatic group, and an aromatic group. It represents a tetravalent group selected from the group consisting of non-fused polycyclic aromatic groups interconnected directly or through a bridge member. ) The thermoplastic polyimide of the present invention described above comprises an ether diamine represented by the formula (), (In the formula, X is the same as before) A polyimide obtained by reacting with one or more tetracarboxylic dianhydrides shown in the formula (), (In the formula, R is the same as before) It is characterized by using a diamine having an ether bond as a raw material. Specifically, JP-A-61-
143478, 62-68817, 62-86021 (U.S. Patent No.
4847349), etc., and all thermoplastic polyimides produced by these methods can be used in the present invention.

本発明の熱可塑性ポリイミド発泡体の製造にお
いて特に好ましいポリイミドは、下記の原料を用
いて製造できる。即ち、エーテルジアミンとし
て、4,4′−ビス〔4−(3−アミノフエノキシ)
フエニル〕スルフイド、4,4′−ビス(3−アミ
ノフエノキシ)フエニル〕スルホン、4,4′−ビ
ス(3−アミノフエノキシ)ベンゾフエノン、
4,4′−ビス(3−アミノフエノキシ)ビフエニ
ル、2,2−ビス〔4−(3−アミノフエノキシ)
フエニル〕プロパンまたは2,2−ビス〔4−
(3−アミノフエノキシ)フエニル〕−1,1,
1,3,3,3−ヘキサフルオロプロパンであ
り、これらの中から選ばれる化合物の単独、また
は2種以上を混合したもの、またテトラカルボン
酸二無水物として、ピロメリツト酸二無水物、
3,3′,4,4′−ビフエニルテトラカルボン酸二
無水物、3,3′,4,4′−ベンゾフエノンテトラ
カルボン酸二無水物、3,3′,4,4′−ジフエニ
ルエーテルテトラカルボン酸二無水物、p−フエ
ニレンオキシジ(4−フタル酸)二無水物であ
り、これらの中から選ばれる化合物を単独で、ま
たは2種以上を混合したものである。
A particularly preferred polyimide for producing the thermoplastic polyimide foam of the present invention can be produced using the following raw materials. That is, as ether diamine, 4,4'-bis[4-(3-aminophenoxy)
phenyl]sulfide, 4,4'-bis(3-aminophenoxy)phenyl]sulfone, 4,4'-bis(3-aminophenoxy)benzophenone,
4,4'-bis(3-aminophenoxy)biphenyl, 2,2-bis[4-(3-aminophenoxy)
phenyl]propane or 2,2-bis[4-
(3-aminophenoxy)phenyl]-1,1,
1,3,3,3-hexafluoropropane, a compound selected from these alone or a mixture of two or more, and as a tetracarboxylic dianhydride, pyromellitic dianhydride,
3,3',4,4'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-diphenyl dianhydride These are enyl ether tetracarboxylic dianhydride and p-phenyleneoxydi(4-phthalic acid) dianhydride, and a compound selected from these may be used alone or in a mixture of two or more.

上記した本発明で採用しうる熱可塑性ポリイミ
ドは、パラクロロフエノール/フエノール(重量
比90/10)の混合溶媒中、濃度0.5g/100ml−溶
媒で加熱溶解した後、35℃に冷却し測定した数粘
度として0.35〜0.65dl/g、好ましくは0.40〜
0.60dl/gの範囲のものである。
The thermoplastic polyimide that can be used in the present invention described above was dissolved by heating in a mixed solvent of parachlorophenol/phenol (weight ratio 90/10) at a concentration of 0.5 g/100 ml, and then cooled to 35°C and measured. Number viscosity: 0.35 to 0.65 dl/g, preferably 0.40 to
It is in the range of 0.60 dl/g.

