JPH0479742B2 - - Google Patents

Info

Publication number
JPH0479742B2
JPH0479742B2 JP852085A JP852085A JPH0479742B2 JP H0479742 B2 JPH0479742 B2 JP H0479742B2 JP 852085 A JP852085 A JP 852085A JP 852085 A JP852085 A JP 852085A JP H0479742 B2 JPH0479742 B2 JP H0479742B2
Authority
JP
Japan
Prior art keywords
electrode
molten metal
electrodes
phase current
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP852085A
Other languages
Japanese (ja)
Other versions
JPS61169145A (en
Inventor
Nobuhiko Narita
Keisuke Asano
Hiromi Fukuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP852085A priority Critical patent/JPS61169145A/en
Publication of JPS61169145A publication Critical patent/JPS61169145A/en
Publication of JPH0479742B2 publication Critical patent/JPH0479742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気伝導性を有する炭素含有耐火物自
体に電流を供給し、抵抗熱(ジユール熱)による
発熱を利用して該耐火物を加熱する耐火物の通電
加熱方法に関するものであり、溶融金属の流通管
耐火壁の加熱に用いるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention supplies an electric current to the carbon-containing refractory itself having electrical conductivity, and heats the refractory using heat generated by resistance heat (Jule heat). The present invention relates to a method of electrically heating refractories, and is used to heat a refractory wall of a molten metal flow pipe.

〔従来技術〕[Prior art]

例えば、連続鋳造法によつて溶綱から鋳片を製
造する場合、鋼品質上の要請から、溶鋼流と大気
との接触を避けるため溶鋼取鍋とタンデイツシユ
間、タンデイツシユとモールド間を耐火物製の長
円筒形の流通管、即ちロングノズル、浸漬ノズル
を用いていわゆる断気鋳造を行なつている。これ
らのノズルは鋳入開始時に高温溶鋼がその細長い
内孔部を通過する際に、熱衝撃をうけるので高耐
熱衝撃性が要求され、また溶鋼による磨耗や溶鋼
成分、パウダー成分との反応に対し高耐食性も要
求される。これらのノズルの材質としてはアルミ
ナや炭素のような中性材料がもつている化学的安
定性と炭素(黒鉛)の低膨張性とを利用したアル
ミナーカーボン質が多く使用されている。一方、
連続鋳造では鋳造中の溶鋼温度が鋳入初期及び末
期に低下し、その際、ノズル内壁に地金が大量に
付着し安定な鋳造が困難になることが多い。これ
を防止する方法としては従来、鋳造をいつたん停
止しノズル内孔を酸素洗浄することによつて地金
を除去し再鋳造を行なう方法も採用されている
が、この方法では鋳造中断部の鋼に非金属介在物
が増大し、鋼の品質劣化を引き起こすことがしば
しばあり、その対策が切望されていた。
For example, when producing slabs from molten steel using the continuous casting method, in order to prevent the molten steel flow from coming into contact with the atmosphere, the spaces between the molten steel ladle and the tundish, and between the tundish and the mold are made of refractory material. The so-called closed-air casting is performed using a long cylindrical flow pipe, that is, a long nozzle or a submerged nozzle. These nozzles are required to have high thermal shock resistance because they are subjected to thermal shock when high-temperature molten steel passes through the long and narrow inner hole at the start of casting. High corrosion resistance is also required. As the material for these nozzles, alumina carbon is often used, which takes advantage of the chemical stability of neutral materials such as alumina and carbon and the low expansion properties of carbon (graphite). on the other hand,
In continuous casting, the temperature of molten steel during casting decreases at the beginning and end of casting, and at this time, a large amount of base metal adheres to the inner wall of the nozzle, making stable casting difficult. Conventionally, a method to prevent this has been to stop the casting, clean the inside hole of the nozzle with oxygen, remove the base metal, and then recast. Non-metallic inclusions often increase in steel, causing quality deterioration of the steel, and a countermeasure against this problem has been desperately needed.

