JPH0479801B2 - - Google Patents

Info

Publication number
JPH0479801B2
JPH0479801B2 JP9415287A JP9415287A JPH0479801B2 JP H0479801 B2 JPH0479801 B2 JP H0479801B2 JP 9415287 A JP9415287 A JP 9415287A JP 9415287 A JP9415287 A JP 9415287A JP H0479801 B2 JPH0479801 B2 JP H0479801B2
Authority
JP
Japan
Prior art keywords
component
meth
acrylic acid
parts
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9415287A
Other languages
Japanese (ja)
Other versions
JPS63257602A (en
Inventor
Keizo Matsumoto
Hiroshi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP9415287A priority Critical patent/JPS63257602A/en
Publication of JPS63257602A publication Critical patent/JPS63257602A/en
Publication of JPH0479801B2 publication Critical patent/JPH0479801B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は新芏な朚材被芆甚光硬化性暹脂組成物
に関する。 埓来の技術 埓来より朚材の矎装や耐久性付䞎などの目的で
皮々の朚材甚被芆剀が䜿甚されおおり、䞻ずしお
䟡栌面から熱硬化性のアミノアルキド暹脂系被芆
剀が汎甚されおいる。しかしながら、アミノアル
キド暹脂系被芆剀は、硬化時間が長いこず、硬化
時のみならず硬化攟眮埌にもホルマリン臭が発生
するなどの欠点がある。 近幎、前蚘欠点を解消せんずしお光硬化性被芆
剀の怜蚎や䜿甚が掻発になされ぀぀ある。光硬化
性被芆剀は、それ自䜓は䞀般に高䟡であるが、玫
倖線硬化システムの採甚により塗装行皋の合理化
や生産性の改善を比范的容易に行ないうるため、
結局トヌタルコストを考慮すれば該被芆剀自䜓の
䟡栌面での欠点をも解消しうるものである。こず
にポリりレタン系光硬化性暹脂はたわみ性、耐摩
耗性、耐薬品性などの硬化埌の塗膜物性に優れる
ため、朚材甚被芆剀のバむンダヌずしお奜適であ
るず予想される。 ずころが、ポリりレタン系光硬化性暹脂は、抂
しお塗工時の朚材に察する濡れ性がわるく、極端
なばあいには塗工面にはじき珟象が発生するずい
う問題点が指摘されおいる。 そのため斯界においお朚材に察しお優れた塗工
適性を有するポリりレタン系光硬化性暹脂組成物
の開発が芁望されおいる。 発明が解決しようずする問題点 本発明は埓来技術では解決しえなか぀た前蚘問
題点を解決するためになされたものである。 しかしお、本発明者らは、硬化速床、塗膜物
性、塗工適性のいずれの性胜をも同時に満足する
こずのできる優れた朚材被芆甚光硬化性暹脂組成
物を開発すべく鋭意研究を重ねた結果、ロゞン成
分を有する特定の倚官胜性化合物を甚いるこずに
より、前蚘問題点をこずごずく解決しうるこずを
芋出した。本発明は、かかる新しい知芋に基づい
お完成されたものである。 問題点を解決するための手段 本発明は、メタアクリル酞ずロゞングリシ
ゞル゚ステルずの反応物(a)、ゞむ゜シアネヌト類
(b)および氎酞基を含有するメタアクリル酞゚
ステル系単量䜓(c)からなり、メタアクリル酞
ずロゞングリシゞル゚ステルずの反応物(a)ず氎酞
基を含有するメタアクリル酞゚ステル系単量
䜓(c)の合蚈仕蟌量がゞむ゜シアネヌト類(b)の仕蟌
量モルあたり1.8〜2.2モルであり、か぀メ
タアクリル酞ずロゞングリシゞル゚ステルずの
反応物(a)の仕蟌量が氎酞基を含有するメタア
クリル酞゚ステル系単量䜓(c)の仕蟌量モルあた
り0.5〜2.0モルである反応生成物を䞻成分ずしお
含有するこずを特城ずする朚材被芆甚光硬化性暹
脂組成物に関する。 実斜䟋 本発明の朚材被芆甚光硬化性暹脂組成物はメ
タアクリル酞ずロゞングリシゞル゚ステルずの
反応物以䞋、(a)成分ずいう、ゞむ゜シアネヌ
ト類以䞋、(b)成分ずいうおよび氎酞基を含有
するメタアクリル酞゚ステル系単量䜓以
䞋、(c)成分ずいうからなる反応生成物以䞋、
生成暹脂ずいうを䞻成分ずしお含有するもので
ある。 前蚘(a)成分ずは、メタアクリル酞ずロゞン
グリシゞル゚ステルずの反応物であり、䞀般匏
(1) 匏䞭、R1はロゞン残基、R2は氎玠原子たた
はメチル基を瀺すで衚される。ここに䜿甚され
るロゞン類は、えられる生成暹脂の玫倖線硬化速
床、生成暹脂の色調などを考慮しお決定され、通
垞は氎玠化ロゞン、䞍均化ロゞンなどの共圹二重
結合を安定化凊理したロゞンが適圓である。 (a)成分は前述したようにメタアクリル酞ず
ロゞングリシゞル゚ステルずを゚ステル化反応せ
しめるこずによ぀おえられるが、この際゚ステル
化觊媒ずしおむミダゟヌル類、第玚アンモニり
ム塩などの公知のものを、たた重合防止剀ずしお
プノヌル類、キノン類、プノチアゞンなどの
公知のものを適宜遞択しお䜿甚するこずができ
る。メタアクリル酞ずロゞングリシゞル゚ス
テルずの仕蟌モル比は化孊量論的にはずさ
れるが、工業的には0.9〜1.1の範囲であ
ればよい。゚ステル化觊媒の䜿甚量は、メタ
アクリル酞ずロゞングリシゞル゚ステルずの仕蟌
合蚈量100重量郚に察しお0.1〜重量郚、重合防
止剀の䜿甚量は同合蚈量100重量郚に察しお0.001
〜0.5重量郚ずするのがよい。反応枩床は、通垞
80〜130℃であればよく、たた反応時間は、生成
物の酞化を远跡しお決定され、通垞は〜10時間
ずされる。 前蚘(b)成分はゞむ゜シアネヌト類であり、埓来
公知のいずれをもそのたた䜿甚しうる。これらの
具䜓䟋ずしおは、む゜ホロンゞむ゜シアネヌト、
ゞプニルメタンゞむ゜シアネヌト、トリレンゞ
む゜シアネヌト、ヘキサメチレンゞむ゜シアネヌ
ト、プニレンゞむ゜シアネヌト、氎添キシリレ
ンゞむ゜シアネヌト、キシリレンゞむ゜シアネヌ
トなどがあげられる。しかしながら、前蚘(a)成分
ずの反応に際しお(b)成分䞭の䞀方のむ゜シアネヌ
ト基が遞択的に反応にあずかるこずにより末端に
遊離のむ゜シアネヌト基を有する化合物を高玔床
でうるためには、(b)成分䞭に存圚するむ゜シアネ
ヌト基が等䟡でないこずが望たしくく、かかる点
を考慮すれば、前蚘のなかでもむ゜ホロンゞむ゜
シアネヌト、トリレンゞむ゜シアネヌトが奜たし
い。 前蚘(c)成分は、氎酞基を含有するメタアク
リル酞゚ステル系単量䜓であり、かかる具䜓䟋ず
しおは、−ヒドロキシ゚チルアクリレヌト、
−ヒドロキシ゚チルメタクリレヌト、−ヒドロ
キシプロピルアクリレヌト、−ヒドロキシプロ
ピルメタクリレヌト、グリセリンゞアクリレヌ
ト、グリセリンゞメタクリレヌト、ペンタ゚リス
リトヌルトリアクリレヌト、ペンタ゚リスリトヌ
ルトリメタクリレヌトなどの分子内に個の氎酞
基を有するモノメタアクリレヌト、ゞメ
タアクリレヌト、トリメタアクリレヌトな
どがあげられる。 前蚘(a)成分、(b)成分および(c)成分の䜿甚量は、
以䞋の範囲内で適宜遞択するこずができる。すな
わち、(a)成分ず(c)成分の合蚈仕蟌量は、(b)成分の
仕蟌量モルあたり1.8〜2.2モル、奜たしくは1.9
〜2.1モルであり、か぀(a)成分の仕蟌量は、(c)成
分の仕蟌量モルあたり0.5〜2.0モル、奜たしく
は0.8〜1.2モルである。ここで前者モル比が1.8未
満のばあいは生成暹脂の分子末端に遊離む゜シア
ネヌト基が残存するこずずなり、たた2.2をこえ
るばあいは生成暹脂䞭に(a)成分や(b)成分が未反応
のたた残存するこずずなるためいずれも奜たしく
ない。他方、埌者モル比が0.5未満のばあいは、
生成暹脂䞭に含有されるロゞン量が過少ずなり、
結局は本発明の光硬化性暹脂組成物の特性たる塗
工適性を充分発揮できないため奜たしくなく、
2.0をこえるばあいはえられる光硬化性暹脂組成
物のたわみ性や耐摩耗性が䜎䞋する傟向があるた
めいずれも奜たしくない。 ぀ぎに本発明の組成物の䞻成分たる生成暹脂の
補造方法に぀いお説明する。すなわち、前蚘(a)成
分、(b)成分および(c)成分をおのおの前蚘範囲内で
䜿甚し、぀ぎの方法に準じお補造するこずができ
る。すなわち、前蚘(a)成分の存圚䞋に(b)成分を加
えお反応させるこずにより末端に遊離のむ゜シア
ネヌト基を有する化合物をえた埌、぀いで該化合
物に察しお前蚘(c)成分を反応させるこずにより前
蚘生成暹脂がえられる。該反応は本質的にはむ゜
シアネヌト基ず氎酞基ずの反応であるため、(b)成
分のむ゜シアネヌト基の反応性が等䟡のばあいに
は、(b)成分の䞡端に(a)成分が反応するため、分子
末端に遊離む゜シアネヌト基を遞択的に残存せし
めるこずが必ずしも容易ではなく、そのため若干
の副生物を生じる。しかし、(b)成分ずしおトリレ
ンゞむ゜シアネヌト、む゜ホロンゞむ゜シアネヌ
トなどを甚いれば䞡む゜シアネヌト基の反応性の
盞違から、容易に目的䞭間䜓を取埗しうる。この
際の反応条件は、NCO䟡を远跡しお適宜決定さ
れ、通垞は反応枩床が50〜100℃、反応時間が
〜時間の範囲ずすれよい。぀いで該䞭間䜓ず(c)
成分ずを反応させるが、かかるばあいも前蚘䞭間
䜓の補造条件ず同様に蚭定するこずができる。も