上記熱可塑性ポリイミドを原料とする発泡体の
見掛け密度は0.02〜0.2g/c.c.の範囲が好ましく、
0.2g/c.c.を越える場合、軽量化による経済性を損
なうばかりでなく、発泡体の有する緩衝性、断熱
性、遮音性等の利点を減ずる。
The apparent density of the foam made from the above thermoplastic polyimide is preferably in the range of 0.02 to 0.2 g/cc,
If it exceeds 0.2 g/cc, it not only impairs the economic efficiency of weight reduction, but also reduces the advantages of the foam, such as cushioning properties, heat insulation properties, and sound insulation properties.

また0.02g/c.c.未満では、発泡体の機械的強度
が低下するばかりでなく、耐炎性、耐摩耗性ある
いは二次加工性が劣つてくるので好ましくない。
If it is less than 0.02 g/cc, it is not preferable because not only the mechanical strength of the foam decreases, but also flame resistance, abrasion resistance, and secondary processability deteriorate.

この場合の見掛け密度は、メスシリンダーに入
れた所定の水の中に発泡体を沈めて体積を測定
し、また予め測定した発泡体の重量をその体積で
除することにより算出したものである。
The apparent density in this case is calculated by submerging the foam in a certain amount of water in a graduated cylinder, measuring the volume, and dividing the previously measured weight of the foam by its volume.

また上記見掛け密度0.02〜0.2g/c.c.を有する熱
可塑性ポリイミド発泡体の中で、特に発泡体の構
造、気泡の平均径が0.1〜1mmであり、さらに気
泡中に占める独立気泡の割合が50%以上のもの
が、さらに好ましい。
Furthermore, among the thermoplastic polyimide foams having an apparent density of 0.02 to 0.2 g/cc, the structure of the foam is particularly important, and the average diameter of the cells is 0.1 to 1 mm, and the proportion of closed cells in the cells is 50%. The above are more preferred.

尚、気泡の平均径および独立気泡の割合は次の
様にして算出する。
Note that the average diameter of the bubbles and the ratio of closed cells are calculated as follows.

気泡の平均径:発泡体の厚さ方向の断面写真の中
から大、中、小の気泡各10個を抽出し測定した径
の平均値。
Average diameter of bubbles: The average diameter of 10 large, medium, and small bubbles extracted from a cross-sectional photograph of the foam in the thickness direction.

独立気泡の割合:所定の大きさ(40×40mm)のサ
ンプルを水面下に静置し、−400mmHgに減圧した
状態に1分間放置する。しかる後、水面下に静置
する前の重量と、減圧状態に放置後の重量を測定
して、発泡体中に吸引された水量(VW)を算出
し、下式により計算した値である。
Proportion of closed cells: A sample of a specified size (40 x 40 mm) is placed under the water surface, and the pressure is reduced to -400 mmHg for 1 minute. After that, the weight before being left under water and the weight after being left under reduced pressure were measured, and the amount of water (V W ) sucked into the foam was calculated using the following formula. .

VF−VW/VF×100 VF;発泡体の体積 本発明の熱可塑性ポリイミド発泡体を得るには
従来の熱可塑性樹脂の発泡押出装置を採用するこ
とが可能である。
V F −V W /V F ×100 V F ; Volume of foam To obtain the thermoplastic polyimide foam of the present invention, it is possible to employ a conventional thermoplastic resin foam extrusion device.

発泡剤としては、200℃を越える沸点を有す
る昇華性物質、例えば無水フタル酸、200℃付
近で分解の起こる化学発泡剤、例えばトリヒドラ
ジノトリアジン、アゾジカルボン酸バリウム、ジ
ニトロソペンタメチレンテトラミン、低沸点有
機化合物、例えばジクロロトリフルオロエタン、
モノクロロテトラフルオロエタン、ジクロロフル
オルメタン、モノクロロジフルオロメタン、アセ
トン等、200℃を越えた温度で水を解離する水
和物、例えばシユウ酸二水和物がある。なかでも
の昇華性物質が良好である。
Examples of blowing agents include sublimable substances with a boiling point exceeding 200°C, such as phthalic anhydride; chemical blowing agents that decompose at around 200°C, such as trihydrazinotriazine, barium azodicarboxylate, dinitrosopentamethylenetetramine; Boiling point organic compounds such as dichlorotrifluoroethane,
There are hydrates such as monochlorotetrafluoroethane, dichlorofluoromethane, monochlorodifluoromethane, and acetone that dissociate water at temperatures exceeding 200°C, such as oxalic acid dihydrate. Among them, sublimable substances are good.