ノズル内壁への地金付着は、ノズル外壁の温度
と密接な関係があり、例えば第6図に示すように
ノズル外壁温度が高い程地金付着量が少ない。し
たがつてノズル耐火壁からの熱放散を減少させた
り、ノズル耐火壁自体を積極的に加熱すれば地金
付着量を減少できることが知られている。
The amount of metal deposited on the inner wall of the nozzle is closely related to the temperature of the outer wall of the nozzle. For example, as shown in FIG. 6, the higher the temperature of the outer nozzle wall, the smaller the amount of metal deposited. Therefore, it is known that the amount of deposited metal can be reduced by reducing heat dissipation from the nozzle refractory wall or actively heating the nozzle refractory wall itself.

従来、この知見に基づいて炭素を含有し、導電
性のある物質からなるノズル壁に電極を当接して
通電し、該ノズルを抵抗熱による発熱により直接
的に加熱し、地金付着を減少させる方法(特開昭
55−64857)も試みられている。
Conventionally, based on this knowledge, electrodes are placed in contact with the nozzle wall, which contains carbon and is made of a conductive substance, and electricity is applied to directly heat the nozzle by heat generated by resistance heat, thereby reducing metal adhesion. Method (JP-A-Sho
55-64857) has also been attempted.

この通電加熱方法において用いられている電源
は単相電源であり、被加熱体を挟んで一対の電極
を対向配設し、この電源に電極を接続して電極か
ら被加熱体に通電して電気抵抗により発熱させて
加熱するようになつている。
The power source used in this current heating method is a single-phase power source, in which a pair of electrodes are placed facing each other with the object to be heated in between, and the electrodes are connected to this power source and current is passed from the electrodes to the object to be heated. It is designed to heat up by generating heat using a resistance.

このように単相電源による通電加熱において、
通電加熱域を広げる場合は、多数の電極による通
電回路を形成するか大形の電極を配設する必要が
あり、この場合大電源を必要とし設備費、電力消
費量が嵩むといつた問題がある。
In this way, in current heating using a single-phase power supply,
In order to widen the heating area, it is necessary to form a current-carrying circuit with many electrodes or to install large electrodes.In this case, a large power source is required, leading to problems such as increased equipment costs and power consumption. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記従来の問題点を解消し比較的小
型で少ない電極を用い少ない電力消費量で広範囲
に亘つて効率的通電加熱ができる通電加熱方法を
提供しようというものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned conventional problems and to provide an electric heating method that can efficiently conduct electric heating over a wide range with a relatively small size and a small number of electrodes, and low power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

本願発明は、一部又は全部を溶融金属中に浸漬
して溶融金属を流通させる導電性耐火材で形成さ
れた溶融金属用流通管の通電加熱方法において、
溶融金属の流通前は該流通管の大気冷却域に当接
した対の電極と電源により形成される単相の通電
回路に浸漬域に当接した電極を接続して三相の通
電回路を形成し、この三相通電回路により該流通
管の大気冷却域と浸漬域を併せて通電加熱し、溶
融金属の流通時は浸漬域に当接の電極を退避させ
ると共にこの電極と前記単相の通電回路との接続
を遮断し、溶融金属流通中は該単相の通電回路に
よつて大気冷却域を継続して通電加熱することを
特徴とする溶融金属流通管の通電加熱方法であ
る。
The present invention provides a method for electrically heating a molten metal flow pipe formed of a conductive refractory material through which the molten metal flows by immersing the molten metal in part or in its entirety in the molten metal.
Before the molten metal flows, the electrode in contact with the immersion area is connected to a single-phase current-carrying circuit formed by a pair of electrodes in contact with the atmospheric cooling area of the flow pipe and a power source, forming a three-phase current-carrying circuit. The three-phase energizing circuit heats both the atmospheric cooling region and the immersed region of the flow pipe, and when the molten metal is flowing, the electrode in contact with the immersed region is evacuated and the single-phase current is energized between this electrode and the immersed region. This is a method for energizing and heating a molten metal flow pipe, which is characterized in that the connection to the circuit is cut off, and the atmospheric cooling region is continuously heated by energization by the single-phase current-carrying circuit during the flow of molten metal.

〔作用〕[Effect]

以下に本発明の実施例を本発明を実施するため
の装置例と共に説明する。
Embodiments of the present invention will be described below along with examples of devices for carrying out the present invention.

本実施例は連続鋳造用浸漬ノズルの予熱および
加熱に適用した場合のものである。
This example is applied to preheating and heating of an immersion nozzle for continuous casting.

