JPH047963B2 - - Google Patents

Info

Publication number
JPH047963B2
JPH047963B2 JP8558988A JP8558988A JPH047963B2 JP H047963 B2 JPH047963 B2 JP H047963B2 JP 8558988 A JP8558988 A JP 8558988A JP 8558988 A JP8558988 A JP 8558988A JP H047963 B2 JPH047963 B2 JP H047963B2
Authority
JP
Japan
Prior art keywords
layer
mold
casting
filler
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8558988A
Other languages
Japanese (ja)
Other versions
JPH01257006A (en
Inventor
Hiroaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP8558988A priority Critical patent/JPH01257006A/en
Publication of JPH01257006A publication Critical patent/JPH01257006A/en
Publication of JPH047963B2 publication Critical patent/JPH047963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/261Moulds therefor
    • B28B1/262Mould materials; Manufacture of moulds or parts thereof
    • B28B1/263Plastics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、衛生陶器素地又は陶芸品素地等を泥
漿鋳込み成形するとき等に用いる鋳込み成形用型
及びその製造方法の改良に関する。 [従来の技術] 従来、鋳込み成形用型としては、ヨーロツパ特
許第0234360号公報に記載のものがある。この鋳
込み成形用型1は、第5図に示す如く、粗孔の多
孔質材料からなる支持層2,3の内部に鋳込み空
間Hを形成すると共に、鋳込み空間Hを囲繞する
ように、濾過材層4,5を支持層2,3の内側面
に結合したものである。濾過材層4,5は、微細
多孔質樹脂からなる層厚みAが20〜50mmのもので
ある。支持層2,3は、実質的に非圧縮性の材料
から成り、濾過材層4,5の変形を許容範囲内に
抑えるものである。支持層2,3は、例えば、石
英粒子を相互接触箇所においてのみ樹脂で結合
し、透水性の粗孔を多数形成したものである。こ
の鋳込み成形用型1の製造は、予め成形された濾
過材層4,5を支持層2,3に結合して行なつて
いた。この結合方法としては、第6図に示す如
く、接着接合(同図A参照)、アリ脚・アリ溝係
合(同図B参照),ネジ結合(同図C参照),凹凸
による係合(同図D参照)又は螺旋状鋼線による
結合(同図E参照)等の機械的結合がある。支持
層2,3と濾過材層4,5との境界範囲には、第
5図に示す如く、濾過水の排水に役立つダクト網
6,7が必要に応じて配置されている。 [発明が解決しようとする課題] しかし、前記従来の鋳込み成形用型及びその製
造方法には、次の様な問題点がある。 (a) 支持層2,3と濾過材層4,5とを別々に製
作する工程と、両者を接合する工程とを経るた
め工程が複雑となり多くの手間を必要とする。
その結果、従来は、製作コストが高くなつて、
鋳込み成形用品の成形コストの増大を招く問題
点があつた。 (b) 支持層2,3と濾過材層4,5を機械的結合
するため、強度低下の原因となつていた。 本発明は、上記問題点に鑑み、製作コストが安
価で且つ強度的に強い鋳込み成形用型及びその製
造方法の提供を目的とする。 [課題を解決するための手段] 本発明に係る鋳込み成形用型の要旨は、支持枠
の内側に、微細孔を多数有する多孔質層で鋳込み
空間を形成した鋳込み成形用型において、前記多
孔質層は鋳込み空間に臨む層表面から層裏面まで
が、粒子状の充填材を微細多孔質樹脂で結合した
一体の成形層よりなり、この充填材の粒度は多孔
質層断面の分布で見たとき、層表面から層裏面に
向つて行く程に微粒子から粗大粒子となるように
したことである。 本発明に係る鋳込み成形用型の製造方法の要旨
は、微細孔を多数有する多孔質層を備えた鋳込み
成形用型の製造方法において、樹脂主剤,硬化
剤,乳化剤及び水からなる流動材と微細粒子乃至
粗大粒子を調合した充填材とを混合したものであ
つて、充填材の粒子が微細になる程に比重が大き
くなり且つ最も微細な粒子の比重が流動材の比重
よりも大きい成形材料を準備し、型枠の内面と模
型の上面とで囲繞形成された充填空間に成形材料
を充填し、充填された成形材料に振動を与えて充
填材の微細粒子を沈降させ、硬化の進行した成形
材料から乳化剤と水とを除去して成形用型を得る
ことである。 [作 用] 本発明に係る鋳込み成形用型にあつては、多孔
質層の層表面から層裏面までが、粒子状の充填材
を微細多孔質樹脂で結合した一体の成形層である
ため、多孔質層内に機械的結合箇所のない強度的
に優れたものとなり、更に充填材の粒度分布が層
表面から層裏面に向つて行く程に微粒子から粗大
粒子となるため、濾過表面となる多孔質層表面に
開口した微細多孔の分布が緻密且つ均一となる。 本発明に係る鋳込み成形用型の製造方法にあつ
ては、充填された成形材料に振動を与えて充填材
の微細粒子を沈降させると、充填材の粒子が微細
になる程に比重が大きくなり且つ最も微細な粒子
の比重が流動材の比重よりも大きくなるため、成
形材料中の充填材の粒度分布が、模型の上面から
離れるに連れて漸次的に大きくなる。従つて、粒
度分布の調整された成形材料を硬化させると共に
硬化の進行した成形材料から乳化剤と水とを除去
して得た成形用型は、その連続した通気孔の径
が、濾過表面から裏面側に向つて漸次的に大きく
なる。 [実施例] 以下、本発明を第1図に示す実施例の工程順番