発泡剤の使用量は得られる発泡体の見掛け密度
により選択される。具体的には、昇華性物質の場
合、熱可塑性ポリイミド100gに対して0.025〜
0.3mol、化学発泡剤の場合、ポリイミド100重量
部に対して0.2〜10重量部好ましくは0.2〜2重量
部、低沸点有機化合物の場合、ポリイミド100g
に対して0.05〜0.5mol、または水和物の場合、解
離する水がポリイミド100gに対して0.025〜
0.3molに、それぞれ調節して通常の発泡方法に
より製造できる。
The amount of blowing agent used is selected depending on the apparent density of the resulting foam. Specifically, in the case of sublimable substances, 0.025 to 100g of thermoplastic polyimide
0.3 mol, in the case of a chemical blowing agent, 0.2 to 10 parts by weight per 100 parts by weight of polyimide, preferably 0.2 to 2 parts by weight, in the case of a low boiling point organic compound, 100 g of polyimide
0.05 to 0.5 mol, or in the case of hydrates, the dissociated water is 0.025 to 0.025 to 100 g of polyimide.
The amount can be adjusted to 0.3 mol and produced by a normal foaming method.

例えば発泡剤が固体である場合、発泡剤と熱可
塑性ポリイミドを共に押出機のホツパーより供給
し、押出機のシリンダー温度を360〜400℃にして
ポリイミドと発泡剤を均一に混練した後、徐々に
温度を下げ、押出機先端に取り付けた口金の温度
を250〜370℃にして大気中に放出して発泡体を形
成する。口金スリツトより放出した発泡体は空気
で冷却されたりあるいはサイジング装置により
150〜250℃に冷却することにより表面に微細な気
泡の層を形成することもできる。
For example, when the blowing agent is solid, the blowing agent and thermoplastic polyimide are both fed through the hopper of the extruder, the cylinder temperature of the extruder is set to 360 to 400°C, the polyimide and the blowing agent are uniformly kneaded, and then gradually The temperature is lowered, the temperature of the nozzle attached to the tip of the extruder is set at 250-370°C, and the extruder is discharged into the atmosphere to form a foam. The foam released from the mouthpiece slit is cooled by air or by a sizing device.
A layer of fine bubbles can also be formed on the surface by cooling to 150-250°C.

また発泡剤が液体である場合、加熱した熱可塑
性ポリイミド発泡剤を押出機の途中より圧入さ
せ、然る後、上記に示す方法と同様にして発泡体
を製造できる。
When the blowing agent is a liquid, the heated thermoplastic polyimide blowing agent is forced into the extruder from the middle, and then a foam can be produced in the same manner as described above.

また、気泡の大きさは無機質の核剤、例えばタ
ルクやシリカゲル、あるいは界面活性剤の添加量
により制御される。気泡の平均径が0.1〜1mmを
有する発泡体は、発泡剤が昇華性物質、低沸点有
機化合物、あるいは水和物の場合、上記核剤をポ
リイミド100重量部に対して0.1〜3重量部使用し
て発泡させることが好ましく、発泡剤が化学発泡
剤である場合、上記核剤をポリイミド100重量部
に対して0.1〜1重量部使用して発泡させること
が好ましい。
Further, the size of the bubbles is controlled by the amount of an inorganic nucleating agent such as talc, silica gel, or a surfactant added. For foams with an average cell diameter of 0.1 to 1 mm, when the blowing agent is a sublimable substance, a low-boiling organic compound, or a hydrate, the above-mentioned nucleating agent is used in an amount of 0.1 to 3 parts by weight per 100 parts by weight of polyimide. When the foaming agent is a chemical foaming agent, it is preferable to use 0.1 to 1 part by weight of the above-mentioned nucleating agent per 100 parts by weight of polyimide for foaming.