第1図,第5図において、1はタンデイツシ
ユ、2はタンデイツシユ1の底部に設けた浸漬ノ
ズル、例えばアルミナーカーボン系導電性耐火材
により形成される。3は浸漬ノズル開閉用のスラ
イデイングノズル、4はタンデイツシユ1の底部
に浸漬ノズル2を挟んで対向して設けた一対の支
持装置で、この支持装置4,4′には駆動装置5,
5′を介して電極C,C′が進退可能に支持されて
いる。
In FIGS. 1 and 5, 1 is a tundish, and 2 is a submerged nozzle provided at the bottom of the tundish 1, which is made of, for example, an alumina-carbon based conductive refractory material. 3 is a sliding nozzle for opening and closing the immersion nozzle; 4 is a pair of support devices provided at the bottom of the tundish 1 facing each other with the immersion nozzle 2 in between;
The electrodes C and C' are supported so as to be movable back and forth via the electrode 5'.

この電極C,C′は銅電極6と炭素電極7からな
り、この炭素電極7には浸漬ノズル2の外周の曲
面に対応する凹曲面を形成した可縮性導電体8は
貼着されている。
These electrodes C and C' consist of a copper electrode 6 and a carbon electrode 7, and a contractible conductor 8 having a concave curved surface corresponding to the curved surface of the outer periphery of the immersion nozzle 2 is attached to this carbon electrode 7. .

又、電極C,C′の銅電極6は、導線9により電
源10に接続され単相通電回路を形成している。
Further, the copper electrodes 6 of the electrodes C and C' are connected to a power source 10 through a conductive wire 9 to form a single-phase current-carrying circuit.

鋳型11の上方には駆動装置12が配設されて
おり、この駆動装置12には、水平方向に旋回
し、浸漬ノズル2の下端面に当接される電極C0
が設けられている。
A drive device 12 is disposed above the mold 11, and this drive device 12 includes an electrode C 0 which rotates in the horizontal direction and comes into contact with the lower end surface of the immersion nozzle 2.
is provided.

この電極C0は銅電極13と炭素電極14から
なり、炭素電極14の上面には可縮性の導電体1
5が貼着されており、銅電極13は導線16によ
りコネクター17を介して電源10に接続され、
前記単相通電回路とにより三相通電回路が形成さ
れるようになつている。
This electrode C0 consists of a copper electrode 13 and a carbon electrode 14, and a contractible conductor 1 is placed on the upper surface of the carbon electrode 14.
5 is attached, the copper electrode 13 is connected to the power source 10 via the connector 17 by the conductor 16,
A three-phase current-carrying circuit is formed by the single-phase current-carrying circuit.

本発明においては、この通電加熱装置によつ
て、先ず浸漬ノズル2に溶鋼を流通させる前に浸
漬ノズル2の全体を予熱する。浸漬ノズル2を予
熱する場合は、先ず鋳型11の上方の駆動装置1
2を駆動して、電極C0を旋回して所定の位置に
位置させておき、タンデイツシユ1を移動して浸
漬ノズル2の先端面を電極C0の上面に当接する。
In the present invention, first, the entire immersed nozzle 2 is preheated by this electrical heating device before flowing molten steel through the immersed nozzle 2. When preheating the immersion nozzle 2, first the drive device 1 above the mold 11 is heated.
2 is driven to rotate the electrode C 0 to a predetermined position, and the tundish 1 is moved to bring the tip end surface of the immersion nozzle 2 into contact with the upper surface of the electrode C 0 .

又、駆動装置5,5′を駆動して電極CとC′を
浸漬ノズル2の外周面に押圧して可縮性導電体8
が炭素電極7と浸漬ノズル2の外周面に密着させ
炭素電極7と浸漬ノズル2間の通電性を良好に保
持した状態で電極C,C′に接続された導線9を電
源9を電源10に接続し、単相通電回路を形成
し、更に、この単相通電回路にコネクター17を
介して電極C0に接続された導線16を接続して
三相通電回路を形成し、通電を開始する。
Further, the drive devices 5 and 5' are driven to press the electrodes C and C' against the outer peripheral surface of the submerged nozzle 2, thereby forming the compressible conductor 8.
is brought into close contact with the outer peripheral surfaces of the carbon electrode 7 and the immersion nozzle 2, maintaining good conductivity between the carbon electrode 7 and the immersion nozzle 2, and then connecting the conductor 9 connected to the electrodes C and C' from the power source 9 to the power source 10. Then, the conducting wire 16 connected to the electrode C 0 is connected to the single-phase energizing circuit via the connector 17 to form a three-phase energizing circuit, and energization is started.