ちろん、䞊蚘方法においお(a)成分ず(c)成分の仕蟌
順序を逆にするこずもできる。たた、前蚘(a)成
分、(b)成分および(c)成分を同時に反応させるこず
も可胜である。なお、いずれの反応方法を採甚し
たばあいにも、芁すればトリメチロヌルプロパン
トリアクリレヌト、テトラ゚チレングリコヌルゞ
アクリレヌトなどの反応性垌釈剀を䜿甚しお反応
時の粘床調敎を行なうこずもできる。 このようにしおえられた生成暹脂は、適宜公知
の配合物を添加するこずにより容易に本発明の被
芆剀を調補するこずができる。たずえば、反応性
垌釈剀ずしおトリメチロヌルプロパントリアクリ
レヌト、テトラ゚チレンゞアクリレヌト、ビスフ
゚ノヌルテトラオキシ゚チレンゞアクリレヌ
ト、などを䜿甚するこずができ、光増感剀ずしお
ベンゟプノン、−ヒドロキシシクロヘキシル
プニルケトン、−ゞメトキシ−−プ
ニルアセトプノンなどを䜿甚しうる。たた、必
芁により着色剀、艶消剀、脱泡剀、レベリング剀
などを適宜䜿甚するこずができる。 こうしおえられた本発明の被芆剀は、その光硬
化性を利甚するこずにより朚材被芆剀ずしお奜適
に䜿甚しうる。もちろん、本発明の特長を阻害し
ない範囲で埓来のりレタン系光硬床性暹脂を䜵甚
するこずもできる。たた本発明の被芆剀は前蚘甚
途以倖にも広範囲に適甚するこずができ、たずえ
ば印刷むンキ、玙塗工甚オヌバヌプリントワニ
ス、゜ルダヌレゞストなどずしおも䜿甚しうる。 以䞋、参考䟋、実斜䟋および比范䟋をあげお本
発明を詳现に説明するが、本発明はこれら各䟋に
限定されるものではない。なお、各䟋䞭、郚およ
びは特蚘しない限りすべお重量基準である。 参考䟋ロゞン゚ポキシアクリレヌトの補造 枩床蚈、冷华管、チツ玠導入管および攪拌機を
備えた反応容噚に、チツ玠眮換したのち䞍均化ロ
ゞングリシゞル゚ステル2568郚5.81モル、98
アクリル酞427郚5.81モル、゚ステル化觊媒
ずしおベンゞルトリメチルクロラむド3.0郚、重
合犁止剀ずしおヒドロキノンモノメチル゚ヌテル
以䞋、HQMEずいう3.0郚およびプノルチ
アゞン3.0郚を仕蟌み、チツ玠気流䞋105〜115℃
で時間かけお反応を完結させた。該反応物の酞
䟡は4.8、倖芳は耐色透明バルサム状であ぀た。
えられたロゞン゚ポキシアクリレヌトの分子量は
514であ぀た。 実斜䟋  枩床蚈、冷华管および攪拌機を備えた反応容噚
に、(a)成分ずしお前蚘ロゞ゚ポキシアクリレヌト
521.5郚、(b)成分ずしおむ゜ホロンゞむ゜シアネ
ヌト以䞋、IPDIずいう223.3郚、垌釈溶媒ず
しおテトラ゚チレンゞアクリレヌト以䞋、
4EGAずいうおよびHQME1.2を仕蟌み、50℃
で0.5時間かけお反応させ、぀いで80℃に昇枩し
さらに同枩床で時間反応させた。぀づいお(c)成
分ずしお−ヒドロキシ゚チルアクリレヌト以
䞋、2HEAずいう58.3郚およびペンタ゚リスリ
トヌルトリアクリレヌト以䞋、PETAずいう
196.9郚を仕蟌み、さらにオクチル酞第䞀スズ0.4
郚を添加し、IR枬定でNCO基の吞収2300cm-1
が消倱するたで反応を行ない、終了埌、党仕蟌量
に察しおHQME1000ppmを添加混合しお生成暹
脂をえた。えられた生成暹脂は倖芳が淡黄色透明
であり、粘床は25℃で15200cPであ぀た。぀ぎに
えられた生成暹脂の物性ずしお塗膜の平滑性、硬
化照射回数、耐汚染性、鉛筆硬床および密着性、
耐氎性膜状態および密着性、耐湿性膜状態
および密着性および耐候性膜状態および密着
性を䞋蚘方法にしたが぀お調べた。その結果を
第衚に瀺す。 性胜評䟡 生成暹脂97郚に察し、光増感剀ずしお−ヒド
ロキシシクロヘキシルプニルケトンチバ・ガ
むギヌ瀟補、商品名「むルガキナアヌ184」郚
を混合し、サンプルを調補した。これをシナ合板
村井合板(æ ª)補にアプリケヌタを甚いお也燥塗
膜厚が玄50Ό也燥塗膜重量90gm2ずな
るように塗垃し、サンプル片を䜜補し、以䞋のよ
うにしお諞性胜を評䟡した。 塗工適性塗膜の平滑性 前蚘でえられたサンプル片の塗垃盎埌の衚面平
滑性を目芖により調べた。 硬化速床 80Wcmの玫倖線ランプ灯を照射距離10cmに
保ち、ベルトスピヌド20m分の条件でサンプル
片を移動させお、タツクフリヌずなるたでの照射
回数を枬定した。 耐汚染性 前蚘硬化速床においお照射を回行ない、
硬化埌の皮膜に黒、青、赀のプルトペンで線を
ひき、10分間攟眮した埌、石油ベンゞンでふきず
り、皮膜の汚染状態を芳察した。 鉛筆硬床 前蚘サンプル片の䜜補時に甚いたシナ合板にか
えお鋌板にサンプルを塗垃し、぀いで前蚘硬化
速床においお照射を回行な぀お硬化させたの
ち、JIS K5400に準じお鉛筆ひ぀かき詊隓を行な
぀た。 密着性 前蚘でえられたサンプル片を䜿甚しお前蚘硬
化速床においお照射を回行な぀お硬化させた
のち、JIS K5400に準じお評䟡した。 耐氎性 前蚘でえられたサンプル片を䜿甚しお前蚘硬
化速床においお照射を回行な぀お硬化させた
のち80℃の枩氎に時間浞挬埌、埪颚也燥機によ
り60℃で時間也燥させる操䜜を10サむクル繰り
返したのち、塗膜の衚面状態を目芖芳察し、さら
に次密着性を枬定しお評䟡した。 耐湿性 前蚘でえられたサンプル片を䜿甚し、぀いで前
蚘硬化速床においお照射を回行な぀お硬化
させたのち、これを50℃、98R.H.の恒枩恒湿
噚に120時間攟眮埌、塗膜の衚面状態を目芖芳察
し、さらに次密着性を枬定しお評䟡した。 耐候性 前蚘でえられたサンプル片を䜿甚し、぀いで前
蚘硬化速床においお照射を回行な぀お硬化
させたのち、これをサンシダむン型り゚ザヌメヌ
タヌで100時間曝露し、該塗膜の衚面状態を目芖
芳察し、さらに次密着性を枬定しお評䟡した。 実斜䟋 〜 実斜䟋においお、(a)成分の䜿甚量、(b)成分の
皮類たたは䜿甚量ならびに(c)成分の皮類たたは䜿
甚量のいずれか少なくずも皮を第衚に瀺すよ
うに倉化させたほかは実斜䟋ず同様にしお反応
を行ない生成暹脂をえた。えられた生成暹脂の物
性を実斜䟋ず同様にしお枬定した。その結果を
第衚に瀺す。 実斜䟋 〜 実斜䟋においお、(a)成分の䜿甚量、(b)成分の
䜿甚量および(c)成分の䜿甚量を第衚に瀺すよう
に倉化させたほかは実斜䟋ず同様にしお反応を
行ない生成暹脂をえた。えられた生成暹脂の物性
を実斜䟋ず同様にしお枬定した。その結果を第
衚に瀺す。 比范䟋  枩床蚈、冷华管および攪拌機を備えた反応容噚
に、(b)成分ずしおゞプニルメタンゞむ゜シアネ
ヌト以䞋、MDIずいう329.8郚、(c)成分ずし
おPETA517.2郚、4EGA200.0郚およびHQME1.2
郚を仕蟌み、50℃で0.5時間かけお反応させ、぀
いで80℃に昇枩し、さらに同枩床で時間反応さ
せた。぀づいお(c)成分ずしお2HEA153.0郚を仕
蟌み、さらに80℃で時間反応させたのちオクチ
ル酞第䞀スズ0.4郚を添加し、IR枬定でNCO基の
吞収2300cm-1が消倱するたで玄時間反応を
継続した。終了埌、HQME1.2郚を添加しお生成
暹脂をえた。このものは倖芳が淡黄色透明であ
り、粘床は25℃で37000cPであ぀た。぀ぎにえら
れた生成暹脂の物性を実斜䟋ず同様にしお枬定
した。その結果を第衚に瀺す。 比范䟋  比范䟋においお、MDIに代えお氎添キシリ
レンゞむ゜シアネヌト以䞋、H6XDIずいう
367.7郚を䜿甚し、たたPETA280.6郚、
2HEA351.7郚にそれぞれ䜿甚量を倉化させたほ
かは比范䟋ず同様にしお行ない生成暹脂をえ
た。぀ぎにえられた生成暹脂の物性を実斜䟋ず
同様にしお枬定した。その結果を第衚に瀺す。 比范䟋  枩床蚈、冷华管および攪拌機を備えた反応容噚
に、(a)成分ずしお前蚘ロゞン゚ポキシアクリレヌ
ト1000.0郚および4EGA200.0郚を仕蟌み、攪拌混
合し淡黄色透明混合物をえた。぀ぎにえられた混
合物の物性を実斜䟋ず同様にしお枬定した。そ
の結果を第衚に瀺す。
[Industrial Field of Application] The present invention relates to a novel photocurable resin composition for coating wood. [Prior art] Various wood coatings have been used for the purpose of making wood beautiful and giving it durability, and thermosetting amino alkyd resin coatings have been widely used mainly due to cost. . However, aminoalkyd resin coatings have drawbacks such as a long curing time and the generation of formalin odor not only during curing but also after being left to cure. In recent years, photocurable coatings have been actively investigated and used in an attempt to overcome the above-mentioned drawbacks. Although photocurable coatings themselves are generally expensive, the application of an ultraviolet curing system makes it relatively easy to streamline the coating process and improve productivity.