さらに独立気泡率は、押出機中の混合物の温度
や、口金スリツトより放出した後の冷却条件等に
より適宜調整し、50%以上になるようにする。
Furthermore, the closed cell ratio is adjusted appropriately depending on the temperature of the mixture in the extruder, the cooling conditions after being discharged from the nozzle slit, etc., and is made to be 50% or more.

上記の発泡剤は併用しても何ら差支えないし、
他に帯電防止剤、着色剤等を必要に応じ添加する
こともできる。
There is no problem in using the above blowing agents together,
In addition, antistatic agents, colorants, etc. may be added as necessary.

〔実施例〕〔Example〕

更に本発明を実施例によつて詳細に説明する。 Further, the present invention will be explained in detail by way of examples.

実施例 1 ピロメリツト酸二無水物を4,4−ビス(3−
アミノフエノキシ)ビフエニルを原料として得ら
れた対数粘度0.45dl/gのポリイミド粉を押出機
によりシリンダー温度400℃にてペレツト状に押
出した。ここで対数粘度はパラクロロフエノー
ル/フエノール(重量比90/10)の混合溶媒中、
濃度0.5g/100ml−溶媒で加熱溶解した後、35℃
に冷却し測定した値である。
Example 1 Pyromellitic dianhydride was converted into 4,4-bis(3-
A polyimide powder having a logarithmic viscosity of 0.45 dl/g obtained using aminophenoxy)biphenyl as a raw material was extruded into pellets using an extruder at a cylinder temperature of 400°C. Here, the logarithmic viscosity is in a mixed solvent of parachlorophenol/phenol (weight ratio 90/10).
Concentration 0.5g/100ml - After heating and dissolving with solvent, 35℃
This is the value measured after cooling.

このポリイミドペレツト100gに対して無水フ
タル酸を0.05mol、ポリイミドペレツト100重量
部に対しタルクを0.7重量部混合した後、30mmφ
の押出機のホツパーより供給した。押出機のシリ
ンダー温度を380〜410℃にして、溶融混練した
後、徐々に温度を下げ、押出機先端に取り付けた
口金の温度を355℃に制御した。口金の入口に取
り付けた圧力計の樹脂圧力は110Kg/cm2であつた。
口金よりサイジング金型内に減圧しながら放出し
厚さ5mm、幅100mmの発泡体を得た。得られた発
泡体の見掛け密度は0.09g/c.c.であり、気泡の平
均径が0.5mmで、独立気泡率は78%であつた。
After mixing 0.05 mol of phthalic anhydride with 100 g of the polyimide pellets and 0.7 parts by weight of talc with 100 parts by weight of the polyimide pellets, 30 mmφ
It was supplied from the hopper of the extruder. After melting and kneading the extruder cylinder temperature at 380 to 410°C, the temperature was gradually lowered and the temperature of the nozzle attached to the tip of the extruder was controlled at 355°C. The resin pressure measured by the pressure gauge attached to the inlet of the cap was 110 Kg/cm 2 .
The foam was discharged from the die into a sizing mold under reduced pressure to obtain a foam with a thickness of 5 mm and a width of 100 mm. The resulting foam had an apparent density of 0.09 g/cc, an average cell diameter of 0.5 mm, and a closed cell ratio of 78%.

この発泡体を25mm×120mmに裁断してサンプル
とし、100mmのスパンの支点の上に水平状態にな
る様に乗せ、スパン間中央のサンプル上に100g
の重りを乗せた。この状態で200℃の温度にした
恒温槽中に1時間放置したが殆ど変化はなく、耐
熱性の優れた発泡体であることが認められた。ま
た、25mm×120mmのサンプルを水平にしてバーナ
ーで10秒間接炎させても、燃焼することもなく、
ドリツプもなかつた。
Cut this foam into a sample of 25 mm x 120 mm, place it horizontally on the fulcrum of a 100 mm span, and place 100 g on the sample in the center between the spans.
I put a weight on it. In this state, it was left in a constant temperature bath at a temperature of 200° C. for 1 hour, but there was almost no change, indicating that it was a foam with excellent heat resistance. In addition, even if a 25 mm x 120 mm sample was held horizontally and exposed to indirect flame for 10 seconds with a burner, it would not burn.
There were no drips.