に基づいて説明する。 第1工程は、模型11と枠体12及び成形材料
20を予め準備することである。模型11は、同
図Aに示す如く、金属又は合成樹脂等の素材から
所望形状に仕上げられたものであつて、振動装置
13が内蔵されている。模型11は、上面11a
の周囲を枠体12で囲繞した充填空間14が形成
される。模型11の上面11a及び枠体12の内
面12aには、必要に応じて離型剤が塗布され
る。なお、模型11と枠体12とは、一体に形成
されることもある。前記成形材料20は、樹脂主
剤,硬化剤,乳化剤及び水からなる流動材と微細
粒子乃至粗大粒子を調合した充填材とを混合した
ものである。充填材は、珪石,ガラス若しくはセ
ラミツク等の無機物、酸化鉄等の金属酸化物又は
合成樹脂等を素材とする粒子からなり、粒経が5
〜2000μmの範囲のものを適宜割合で調合される。
充填材の粒子は、微細になる程に比重が大きくな
り且つ最も微細な粒子の比重が前記流動材の比重
よりも大きくなるようにしてある。例えば、微細
粒子を金属酸化物粒子とし、中細粒子を無機質粒
子とし、更に粗大粒子を合成樹脂粒子で構成す
る。前記樹脂主剤としては、例えば、エポキシ樹
脂,アクリル樹脂,ポリウレタン樹脂又はフラン
樹脂等の何れかが選択され、その粘度として1000
〜3000cps程度のものが用いられる。硬化剤は、
樹脂主剤に対応するもの(例えば、エポキシ樹脂
の場合は脂肪族アミン)が選択される。乳化剤と
しては、ソルビタン脂肪酸エステル,ポリオキシ
エチレンオレイルエーテル,ポリオキシエチレン
ソルビタン脂肪酸エステル等が選択され、その粘
[Industrial Field of Application] The present invention relates to improvements in a casting mold used for slurry casting of sanitary ware bodies, pottery bodies, etc., and a method for manufacturing the same. [Prior Art] As a conventional casting mold, there is one described in European Patent No. 0234360. As shown in FIG. 5, this casting mold 1 forms a casting space H inside support layers 2 and 3 made of a porous material with coarse pores, and a filter material is placed so as to surround the casting space H. The layers 4, 5 are bonded to the inner surfaces of the support layers 2, 3. The filter material layers 4 and 5 are made of microporous resin and have a layer thickness A of 20 to 50 mm. The support layers 2, 3 are made of a substantially incompressible material and are intended to suppress deformation of the filter media layers 4, 5 within an acceptable range. The support layers 2 and 3 are, for example, made by bonding quartz particles with a resin only at mutual contact points, and forming a large number of water-permeable coarse pores. The casting mold 1 was manufactured by bonding preformed filter material layers 4 and 5 to support layers 2 and 3. As shown in Figure 6, this connection method includes adhesive bonding (see figure A), dovetail leg/dovetail groove engagement (see figure B), screw connection (see figure C), and uneven engagement (see figure C). There is a mechanical connection such as a spiral steel wire connection (see Figure D) or a spiral steel wire connection (see Figure E). As shown in FIG. 5, duct networks 6, 7 useful for draining filtrate water are arranged as necessary in the boundary area between the support layers 2, 3 and the filter material layers 4, 5. [Problems to be Solved by the Invention] However, the conventional casting mold and its manufacturing method have the following problems. (a) The process is complicated and requires a lot of effort because it involves a process of manufacturing the support layers 2, 3 and the filter material layers 4, 5 separately and a process of joining them together.