After all, if the total cost is taken into account, the drawbacks of the coating material itself in terms of price can be overcome. In particular, polyurethane-based photocurable resins are expected to be suitable as binders for wood coatings because they have excellent coating film properties after curing, such as flexibility, abrasion resistance, and chemical resistance. However, it has been pointed out that polyurethane-based photocurable resins generally have poor wettability to wood during coating, and in extreme cases may cause repellency on the coated surface. Therefore, there is a demand in this field for the development of a polyurethane-based photocurable resin composition that has excellent coating suitability for wood. [Problems to be Solved by the Invention] The present invention has been made in order to solve the above-mentioned problems that could not be solved by the prior art. Therefore, the present inventors have conducted extensive research in order to develop an excellent photocurable resin composition for wood coating that can simultaneously satisfy all of the performances of curing speed, physical properties of the coating film, and coating suitability. As a result, it has been found that all of the above problems can be solved by using a specific polyfunctional compound having a rosin component. The present invention was completed based on this new knowledge. [Means for solving the problems] The present invention provides a reaction product (a) of (meth)acrylic acid and rosin glycidyl ester, diisocyanates
(b) and a (meth)acrylic acid ester monomer (c) containing a hydroxyl group, consisting of a reaction product (a) of (meth)acrylic acid and rosin glycidyl ester and a (meth)acrylic acid containing a hydroxyl group. The total amount of ester monomer (c) charged is 1.8 to 2.2 mol per 1 mol of diisocyanate (b), and the reaction product (a) of (meth)acrylic acid and rosin glycidyl ester is charged. Photocuring for wood coating characterized by containing as a main component a reaction product in an amount of 0.5 to 2.0 mol per 1 mol of the (meth)acrylic acid ester monomer (c) containing a hydroxyl group. The present invention relates to a synthetic resin composition. [Example] The photocurable resin composition for wood coating of the present invention contains a reaction product of (meth)acrylic acid and rosin glycidyl ester (hereinafter referred to as component (a)), diisocyanates (hereinafter referred to as component (b)). ) and a (meth)acrylic acid ester monomer containing a hydroxyl group (hereinafter referred to as component (c)).
It contains as a main component a produced resin). The above component (a) is a reaction product of (meth)acrylic acid and rosin glycidyl ester, and has the general formula
(1) (In the formula, R 1 is a rosin residue, and R 2 is a hydrogen atom or a methyl group.) The rosins used here are determined by considering the UV curing speed of the resulting resin, the color tone, etc., and are usually treated to stabilize conjugated double bonds, such as hydrogenated rosin or disproportionated rosin. rosin is suitable. As mentioned above, component (a) can be obtained by esterifying (meth)acrylic acid and rosin glycidyl ester. In addition, known polymerization inhibitors such as phenols, quinones, and phenothiazine can be appropriately selected and used. The molar ratio of (meth)acrylic acid to rosin glycidyl ester is stoichiometrically set to 1:1, but industrially it may range from 1:0.9 to 1:1.1. The amount of esterification catalyst used is (meth)
0.1 to 2 parts by weight per 100 parts by weight of the total amount of acrylic acid and rosin glycidyl ester, and the amount of polymerization inhibitor used is 0.001 parts by weight per 100 parts of the total amount.
The amount is preferably 0.5 parts by weight. The reaction temperature is usually
The temperature may be 80 to 130°C, and the reaction time is determined by monitoring the oxidation of the product, and is usually 3 to 10 hours. The component (b) is a diisocyanate, and any conventionally known one can be used as is. Specific examples of these include isophorone diisocyanate,