一方、100mmの円板に打抜いたサンプルを、テ
ーバ摩耗試験(JIS K−7204に準ずる)した。摩
耗輪はCS−10を使用し、荷重250gで実施した。
連続1000回くり返した後の摩耗試料の量は95mgで
あつた。
On the other hand, a sample punched into a 100 mm disk was subjected to a Taber abrasion test (according to JIS K-7204). CS-10 was used as the wear wheel, and the test was carried out under a load of 250g.
The amount of wear sample after 1000 consecutive repetitions was 95 mg.

この発泡体を380℃の雰囲気下に1分間放置す
る方法により再加熱した後、U字状で雄型と雌型
のクリアランスが4mmの金型で賦型した。金型の
温度を180℃に設定しておくことにより、表面に
ヒビ割れを生ずることなく、良好な成形品が得ら
れた。
This foam was reheated by leaving it in an atmosphere at 380° C. for 1 minute, and then molded in a U-shaped mold with a clearance of 4 mm between the male and female molds. By setting the mold temperature to 180°C, a good molded product was obtained without any cracks on the surface.

実施例 2 ビス〔4−(3−アミノフエノキシ)フエニル〕
スルフイドとピロメリツト酸二無水物を原料とし
て得られたポリイミド粉(対数粘度0.46dl/g)
を実施例1と同様にしてペレツト化した。
Example 2 Bis[4-(3-aminophenoxy)phenyl]
Polyimide powder obtained from sulfide and pyromellitic dianhydride (logarithmic viscosity 0.46 dl/g)
was pelletized in the same manner as in Example 1.

このポリイミドと無水フタル酸をポリイミドペ
レツト100gに対して0.03mol、ポリイミドペレツ
ト100重量部に対しタルクを0.3重量部混合して、
実施例1と同様に押出した。得られた発泡体の見
掛け密度は0.15g/c.c.、気泡の平均径が0.8mm、独
立気泡率が75%であつた。
This polyimide and phthalic anhydride were mixed in an amount of 0.03 mol per 100 g of polyimide pellets, and 0.3 parts by weight of talc was mixed with respect to 100 parts by weight of polyimide pellets.
Extrusion was carried out in the same manner as in Example 1. The resulting foam had an apparent density of 0.15 g/cc, an average cell diameter of 0.8 mm, and a closed cell ratio of 75%.

200℃の試験では変形が認められず、耐熱性に
優れ、また火炎に接してもドリツプすることはな
かつた。テーバ摩耗試験でも135mgと優れ、この
発泡体をエポキシ系の接着剤で積層した場合で
も、界面で母材が破壊することなく、十分な強度
が得られた。
No deformation was observed in a test at 200°C, indicating excellent heat resistance and no dripping even when exposed to flame. It also showed an excellent Taber abrasion test of 135mg, and even when this foam was laminated with an epoxy adhesive, sufficient strength was obtained without destroying the base material at the interface.

比較例 1 実施例1において、無水フタル酸の混合量を
0.4molにする以外は同様にして発泡体を得た。
得られた発泡体の見掛け密度は0.018g/c.c.であ
り、気泡径は0.5mm、独立気泡率は66%であつた。
Comparative Example 1 In Example 1, the amount of phthalic anhydride mixed was
A foam was obtained in the same manner except that the amount was changed to 0.4 mol.
The resulting foam had an apparent density of 0.018 g/cc, a cell diameter of 0.5 mm, and a closed cell ratio of 66%.

また発泡体のテーバ摩耗試験では繰り返し連続
1000回実施した場合は2500mgに相当する値となつ
た。この発泡体をエポキシ系の接着剤で積層した
が、界面の母材が破壊し易く、十分な積層板の強
度が得られなかつた。
In addition, in the Taber abrasion test of foam, repeated continuous
When conducted 1000 times, the value was equivalent to 2500 mg. Although this foam was laminated using an epoxy adhesive, the base material at the interface was easily destroyed, and sufficient strength of the laminated board could not be obtained.