As a result, production costs have traditionally increased,
There was a problem that led to an increase in the molding cost of cast molded products. (b) The support layers 2, 3 and the filter media layers 4, 5 are mechanically bonded, which causes a decrease in strength. SUMMARY OF THE INVENTION In view of the above problems, the present invention aims to provide a casting mold that is inexpensive to manufacture and strong in strength, and a method for manufacturing the same. [Means for Solving the Problems] The gist of the casting mold according to the present invention is that the casting mold has a casting space formed inside a support frame by a porous layer having a large number of micropores. The layer, from the layer surface facing the casting space to the layer back surface, consists of an integrated molded layer in which particulate filler is bonded with microporous resin, and the particle size of this filler is determined by the distribution of the porous layer cross section. , the particles become finer to coarser as they go from the surface of the layer to the back of the layer. The gist of the method for producing a cast molding mold according to the present invention is that in the method for producing a cast molding mold having a porous layer having a large number of micropores, a fluid material consisting of a resin base, a hardening agent, an emulsifier, and water and a fine A molding material that is a mixture of particles or coarse particles with a filler, in which the finer the filler particles are, the higher the specific gravity is, and the specific gravity of the finest particles is greater than the specific gravity of the fluid material. The filling space formed by the inner surface of the mold and the upper surface of the model is filled with the molding material, and the filled molding material is vibrated to cause the fine particles of the filler to settle, resulting in a hardened mold. The process involves removing the emulsifier and water from the material to obtain a mold. [Function] In the cast molding mold according to the present invention, since the porous layer from the layer surface to the layer back surface is an integral molding layer in which particulate filler is bonded with a microporous resin, The porous layer has excellent strength with no mechanical bonding points, and the particle size distribution of the filler changes from fine particles to coarse particles as it goes from the surface of the layer to the back of the layer. The distribution of fine pores opened on the surface of the layer becomes dense and uniform. In the method for manufacturing a casting mold according to the present invention, when the filled molding material is vibrated to cause fine particles of the filler to settle, the finer the particles of the filler, the greater the specific gravity. In addition, since the specific gravity of the finest particles is greater than the specific gravity of the fluidized material, the particle size distribution of the filler in the molding material gradually increases as it moves away from the top surface of the model. Therefore, in a mold obtained by curing a molding material with an adjusted particle size distribution and removing the emulsifier and water from the hardened molding material, the diameter of the continuous ventilation holes is from the filter surface to the back surface. Gradually increases in size toward the sides. [Example] Hereinafter, the present invention will be explained based on the process order of the example shown in FIG. The first step is to prepare the model 11, frame 12, and molding material 20 in advance. As shown in FIG. 1A, the model 11 is made of a material such as metal or synthetic resin into a desired shape, and has a built-in vibrating device 13. The model 11 has an upper surface 11a
A filling space 14 is formed which is surrounded by a frame 12. A mold release agent is applied to the upper surface 11a of the model 11 and the inner surface 12a of the frame 12, if necessary. Note that the model 11 and the frame 12 may be formed integrally. The molding material 20 is a mixture of a fluid material consisting of a resin base, a curing agent, an emulsifier, and water, and a filler containing fine particles to coarse particles. The filler is made of particles made of inorganic materials such as silica stone, glass, or ceramics, metal oxides such as iron oxide, or synthetic resins, and has a particle size of 5.
Those in the range of ~2000μm are prepared in appropriate proportions.