Examples include diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, phenylene diisocyanate, hydrogenated xylylene diisocyanate, and xylylene diisocyanate. However, in order to obtain a highly pure compound having a free isocyanate group at the end by selectively reacting with component (a), one of the isocyanate groups in component (b) is required to react with component (a). It is desirable that the isocyanate groups present in component () are not equivalent, and in view of this, isophorone diisocyanate and tolylene diisocyanate are preferred among the above. The component (c) is a (meth)acrylic acid ester monomer containing a hydroxyl group, and specific examples thereof include 2-hydroxyethyl acrylate, 2-hydroxyethyl acrylate, and 2-hydroxyethyl acrylate.
- Mono(meth)acrylates with one hydroxyl group in the molecule, such as hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, glycerin diacrylate, glycerin dimethacrylate, pentaerythritol triacrylate, and pentaerythritol trimethacrylate. , di(meth)acrylate, tri(meth)acrylate, etc. The usage amounts of component (a), component (b) and component (c) are as follows:
It can be appropriately selected within the following ranges. That is, the total amount of components (a) and (c) is 1.8 to 2.2 moles, preferably 1.9 moles per mole of component (b).
-2.1 mol, and the amount of component (a) charged is 0.5 to 2.0 mol, preferably 0.8 to 1.2 mol, per 1 mol of component (c) charged. If the former molar ratio is less than 1.8, free isocyanate groups will remain at the molecular ends of the resulting resin, and if it exceeds 2.2, components (a) and (b) will remain unreacted in the resulting resin. Both are undesirable as they will remain as they are. On the other hand, if the latter molar ratio is less than 0.5,
The amount of rosin contained in the produced resin becomes too small,
In the end, it is not preferable because the coating suitability, which is a characteristic of the photocurable resin composition of the present invention, cannot be fully exhibited.
If it exceeds 2.0, the flexibility and abrasion resistance of the resulting photocurable resin composition tend to decrease, so both are unfavorable. Next, a method for producing the resulting resin, which is the main component of the composition of the present invention, will be explained. That is, it can be produced according to the following method using each of the components (a), (b), and (c) within the ranges described above. That is, after obtaining a compound having a free isocyanate group at the end by adding and reacting component (b) in the presence of component (a), the compound is then reacted with component (c). The resulting resin is obtained. Since this reaction is essentially a reaction between an isocyanate group and a hydroxyl group, if the reactivity of the isocyanate group in component (b) is equivalent, component (a) will react with both ends of component (b). Therefore, it is not always easy to selectively leave free isocyanate groups at the ends of the molecules, resulting in the production of some by-products. However, if tolylene diisocyanate, isophorone diisocyanate, etc. are used as component (b), the desired intermediate can be easily obtained due to the difference in reactivity of both isocyanate groups. The reaction conditions at this time are determined as appropriate by monitoring the NCO value, and usually the reaction temperature is 50-100℃ and the reaction time is 1.
~5 hours. Then the intermediate and (c)
In such a case, the same conditions as those for producing the intermediate can be set. Of course, in the above method, the order of adding components (a) and (c) can also be reversed. It is also possible to react the components (a), (b) and (c) at the same time. In addition, when any reaction method is adopted, the viscosity can be adjusted during the reaction by using a reactive diluent such as trimethylolpropane triacrylate or tetraethylene glycol diacrylate, if necessary. The coating material of the present invention can be easily prepared from the resulting resin thus obtained by appropriately adding known formulations. For example, trimethylolpropane triacrylate, tetraethylene diacrylate, bisphenol A tetraoxyethylene diacrylate, etc. can be used as a reactive diluent, and benzophenone, 1-hydroxycyclohexyl phenyl ketone, etc. can be used as a photosensitizer. 