比較例 2 実施例1において、押出機先端に取り付けた口
金の温度を410℃にする以外は同様にして発泡体
を押出した。得られた発泡体の見掛け密度は
0.11g/c.c.であり、独立気泡率が45%であつた。
この発泡体を実施例1と同様に二次成形したが、
U字状のコーナー部分で割れてしまつた。
Comparative Example 2 A foam was extruded in the same manner as in Example 1, except that the temperature of the nozzle attached to the tip of the extruder was set to 410°C. The apparent density of the foam obtained is
It was 0.11 g/cc, and the closed cell ratio was 45%.
This foam was second-molded in the same manner as in Example 1, but
It broke at the U-shaped corner.

実施例 3 実施例1に使用したポリイミド100重量部に0.7
重量部のタルクを30mmgφの押出機のホツパーよ
り供給した。押出機のシリンダー温度を380〜410
℃にしてポリイミドを溶融したところへ、アセト
ンを押出機途中より、ポリイミド100gに対し、
0.2モルの割合で圧入して混合させ、徐々に樹脂
の温度を下げ、押出機先端に取り付けた口金を
320℃にした。口金よりサイジング金型内に減圧
しながら放出させ厚さ5mm、幅100mmの発泡体を
得た。得られた発泡体の見掛け密度は0.05g/c.c.
であり、気泡の平均径が0.8mmで、独立気泡率は
62%であつた。
Example 3 0.7 to 100 parts by weight of polyimide used in Example 1
Parts by weight of talc were supplied from a hopper of a 30 mmgφ extruder. Extruder cylinder temperature 380~410
After melting the polyimide at ℃, add acetone from the middle of the extruder to 100g of polyimide.
Mix by press-fitting at a ratio of 0.2 mol, gradually lower the temperature of the resin, and insert the nozzle attached to the tip of the extruder.
The temperature was set to 320℃. The foam was discharged from the die into a sizing mold under reduced pressure to obtain a foam with a thickness of 5 mm and a width of 100 mm. The apparent density of the obtained foam is 0.05g/cc
The average diameter of the bubbles is 0.8 mm, and the closed cell ratio is
It was 62%.

実施例1で示す耐熱性試験で200℃では変形が
なく、燃焼試験を行つてもドリツプはなかつた。
耐摩耗試験の結果は537mgであり、また実施例1
と同様に加熱成形して良好な成形品がえられた。
In the heat resistance test shown in Example 1, there was no deformation at 200°C, and there was no dripping even in the combustion test.
The result of the abrasion test was 537 mg, and Example 1
A good molded product was obtained by heat molding in the same manner as above.

比較例 3 2,2−ビス〔4−(3,4−ジカルボキシフ
エノキシ)フエニル〕プロパンジアンハイドライ
ドとm−フエニレンジアミンから得られたポリエ
ーテルイミドを用いる以外は実施例3と同様にし
て厚さ5mm,幅100mmの発泡体を得た。得られた
発泡体の見掛け密度は0.09g/c.c.であり、気泡の
平均径が0.5mmで、独立気泡率は85%であつた。
Comparative Example 3 Same as Example 3 except that polyetherimide obtained from 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propanedianhydride and m-phenylenediamine was used. A foam with a thickness of 5 mm and a width of 100 mm was obtained. The resulting foam had an apparent density of 0.09 g/cc, an average cell diameter of 0.5 mm, and a closed cell ratio of 85%.

この発泡体を25×120mmに裁断し、実施例1と
同様の耐熱性試験をしたところ、支点の中央より
垂れ下がつてしまつた。
When this foam was cut into pieces of 25 x 120 mm and subjected to the same heat resistance test as in Example 1, it began to sag from the center of the fulcrum.