The specific gravity of the filler particles increases as they become finer, and the specific gravity of the finest particles is greater than the specific gravity of the fluidizing material. For example, the fine particles are metal oxide particles, the medium-fine particles are inorganic particles, and the coarse particles are synthetic resin particles. As the resin base material, for example, any one of epoxy resin, acrylic resin, polyurethane resin, or furan resin is selected, and its viscosity is 1000
~3000cps is used. The hardening agent is
A material corresponding to the resin base material (for example, an aliphatic amine in the case of an epoxy resin) is selected. As the emulsifier, sorbitan fatty acid ester, polyoxyethylene oleyl ether, polyoxyethylene sorbitan fatty acid ester, etc. are selected, and their viscosity

【表】 第2工程は、同図Bに示す如く、充填空間14
に成形材料20を充填した後、充填された成形材
料20に振動装置13で振動を与えて充填材中の
比重の大きな微細粒子を沈降させることである。
振動付与の操作は、同図Cに示す如く、成形材料
20中の充填材の粒度分布が、模型11の上面1
1aから上方へ離れるに連れて漸次的に大きくな
るまで行なう。振動付与中の成形材料20の温度
は、充填材の微細粒子の沈降を阻害しない樹脂粘
性が得られる温度であつて、且つ樹脂硬化を抑制
する温度(例えば、20〜30℃)で行なう。成形材
料20中の充填材の分粒が終了したならば、振動
装置13を停止する。 第3工程は、成形材料20を初期硬化させた
後、成形材料20から乳化剤と水とを除去するこ
とである。この初期硬化温度は、例えば、エポキ
シ樹脂の場合には30〜55℃で行なう。初期硬化の
終了により得た中間材料21は、前記模型11と
枠体12とで形成された充填空間14から分離さ
れ、同図Dに示す如く、加圧容器15内に挿入さ
れる。なお、枠体12が加圧容器15を兼用する
場合には、枠体12と中間材料21との分離は省
略される。加圧容器15内の中間材料21は、そ
の表面21aに適宜圧力の水圧が負荷される。圧
力水Wは、中間材料21の中に滲み込んで連通孔
を形成しつつ残留している乳化剤と水を裏面21
b側に滲み出させる。残留している乳化剤の除去
が終了したならば、中間材料21を徐々に加熱
(例えば、35℃から70℃まで)することにより最
終硬化を行ない本発明に係る鋳込み成形用型22
を得る。得られた鋳込み成形用型22は、加圧容
器15内から分離される。なお、前記枠体12が
加圧容器15と後述する鋳込み成形具31の気密
式容器32,33とを兼用する場合には、鋳込み
成形片22の上記分離は省略される。 次に本発明に係る前記製造方法で得た本発明に
係る鋳込み成形用型22,23を用いた泥漿鋳込
み成形について説明する。準備される鋳込み成形
具31は、第2図に示す如く、耐圧性の気密式容
器32,33と、容器32,33内に挿着された
鋳込み成形用型22,23とからなり、鋳込み成
形用型22,23の内表面22a,23aで鋳込
み空間Hを形成してある。図中の34は鋳込み空
間Hに端部34aを開口した泥漿給排管、35,
36は濾過水を排出するための濾過水用吸引管、
37,38は成形品40(第4図参照)を脱型す
るときに鋳込み成形用型22,23の内表面22
a,23aに脱型促進用分離水膜を形成させるた
めの圧縮空気供給管である。 前記鋳込み成形具31を用いた排泥鋳込み成形
方法の手順は次の通りである。先ず、第2図に示
す如く、鋳込み成形具31を構成する分割接合型
部31a,31bを水密接合し、内部に鋳込み空
間Hを形成する。次に、鋳込み空間H内に泥漿
(図示は省略)を泥漿給排管34から供給し、供
給泥漿がオーバーフロー管(図示は省略)からオ
ーバーフローした後に泥漿供給管34を閉塞す
る。続けて、オーバーフロー管を介して泥漿を加
圧する一方、濾過水用吸引管35,36を介して
鋳込み成形用型22,23を減圧しつつ、所定時
間の着肉操作を行なつた後、第3図に示す如く、
鋳込み空間H内の未着泥漿39を泥漿給排管34
から排出する。着肉操作が終了したならば、分割
接合型部31aの圧縮空気供給管37を介して鋳
込み成形用型22を加圧して鋳込み成形用型22
内の残留水を鋳込み成形用型22表面と着肉部と
の境界に滲み出させた後、第4図に示す如く、分
割接合型部31aを分割撤去する。最後に、図示
は省略したが、分割接合型部31bの濾過水用吸
引管36を介して鋳込み成形用型23を予め減圧
して鋳込み成形品40を吸着させて吊下げ、次い
で圧縮空気供給管38を介して鋳込み成形用型2
3を加圧して鋳込み成形用型23内の残留水を滲
み出させつつ鋳込み成形品40を載置台上に降下
させる。 なお、本発明に係る鋳込み成形用型を構成する
充填材の粒子は、前記実施例においては微細にな
る程に比重が大きくなるようにしてあるが、何ら
これに限定するものではなく、微細なものから粗
大なものまで全部を比重の同じな同質素材で形成
することも勿論可能である。 [発明の効果] 以上詳述した如く、本発明に係る鋳込み成形用
型及びその製造方法は次の如き優れた効果を有す
る。 支持層と濾過材層という区別なく型全体を同
時に形成することができるため従来に比べて工
程が簡単となり省力化が図れる。その結果、製
作コストを飛躍的に低減できる。 型全体を一体に形成することができるため、
強度的に強い鋳込み成形型が得られる。 濾過表面となる成形型表面に開口した微細多
孔の分布が緻密且つ均一となるため、成形型表
面の全域に亘つて均質な着肉が可能となると共
に、成形型表面から残留水を滲み出して脱型を
行なうときには、成形型表面の全域から緻密且
つ均一に残留水が滲み出して円滑な脱型ができ
る。その結果、歩留りの向上が図れる。
[Table] As shown in Figure B, the second step is to fill the filling space 14.
After filling the molding material 20 with the molding material 20, the filled molding material 20 is vibrated by a vibration device 13 to cause fine particles with a large specific gravity in the filler to settle.
As shown in FIG.