この通電によつて、電極C,C′と電極C0間の
浸漬ノズル2のほぼ全域に亘つて通電される。
By this energization, electricity is applied to almost the entire area of the submerged nozzle 2 between the electrodes C and C' and the electrode C0 .

この浸漬ノズル2は導電性の耐火物からなつて
おり、高い電気抵抗を有するため通電された場
合、この電気抵抗熱によつて発熱し、昇温する。
所定の温度に達したら第2図に示すように浸漬ノ
ズル2先端に当接されている電極C0をその駆動
装置12の駆動により旋回退避させると共に導線
16をコネクター17から外し、三相通電回路を
遮断し、浸漬ノズル2の下部の通電加熱を停止
し、その予熱過程を終了する。
The immersion nozzle 2 is made of a conductive refractory and has a high electrical resistance, so when it is energized, it generates heat due to the heat of the electrical resistance and its temperature rises.
When the predetermined temperature is reached, as shown in FIG. 2, the electrode C0 that is in contact with the tip of the immersion nozzle 2 is rotated and retracted by the drive of its driving device 12, and the conductor 16 is removed from the connector 17, and the three-phase current-carrying circuit is completed. is shut off, the electrical heating of the lower part of the immersion nozzle 2 is stopped, and the preheating process is completed.

この場合、単相通電回路における通電は継続し
ており、浸漬ノズル2の大気冷却域の加熱は継続
している。つぎにタンデイツシユ1を下降させ、
浸漬ノズル2の下端部を鋳型11内に位置させ、
スライデイングノズル3を開操作してタンデイツ
シユ1内の溶鋼Sを浸漬ノズル2経由鋳型11内
に流入させ、連続鋳造作業を開始する。
In this case, the single-phase current supply circuit continues to be energized, and the atmospheric cooling region of the submerged nozzle 2 continues to be heated. Next, lower the tandem tray 1,
Position the lower end of the immersion nozzle 2 within the mold 11,
The sliding nozzle 3 is opened to allow the molten steel S in the tundish 1 to flow into the mold 11 via the immersion nozzle 2, and continuous casting work is started.

連続鋳造作業終了あるいはタンデイツシユ1の
切替えに際しては、タンデイツシユ1を上昇さ
せ、前記単相通電回路による通電を停止し、浸漬
ノズル2の大気冷却域の通電加熱を停止する。
When the continuous casting operation is completed or the tundish 1 is switched, the tundish 1 is raised, the single-phase energization circuit is stopped, and the energized heating of the atmospheric cooling region of the immersion nozzle 2 is stopped.

この場合、電極C,C′は、駆動装置5により退
避させておくが、電極C,C′は浸漬ノズル2に当
接したままにしておいても良い。第3図は浸漬ノ
ズル2の大気冷却域を2対の電極C,C′,C1
C1′による2つの単相通電回路を設けた場合のも
のである。
In this case, the electrodes C and C' are retracted by the drive device 5, but the electrodes C and C' may be left in contact with the immersion nozzle 2. Figure 3 shows the atmospheric cooling region of the submerged nozzle 2 using two pairs of electrodes C, C', C 1 ,
This is the case when two single-phase current carrying circuits are provided using C 1 '.

この例においては、予熱過程では電極C,C′に
よる単相通電回路と電極C0による通電回路とを
コネクター17を介して接続して三相通電回路を
形成し、この三相通電回路によつて電極C,C′と
電極C0間の浸漬ノズル2のほぼ全域に亘つて通
電し、加熱するようになつており、又、連続鋳造
作業中は第4図のように電極C0は駆動装置12
により旋回退避させると共に導線16をコネクタ
ー17から外し、三相通電回路を遮断する。
In this example, in the preheating process, a single-phase current-carrying circuit by electrodes C and C' and a current-carrying circuit by electrode C0 are connected via connector 17 to form a three-phase current-carrying circuit. During the continuous casting operation, the electrode C0 is driven as shown in Fig. 4. device 12
At the same time, the conductor 16 is removed from the connector 17, and the three-phase energization circuit is cut off.