実施例 4 実施例1において、無水フタル酸に代えて、ポ
リイミド100重量部に対して、トリヒドラジノト
リアジンを1.8重量部添加した以外は同様にして
発泡体を得た。得られた発泡体の見掛け密度は
0.15g/c.c.、気泡の平均径は0.3mm、独立気泡率は
86%であつた。
Example 4 A foam was obtained in the same manner as in Example 1 except that 1.8 parts by weight of trihydrazinotriazine was added to 100 parts by weight of polyimide instead of phthalic anhydride. The apparent density of the foam obtained is
0.15g/cc, average bubble diameter 0.3mm, closed cell ratio
It was 86%.

この発泡体を実施例1に示した耐熱試験を行つ
ても変形はなく、燃焼試験でもドリツプはなかつ
た。耐摩耗試験の結果は57mgであつた。この発泡
体をエポキシ系の接着剤で積層したが、界面の母
材が破壊することなく、十分な積層板の強度が得
られた。
There was no deformation when this foam was subjected to the heat resistance test shown in Example 1, and no dripping occurred during the combustion test. The result of the abrasion resistance test was 57 mg. This foam was laminated using an epoxy adhesive, but the base material at the interface did not break and sufficient strength of the laminate was obtained.

またこの発泡体を380℃の雰囲気下に1分間放
置する方法により再加熱した後、U字状で雄型と
雌型のクリアランスが4mmの金型で賦型した。金
型の温度を180℃に設定しておくことにより、表
面にヒビ割れを生ずることなく良好な成形品が得
られた。
The foam was reheated by leaving it in an atmosphere at 380° C. for 1 minute, and then molded in a U-shaped mold with a clearance of 4 mm between the male and female molds. By setting the mold temperature to 180°C, a good molded product was obtained without any cracks on the surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐薬品性や断熱性はもとよ
り、耐熱性、耐炎性、耐摩耗性に優れ、かつ賦型
性や積層、接着、あるいは塗装などの表面処理等
の二次加工性に優れた熱可塑性ポリイミド発泡体
が提供される。
According to the present invention, it has excellent not only chemical resistance and heat insulation properties, but also heat resistance, flame resistance, and abrasion resistance, as well as excellent secondary processability such as formability, lamination, adhesion, and surface treatment such as painting. A thermoplastic polyimide foam is provided.

Claims (1)

【特許請求の範囲】 1 式()の繰り返し構造単位を有し、見掛け
密度が0.02〜0.2g/c.c.である熱可塑性ポリイミド
発泡体。 (式中、Xは直結、炭素数1〜10の二価の炭化
水素基、六フツ素化されたイソプロピリデン基、
カルボニル基、チオ基、またはスルホニル基であ
り、またRは炭素数2以上の脂肪族基、環式脂肪
族基、単環式芳香族基、縮合多環式芳香族基、お
よび芳香族基が直接または架橋員により相互に連
結された非縮合多環式芳香族基からなる群より選
ばれた4価の基を表わす。) 2 見掛け密度が0.02〜0.2g/c.c.を有する発泡体
中の気泡の平均径が0.1〜1mmであり、また気泡
中の独立気泡率が50%以上である請求項1記載の
ポリイミド発泡体。 3 一般式(1)の繰返し単位を有する熱可塑性ポリ
イミドを昇華性物質、200℃付近で分解する化学
発泡剤、低沸点有機化合物および200℃以上の温
度で水を解離する化合物からなる群から選ばれた
発泡剤の存在下に押出発泡することを特徴とする
熱可塑性ポリイミド発泡体の製造方法。 (式中、Xは直結、炭素数1〜10の二価の炭化
水素基、六フツ素化されたイソプロピリデン基、
カルボニル基、チオ基、またはスルホニル基であ
り、またRは炭素数2以上の脂肪族基、環式脂肪
族基、単環式芳香族基、縮合多環式芳香族基、お
よび芳香族基が直接または架橋員により相互に連
結された非縮合多環式芳香族基からなる群より選
ばれた4価の基を表わす。)
[Claims] 1. A thermoplastic polyimide foam having a repeating structural unit of formula () and having an apparent density of 0.02 to 0.2 g/cc. (wherein, X is a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group,
A carbonyl group, a thio group, or a sulfonyl group, and R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a fused polycyclic aromatic group, and an aromatic group. It represents a tetravalent group selected from the group consisting of non-fused polycyclic aromatic groups interconnected directly or through a bridge member. 2. The polyimide foam according to claim 1, wherein the foam has an apparent density of 0.02 to 0.2 g/cc, the average diameter of the cells in the foam is 0.1 to 1 mm, and the closed cell ratio in the cells is 50% or more. 3 A thermoplastic polyimide having a repeating unit of general formula (1) is selected from the group consisting of a sublimable substance, a chemical blowing agent that decomposes at around 200°C, a low boiling point organic compound, and a compound that dissociates water at a temperature of 200°C or higher. A method for producing a thermoplastic polyimide foam, which comprises extrusion foaming in the presence of a foaming agent. (wherein, X is a direct bond, a divalent hydrocarbon group having 1 to 10 carbon atoms, a hexafluorinated isopropylidene group,
A carbonyl group, a thio group, or a sulfonyl group, and R is an aliphatic group having 2 or more carbon atoms, a cycloaliphatic group, a monocyclic aromatic group, a fused polycyclic aromatic group, and an aromatic group. It represents a tetravalent group selected from the group consisting of non-fused polycyclic aromatic groups interconnected directly or through a bridge member. )
JP1310616A 1988-12-28 1989-12-01 Thermoplastic polyimide foam Granted JPH02255841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310616A JPH02255841A (en) 1988-12-28 1989-12-01 Thermoplastic polyimide foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-334660 1988-12-28
JP33466088 1988-12-28
JP1310616A JPH02255841A (en) 1988-12-28 1989-12-01 Thermoplastic polyimide foam