Repeat this until it gradually increases in size as you move upward away from 1a. The temperature of the molding material 20 during vibration application is a temperature that provides resin viscosity that does not inhibit sedimentation of the fine particles of the filler, and at a temperature that suppresses resin hardening (for example, 20 to 30°C). When the granulation of the filler in the molding material 20 is completed, the vibrating device 13 is stopped. The third step is to remove the emulsifier and water from the molding material 20 after the molding material 20 is initially cured. This initial curing temperature is, for example, 30 to 55°C in the case of epoxy resin. The intermediate material 21 obtained after the initial curing is separated from the filling space 14 formed by the model 11 and the frame 12, and is inserted into the pressurized container 15 as shown in FIG. In addition, when the frame 12 also serves as the pressurized container 15, the separation of the frame 12 and the intermediate material 21 is omitted. The surface 21a of the intermediate material 21 in the pressurized container 15 is loaded with water pressure at an appropriate pressure. The pressure water W seeps into the intermediate material 21 to form communication holes and removes the remaining emulsifier and water from the back surface 21.
Let it ooze out to the b side. After the removal of the remaining emulsifier is completed, the intermediate material 21 is gradually heated (for example, from 35° C. to 70° C.) to perform final hardening and form the casting mold 22 according to the present invention.
get. The obtained casting mold 22 is separated from the inside of the pressurized container 15. In addition, when the frame body 12 serves both as the pressurized container 15 and the airtight containers 32 and 33 of the cast molding tool 31 described later, the above separation of the cast molded piece 22 is omitted. Next, slurry casting using the casting molds 22 and 23 according to the present invention obtained by the manufacturing method according to the present invention will be explained. As shown in FIG. 2, the casting tool 31 to be prepared consists of pressure-resistant airtight containers 32, 33 and casting molds 22, 23 inserted into the containers 32, 33, and is used for casting molding. A casting space H is formed between the inner surfaces 22a and 23a of the molds 22 and 23. 34 in the figure is a slurry supply and discharge pipe with an end 34a opened in the casting space H; 35;
36 is a filtered water suction pipe for discharging filtered water;
37 and 38 are the inner surfaces 22 of the casting molds 22 and 23 when demolding the molded product 40 (see FIG. 4).
A, 23a is a compressed air supply pipe for forming a separated water film for promoting demolding. The procedure of the sludge casting method using the casting tool 31 is as follows. First, as shown in FIG. 2, the split joining mold parts 31a and 31b constituting the casting molding tool 31 are brought together in a water-tight manner to form a casting space H therein. Next, slurry (not shown) is supplied into the casting space H from the slurry supply/discharge pipe 34, and after the supplied slurry overflows from the overflow pipe (not shown), the slurry supply pipe 34 is closed. Subsequently, while pressurizing the slurry through the overflow pipe and depressurizing the casting molds 22 and 23 through the filtered water suction pipes 35 and 36, the inking operation is performed for a predetermined time, and then As shown in Figure 3,
The unattached slurry 39 in the casting space H is transferred to the slurry supply and discharge pipe 34.
discharge from. When the inking operation is completed, the cast molding mold 22 is pressurized via the compressed air supply pipe 37 of the split joining mold part 31a.