2,2-dimethoxy-2-phenylacetophenone and the like can be used. Further, a coloring agent, a matting agent, a defoaming agent, a leveling agent, etc. may be used as appropriate. The thus obtained coating material of the present invention can be suitably used as a wood coating material by utilizing its photocurability. Of course, conventional urethane-based photocuring resins can also be used in combination without impairing the features of the present invention. Furthermore, the coating material of the present invention can be used in a wide range of applications other than those described above, such as printing ink, overprint varnish for paper coating, solder resist, etc. Hereinafter, the present invention will be explained in detail with reference to Reference Examples, Examples, and Comparative Examples, but the present invention is not limited to these examples. In each example, all parts and percentages are based on weight unless otherwise specified. Reference example (manufacture of rosin epoxy acrylate) Into a reaction vessel equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirrer, 2568 parts (5.81 mol) of disproportionated rosin glycidyl ester after nitrogen substitution, 98
% acrylic acid (5.81 mol), 3.0 parts of benzyl trimethyl chloride as an esterification catalyst, 3.0 parts of hydroquinone monomethyl ether (hereinafter referred to as HQME) as a polymerization inhibitor, and 3.0 parts of phenolthiazine, and heated at 105 to 115°C under a nitrogen stream.
The reaction was completed over 6 hours. The reaction product had an acid value of 4.8 and a brown transparent balsamic appearance.
The molecular weight of the obtained rosin epoxy acrylate is
It was 514. Example 1 The rhodiepoxy acrylate as component (a) was placed in a reaction vessel equipped with a thermometer, a cooling tube, and a stirrer.
521.5 parts, 223.3 parts of isophorone diisocyanate (hereinafter referred to as IPDI) as component (b), and tetraethylene diacrylate (hereinafter referred to as
4EGA) and HQME1.2 and heated to 50℃.
The mixture was reacted for 0.5 hour, then the temperature was raised to 80°C, and the reaction was further continued at the same temperature for 1 hour. Next, as component (c), 58.3 parts of 2-hydroxyethyl acrylate (hereinafter referred to as 2HEA) and pentaerythritol triacrylate (hereinafter referred to as PETA)
Add 196.9 parts and add 0.4 parts of stannous octylate.
absorption of NCO group (2300cm -1 ) by IR measurement
The reaction was carried out until it disappeared, and after completion of the reaction, 1000 ppm of HQME was added and mixed to the total amount charged to obtain a resin product. The resulting resin had a pale yellow, transparent appearance and a viscosity of 15,200 cP at 25°C. Next, the physical properties of the resulting resin include the smoothness of the coating film, the number of curing irradiations, stain resistance, pencil hardness, and adhesion.
Water resistance (membrane condition and adhesion), moisture resistance (membrane condition and adhesion) and weather resistance (membrane condition and adhesion) were examined according to the following methods. The results are shown in Table 1. (Performance evaluation) A sample was prepared by mixing 3 parts of 1-hydroxycyclohexyl phenyl ketone (manufactured by Ciba Geigy, trade name: "Irgakiure 184") as a photosensitizer with 97 parts of the produced resin. This was applied to Shina plywood (manufactured by Murai Plywood Co., Ltd.) using an applicator so that the dry film thickness was approximately 50 ÎŒm (dry film weight: 90 g/m 2 ), and sample pieces were prepared. Various performances were evaluated as follows. (Coating suitability (smoothness of coating film)) The surface smoothness of the sample piece obtained above was visually inspected immediately after coating. (Curing speed) The number of irradiations until the sample became tack-free was measured by keeping one 80 W/cm ultraviolet lamp at an irradiation distance of 10 cm and moving the sample piece at a belt speed of 20 m/min. (Stain resistance) Irradiation was performed 5 times at the above (curing speed),