Publications (2)

Publication Number Publication Date
JPH02255841A JPH02255841A (en) 1990-10-16
JPH0480056B2 true JPH0480056B2 (en) 1992-12-17

Family

ID=26566393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310616A Granted JPH02255841A (en) 1988-12-28 1989-12-01 Thermoplastic polyimide foam

Country Status (1)

Country Link
JP (1) JPH02255841A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373402A3 (en) * 1988-12-15 1991-01-23 General Electric Company Expandable polyetherimide resins
JP5064705B2 (en) * 2005-12-26 2012-10-31 古河電気工業株式会社 Method for manufacturing foam substrate
JP4912021B2 (en) * 2006-04-24 2012-04-04 信越ポリマー株式会社 Method for producing thermoplastic polyimide resin foam

Also Published As

Publication number Publication date
JPH02255841A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
EP1002006B1 (en) Aromatic polyimide foam
TWI379879B (en) Process for producing adhesive film
JP3334890B2 (en) Micro hollow spherical polyimide
KR930003023B1 (en) Polyimide foam
KR100975625B1 (en) Method for producing polyimide film
JP2008266641A (en) Aromatic polyimide and method for producing the same
JPH0417222B2 (en)
WO2004072032A2 (en) Polyimide foams
JP2011508017A (en) Continuous production method of polyetherimide foam material and its manufactured article
US4629745A (en) Expandable polyetherimide compositions and foamed materials obtained therefrom
JP2011508014A (en) Low density and high density polyetherimide foam materials and articles containing the same
KR100259489B1 (en) Preparation for polyimide foam
JPH0480056B2 (en)
JP3855487B2 (en) Polyimide sheet, carbon sheet and process for producing the same
US4908265A (en) Articles of manufacture and their production
JP2002283369A (en) Method for manufacturing polyimide film
JP3075472B2 (en) Polyimide / epoxy resin composite and method for producing the same
JP2575279B2 (en) Laminate with improved vapor barrier properties and method of making same
US4897234A (en) Articles of manufacture and their production
US4999070A (en) New articles of manufacture and their production
JP4490593B2 (en) Method for producing polyimide film
JPH0347727A (en) Manufacture of polyimide film
Weiser et al. Aromatic polyimide foam
JP2001270955A (en) Foamed polyimide
CN114790288A (en) Polyimide composite foam material with high thermal stability and preparation method and application thereof