After the residual water in the cast molding mold 22 is allowed to ooze out to the boundary between the surface of the casting mold 22 and the inked part, the split joining mold part 31a is separated and removed as shown in FIG. Finally, although not shown, the casting mold 23 is depressurized in advance through the filtered water suction pipe 36 of the split joint mold part 31b to adsorb and suspend the casting molded product 40, and then the compressed air supply pipe Casting mold 2 through 38
3 is pressurized to ooze out the residual water in the casting mold 23, and the cast molded product 40 is lowered onto the mounting table. In addition, although the particles of the filler constituting the casting mold according to the present invention are made so that the specific gravity increases as they become finer in the above embodiments, this is by no means limited to this. Of course, it is also possible to form everything from small objects to coarse objects using homogeneous materials with the same specific gravity. [Effects of the Invention] As detailed above, the cast molding mold and the manufacturing method thereof according to the present invention have the following excellent effects. Since the entire mold can be formed at the same time without distinguishing between the support layer and the filter layer, the process is simpler than in the past, and labor can be saved. As a result, manufacturing costs can be dramatically reduced. Since the entire mold can be formed in one piece,
A casting mold with strong strength can be obtained. The fine pores opened on the surface of the mold, which serves as the filtration surface, have a dense and uniform distribution, making it possible to deposit uniformly over the entire surface of the mold, and to wick residual water from the surface of the mold. When demolding is performed, residual water oozes out densely and uniformly from the entire surface of the mold, allowing smooth demolding. As a result, the yield can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Dは本発明に係る製造方法の各工程
を示す断面図、第2図乃至第4図は本発明に係る
鋳込み成形用型を用いて鋳込み成形する実施例を
示すものであつて、第2図は鋳込み成形用型の内
部に鋳込み空間を形成した状態を示す縦断面図、
第3図は排泥後の状態を示す縦断面図、第4図は
脱型の途中を示す縦断面図、第5図は従来の泥漿
鋳込み成形用型を示す縦断面図、第6図は従来の
泥漿鋳込み成形用型における支持層と濾過材層と
の結合構造を拡大して示す断面図である。 11…模型、12…型枠、13…振動装置、2
0…成形材料、22…鋳込み成形用型。
FIGS. 1A to 1D are cross-sectional views showing each step of the manufacturing method according to the present invention, and FIGS. 2 to 4 show an example of casting using the casting mold according to the present invention. FIG. 2 is a longitudinal sectional view showing a state in which a casting space is formed inside the casting mold.
Fig. 3 is a longitudinal sectional view showing the state after mud removal, Fig. 4 is a longitudinal sectional view showing the middle of demolding, Fig. 5 is a longitudinal sectional view showing a conventional slurry casting mold, and Fig. 6 is a longitudinal sectional view showing the state after mud removal. FIG. 2 is an enlarged cross-sectional view showing a bonding structure between a support layer and a filter layer in a conventional slurry casting mold. 11...Model, 12...Formwork, 13...Vibration device, 2
0... Molding material, 22... Cast molding mold.