この場合電極C,C′による単相通電回路は通電
を継続している。
In this case, the single-phase current-carrying circuit formed by electrodes C and C' continues to be energized.

そして、これに電極C1,C1′による単相通電回
路も接続されており、浸漬ノズル2の大気冷却域
を2対の単相通電回路によつて通電加熱するよう
になつている。なお、本実施例においては、大気
冷却域を通電加熱するための電極C,C′および電
極C1,C1′はタンデイツシユ1の底部に設けた支
持体4,4′で支持するようにしたが、鋳型近傍
に支持体を別設しても良い。
A single-phase energizing circuit including electrodes C 1 and C 1 ' is also connected to this, so that the atmospheric cooling area of the immersed nozzle 2 is heated by energizing the two pairs of single-phase energizing circuits. In this example, the electrodes C and C' and the electrodes C1 and C1 ' for heating the atmospheric cooling region by electricity were supported by supports 4 and 4' provided at the bottom of the tundish 1. However, a support may be provided separately near the mold.

又、三相通電回路形成用の電極C0の駆動装置
は鋳型上方に前記支持体と切離して設けたが、該
支持体と一体的に設けても良い。
Further, although the drive device for the electrode C0 for forming the three-phase current circuit was provided above the mold separately from the support, it may be provided integrally with the support.

〔発明の効果〕〔Effect of the invention〕

本発明の通電加熱方法においては、単相通電回
路と三相通電回路を併用し、必要に応じて通電回
路を切替えて通電加熱するようにしたので、被加
熱体全域および局部的な通電加熱が比較的小型の
少ない電極で効率良く均一に加熱でき設備コス
ト、電力消費も効率的であり電力消費量の節減に
も寄与するものである。
In the energization heating method of the present invention, a single-phase energization circuit and a three-phase energization circuit are used in combination, and the energization circuit is switched as necessary to perform energization heating, so that energization heating can be performed over the entire area of the object to be heated and locally. It is possible to heat efficiently and uniformly with a relatively small number of electrodes, and equipment costs and power consumption are also efficient, contributing to reductions in power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明を実施する装置の
一例を示す一部切欠断面説明図、第3図および第
4図は本発明を実施する装置の他の例を示す一部
切欠断面説明図、第5図は第1図のI−I′線矢視
説明図である。第6図は浸漬ノズルの加熱温度
と、地金付着量との関係を示す説明図である。 1……タンデイツシユ、2……浸漬ノズル、3
……スライデイングノズル、4……支持体、5…
…駆動装置、6……銅電極、7……炭素電極、8
……可縮性導電体、9……導線、10……電源、
11……鋳型、12……駆動装置、13……銅電
極、14……炭素電極、15……可縮性導電体、
16……導線、17……コネクター、C,C′……
電極、C1,C1′……電極、C0……電極、S,S′…
…溶鋼。
1 and 2 are partially cutaway cross-sectional explanatory views showing an example of an apparatus for implementing the present invention, and FIGS. 3 and 4 are partially cutaway cross-sectional views showing other examples of apparatus for implementing the present invention. 5 is an explanatory view taken along the line I-I' in FIG. 1. FIG. 6 is an explanatory diagram showing the relationship between the heating temperature of the immersion nozzle and the amount of deposited metal. 1...Tandate dish, 2...Immersion nozzle, 3
...Sliding nozzle, 4...Support, 5...
...Drive device, 6...Copper electrode, 7...Carbon electrode, 8
... Contractible conductor, 9 ... Conductor wire, 10 ... Power supply,
11... Mold, 12... Drive device, 13... Copper electrode, 14... Carbon electrode, 15... Contractible conductor,
16... Conductor, 17... Connector, C, C'...
Electrode, C 1 , C 1 ′... Electrode, C 0 ... Electrode, S, S'...
...molten steel.