Lines were drawn on the cured film with black, blue, and red felt pens, and after being left for 10 minutes, the film was wiped off with petroleum benzine and the state of contamination of the film was observed. (Pencil hardness) The sample was applied to a steel plate instead of the china plywood used when making the sample piece, and then irradiated 5 times at the above (curing speed) to harden it, and then pencil hardened according to JIS K5400. I conducted an oyster test. (Adhesion) Using the sample piece obtained above, irradiation was performed five times at the above-mentioned (curing rate) to cure it, and then it was evaluated according to JIS K5400. (Water resistance) Using the sample piece obtained above, it was irradiated 5 times at the above (curing speed) to cure it, then immersed in hot water at 80°C for 1 hour, and then dried at 60°C in a circulating air dryer. After repeating 10 cycles of drying for 2 hours, the surface condition of the coating film was visually observed and secondary adhesion was measured and evaluated. (Moisture resistance) Using the sample piece obtained above, it was then cured by irradiation 5 times at the above (curing speed), and then placed in a constant temperature and humidity chamber at 50°C and 98% RH for 120 hours. After standing, the surface condition of the coating film was visually observed, and secondary adhesion was further measured and evaluated. (Weather resistance) Using the sample piece obtained above, it was then cured by irradiation 5 times at the above (curing rate), and then exposed for 100 hours using a sunshine type weather meter to test the coating film. The surface condition was visually observed and secondary adhesion was measured and evaluated. Examples 2 to 5 In Example 1, at least one of (a) the amount used of the component, (b) the type or amount of the component used, and (c) the type or amount of the component used is as shown in Table 1. The reaction was carried out in the same manner as in Example 1 except that the reaction mixture was changed to obtain a resin. The physical properties of the resulting resin were measured in the same manner as in Example 1. The results are shown in Table 1. Examples 6 to 7 Example 1 was repeated except that the amount of component (a) used, the amount of component (b) used, and the amount of component (c) used were changed as shown in Table 1. A similar reaction was carried out to obtain a resin. The physical properties of the resulting resin were measured in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 In a reaction vessel equipped with a thermometer, a cooling tube, and a stirrer, 329.8 parts of diphenylmethane diisocyanate (hereinafter referred to as MDI) as component (b), 517.2 parts of PETA, 200.0 parts of 4EGA as component (c), and HQME1.2
1 part was charged, reacted at 50°C for 0.5 hour, then heated to 80°C, and further reacted at the same temperature for 1 hour. Next, 153.0 parts of 2HEA was added as component (c), and after further reaction at 80°C for 1 hour, 0.4 parts of stannous octylate was added, and the absorption of NCO groups (2300 cm -1 ) disappeared by IR measurement. The reaction continued for about 1 hour. After completion, 1.2 parts of HQME was added to obtain the resulting resin. This product had a pale yellow transparent appearance and a viscosity of 37,000 cP at 25°C. Next, the physical properties of the resulting resin were measured in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 2 In Comparative Example 1, hydrogenated xylylene diisocyanate (hereinafter referred to as H 6 XDI) was used instead of MDI.
367.7 copies were used, and PETA 280.6 copies,
Resins were obtained in the same manner as in Comparative Example 1, except that the amounts used were changed to 351.7 parts of 2HEA. Next, the physical properties of the resulting resin were measured in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 In a reaction vessel equipped with a thermometer, a cooling tube, and a stirrer, 1000.0 parts of the above-mentioned rosin epoxy acrylate and 200.0 parts of 4EGA were charged as components (a), and mixed with stirring to obtain a pale yellow transparent mixture. Next, the physical properties of the obtained mixture were measured in the same manner as in Example 1. The results are shown in Table 1.

【衚】【table】

【衚】 発明の効果 本発明の朚材被芆甚光硬化性暹脂組成物は、そ
の光硬化性を利甚するこずにより広範囲な甚途に
適甚するこずができるが、ずくに朚材被芆剀ずし
お䜿甚したばあいには、埓来のりレタン系光硬化
性暹脂の特性であるたわみ性、耐摩耗性、耐薬品
性などの硬化埌の塗膜物性を有するこずは勿論の
こず、埓来のりレタン系光硬化性暹脂の欠点であ
぀た朚材に察する塗工適性を倧幅に改善するこず
ができ、たた玫倖線硬化システムの採甚により、
結局䟡栌面からも熱硬化性のアミノアルキド暹脂
系被芆剀ず競争しうるものであり、アミノアルキ
ド暹脂系被芆剀の欠点であるホルマリン臭の発生
もないずいう効果を奏する。
[Table] [Effects of the Invention] The photocurable resin composition for wood coating of the present invention can be applied to a wide range of uses by utilizing its photocurability, but it is particularly effective when used as a wood coating. In addition to having the physical properties of a cured film such as flexibility, abrasion resistance, and chemical resistance, which are the characteristics of conventional urethane photocurable resins, it also has the properties of conventional urethane photocurable resins. The coating suitability for wood, which had been a drawback of previous products, has been greatly improved, and by adopting an ultraviolet curing system,
In the end, it can compete with thermosetting aminoalkyd resin-based coatings in terms of price, and has the effect of not producing formalin odor, which is a drawback of aminoalkyd resin-based coatings.