Claims (1)

【特許請求の範囲】[Claims] 1 一部又は全部を溶融金属中に浸漬して溶融金
属を流通させる導電性耐火材で形成された溶融金
属用流通管の通電加熱方法において、溶融金属の
流通前は該流通管の大気冷却域に当接した対の電
極と電源により形成される単相の通電回路に浸漬
域に当接した電極を接続して三相の通電回路を形
成し、この三相通電回路により該流通管の大気冷
却域と浸漬域を併せて通電加熱し、溶融金属の流
通時は浸漬域に当接の電極を退避させると共にこ
の電極と前記単相の通電回路との接続を遮断し、
溶融金属流通中は該単相の通電回路によつて大気
冷却域を継続して通電加熱することを特徴とする
溶融金属流通管の通電加熱方法。
1. In a method of energizing a flow pipe for molten metal made of a conductive refractory material through which the molten metal flows by immersing a part or all of it in the molten metal, the flow pipe is cooled in the atmosphere before the flow of the molten metal. A three-phase current-carrying circuit is formed by connecting the electrode in contact with the immersion area to a single-phase current-carrying circuit formed by a pair of electrodes in contact with the immersion area and a power source, and this three-phase current-carrying circuit connects the electrode in contact with the immersion area to a single-phase current-carrying circuit formed by a pair of electrodes in contact with the immersion area and a power supply. Both the cooling zone and the immersion zone are electrically heated, and when the molten metal is flowing, the electrode in contact with the immersion zone is evacuated and the connection between this electrode and the single-phase current-carrying circuit is cut off.
A method for energizing and heating a molten metal flow pipe, characterized in that during molten metal flow, the atmospheric cooling region is continuously energized and heated by the single-phase energizing circuit.
JP852085A 1985-01-22 1985-01-22 Method for electrically heating molten-metal flowing pipe Granted JPS61169145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP852085A JPS61169145A (en) 1985-01-22 1985-01-22 Method for electrically heating molten-metal flowing pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP852085A JPS61169145A (en) 1985-01-22 1985-01-22 Method for electrically heating molten-metal flowing pipe

Publications (2)

Publication Number Publication Date
JPS61169145A JPS61169145A (en) 1986-07-30
JPH0479742B2 true JPH0479742B2 (en) 1992-12-16

Family

ID=11695420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP852085A Granted JPS61169145A (en) 1985-01-22 1985-01-22 Method for electrically heating molten-metal flowing pipe

Country Status (1)

Country Link
JP (1) JPS61169145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160002232A (en) * 2014-06-30 2016-01-07 현대중공업 주식회사 Ship propulsion unit that rectifier unit is applied

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160002232A (en) * 2014-06-30 2016-01-07 현대중공업 주식회사 Ship propulsion unit that rectifier unit is applied

Also Published As

Publication number Publication date
JPS61169145A (en) 1986-07-30

Similar Documents

Publication Publication Date Title
JPH1186834A (en) Manufacture of plate group body for lead-acid battery and device thereof
US4903753A (en) Casting technique for lead storage battery grids
JPH0479742B2 (en)
JPS6343192B2 (en)
JP2004522852A (en) Method for producing metal ingot or billet by melting electrodes in conductive slag bath and apparatus for performing the same
JPH0648320Y2 (en) Electrodes for energizing molten metal
US4913220A (en) Apparatus and method for spill chilling rapidly solidified material
JPH07238327A (en) Vacuum electroslag remelting furnace
JPH0732101A (en) Electric conductive heat generating pouring nozzle
JPH0335851A (en) Continuous casting equipment for cast strip
JPH0511009Y2 (en)
JPH0732102A (en) Electric conductive heat generating pouring nozzle and continuous casting method
JPH0679414A (en) Flat type electrically heated immersion nozzle and electrically heating method
JPH0442047Y2 (en)
JPH0442048Y2 (en)
KR790002154Y1 (en) An electrical heater for use in apparatus for the manufacture of flat glass
JP2004025203A (en) Method for continuously casting molten steel
JPH06246409A (en) Heating type immersion nozzle device for discharging half-soldified metal
JPH0679415A (en) Energizing exothermic pouring nozzle and continuous casting method
JPS63132763A (en) Water cooled copper mold
JPS639905B2 (en)
JPH05154645A (en) Immersion type three phase ac plasma heating device
JPS60223648A (en) Heating method of molten steel
KR960010069Y1 (en) Prevention device of skull
JP2626775B2 (en) Fixed electrode for plasma arc