Claims (1)

【特蚱請求の範囲】[Claims]  メタアクリル酞ずロゞングリシゞル゚ス
テルずの反応物(a)、ゞむ゜シアネヌト類(b)および
氎酞基を含有するメタアクリル酞゚ステル系
単量䜓(c)ずからなり、メタアクリル酞ずロゞ
ングリシゞル゚ステルずの反応物(a)ず氎酞基を含
有するメタアクリル酞゚ステル系単量䜓(c)の
合蚈仕蟌量がゞむ゜シアネヌト類(b)の仕蟌量モ
ルあたり1.8〜2.2モルであり、か぀メタアク
リル酞ずロゞングリシゞル゚ステルずの反応物(a)
の仕蟌量が氎酞基を含有するメタアクリル酞
゚ステル系単量䜓(c)の仕蟌量モルあたり0.5〜
2.0モルである反応生成物を䞻成分ずしお含有す
るこずを特城ずする朚材被芆甚光硬化性暹脂組成
物。
1 Consisting of a reaction product (a) of (meth)acrylic acid and rosin glycidyl ester, diisocyanates (b) and a (meth)acrylic acid ester monomer (c) containing a hydroxyl group, (meth)acrylic acid and rosin glycidyl ester (a) and the (meth)acrylic acid ester monomer (c) containing a hydroxyl group in a total amount of 1.8 to 2.2 mol per 1 mol of the diisocyanate (b). Yes, and reaction product (a) of (meth)acrylic acid and rosin glycidyl ester
The amount charged is 0.5 to 1 mole of the (meth)acrylic acid ester monomer (c) containing a hydroxyl group.
A photocurable resin composition for coating wood, characterized in that it contains 2.0 mol of a reaction product as a main component.
JP9415287A 1987-04-16 1987-04-16 Photo-setting resin composition for coating wood Granted JPS63257602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9415287A JPS63257602A (en) 1987-04-16 1987-04-16 Photo-setting resin composition for coating wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9415287A JPS63257602A (en) 1987-04-16 1987-04-16 Photo-setting resin composition for coating wood

Publications (2)

Publication Number Publication Date
JPS63257602A JPS63257602A (en) 1988-10-25
JPH0479801B2 true JPH0479801B2 (en) 1992-12-17

Family

ID=14102408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9415287A Granted JPS63257602A (en) 1987-04-16 1987-04-16 Photo-setting resin composition for coating wood

Country Status (1)

Country Link
JP (1) JPS63257602A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109352776B (en) * 2018-11-13 2020-07-14 䞭囜林䞚科孊研究院林产化孊工䞚研究所 Method for improving performance of fast-growing wood by rosin-based unsaturated resin

Also Published As

Publication number Publication date
JPS63257602A (en) 1988-10-25

Similar Documents

Publication Publication Date Title
EP0184349B1 (en) Liquid, curable coating composition
US4565857A (en) Radiation-curable cellulose coating
US4369300A (en) Acrylated urethane silicone compositions
JP2732535B2 (en) Multifunctional ethylenically unsaturated cellulosic polymer
IE902198A1 (en) Process for the manufacture of coatings by crosslinking, new radiocrosslinkable compositions and new carbonates
WO1997017378A1 (en) Photoinitiator
GB2067213A (en) Acrylate Urethane Silicone Compositions
EP0434741A1 (en) Ultraviolet-curable cationic vinyl ether polyurethane coating compositions
EP0018672B1 (en) U.v.-curable coating composition
CN107141440B (en) Rigid ring modified organosilicon polyurethane acrylate water-based oligomer and preparation method thereof
JPH0479801B2 (en)
CN108840990A (en) Dual cross-linking type tung oil base UV cured polyurethane acrylate and its preparation method and application
JPH04209662A (en) Urethane-containing photo-setting composition
JP2610746B2 (en) Active energy ray-curable composition
JPS5980427A (en) Preparation of radically polymerizable prepolymer composition
CN112851596B (en) Oxazolidine-containing radiation-curable urethane (meth) acrylate and preparation method thereof
JPH0125772B2 (en)
JPS5974116A (en) Production of radical-polymerizable prepolymer
JPS5993719A (en) Preparation of radically polymerizable prepolymer
JPH0435488B2 (en)
JPH029609B2 (en)
JPS6361331B2 (en)
JPS62232410A (en) Actinic radiation-curable resin composition
JPS5996119A (en) Production of radical-polymerizable prepolymer
JPS6054351B2 (en) Active energy beam-curable resin composition for coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 15