Claims (1)

【特許請求の範囲】 1 支持枠の内側に、微細孔を多数有する多孔質
層で鋳込み空間を形成した鋳込み成形用型におい
て、前記多孔質層は鋳込み空間に臨む層表面から
層裏面までが、粒子状の充填材を微細多孔質樹脂
で結合した一体の成形層よりなり、この充填材の
粒度は多孔質層断面の分布で見たとき、層表面か
ら層裏面に向つて行く程に微粒子から粗大粒子と
なるようにしたことを特徴とする鋳込み成形用
型。 2 微細孔を多数有する多孔質層を備えた鋳込み
成形用型の製造方法において、樹脂主剤,硬化
剤,乳化剤及び水からなる流動材と微細粒子乃至
粗大粒子を調合した充填材とを混合したものであ
つて、充填材の粒子が微細になる程に比重が大き
くなり且つ最も微細な粒子の比重が流動材の比重
よりも大きい成形材料を準備し、型枠の内面と模
型の上面とで囲繞形成された充填空間に成形材料
を充填し、充填された成形材料に振動を与えて充
填材の微細粒子を沈降させ、硬化の進行した成形
材料から乳化剤と水とを除去して成形用型を得る
ことを特徴とする鋳込み成形用型の製造方法。
[Scope of Claims] 1. In a casting mold in which a casting space is formed inside a support frame by a porous layer having a large number of micropores, the porous layer has a layer surface facing the casting space to a back surface of the layer. It consists of an integral molded layer in which particulate filler is bonded with a microporous resin, and the particle size of this filler varies from fine particles to fine particles as it goes from the surface of the layer to the back of the layer, when viewed from the cross-sectional distribution of the porous layer. A casting mold characterized by having coarse particles. 2. A method for producing a casting mold with a porous layer having a large number of micropores, in which a fluid material consisting of a resin base, a curing agent, an emulsifier, and water is mixed with a filler containing fine particles to coarse particles. A molding material is prepared in which the specific gravity increases as the particles of the filler become finer, and the specific gravity of the finest particles is greater than the specific gravity of the fluid material, and the material is surrounded by the inner surface of the mold and the upper surface of the model. The formed filling space is filled with molding material, the filled molding material is vibrated to sediment the fine particles of the filler, and the emulsifier and water are removed from the hardened molding material to form a mold. A method of manufacturing a casting mold, characterized in that:
JP8558988A 1988-04-06 1988-04-06 Casting mold and manufacture thereof Granted JPH01257006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8558988A JPH01257006A (en) 1988-04-06 1988-04-06 Casting mold and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8558988A JPH01257006A (en) 1988-04-06 1988-04-06 Casting mold and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01257006A JPH01257006A (en) 1989-10-13
JPH047963B2 true JPH047963B2 (en) 1992-02-13

Family

ID=13863002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8558988A Granted JPH01257006A (en) 1988-04-06 1988-04-06 Casting mold and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01257006A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1238476B (en) * 1990-02-06 1993-08-18 Gaiotto Impianti Spa MOLD FOR THE CASTING OF CERAMIC PRODUCTS
EP0789644B1 (en) * 1994-11-02 1999-03-24 Portec Ag Device for conducting fluid between a chamber bounded by a solid surface and a channel, and a method of manufacturing said device
JP6150270B2 (en) * 2012-10-18 2017-06-21 株式会社金山精機製作所 Manufacturing method of porcelain with fine concavo-convex patterns and patterns
JP6153195B2 (en) * 2013-05-28 2017-06-28 株式会社金山精機製作所 Hybrid prototype (male) for making a plaster prototype (female), a gypsum prototype manufactured using this hybrid prototype, and a method for manufacturing ceramics manufactured using this prototype

Also Published As

Publication number Publication date
JPH01257006A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
US4160003A (en) Method of molding cementitious material
JPH0146283B2 (en)
JPH047963B2 (en)
US4370285A (en) Method of production of a lightweight building element
JP4521646B2 (en) Imitation brick manufacturing method
JPS611445A (en) Production of casting mold for precision casting
JPS63288705A (en) Precision slurry casting mold
JPH10309711A (en) Core, mold for cast molding and manufacture thereof
JPS6345004A (en) Method and device for manufacturing concrete secondary product with irregular pattern
JPS61182904A (en) Manufacture of hydraulic product
JPH065842Y2 (en) Slurry casting mold
JP2520232B2 (en) Molding method for concrete products
JP2002361562A (en) Method of manufacturing grinding stone
JPH0214166B2 (en)
JPS6019018A (en) Preparation of composite layered hollow filter
JPH0770997A (en) Papermaking mold for fiber molded article and its production
JPH0426283B2 (en)
CA2547802A1 (en) Manufacture of moulded paving elements
JPH01249301A (en) Mold for cast-in molding of slurry
RU2080987C1 (en) Method of complex-shaped pieces moulding out of dispersed masses
JPH0527523B2 (en)
KR100609034B1 (en) Pattern Plate for Vacuum Mold Process Using by Porous Sintered Metal and Manufacture Method
JP2829165B2 (en) Manufacturing method of hollow body
JPS62101345A (en) Vacuum molding and casting method
DE4242195A1 (en) Mould for prodn. of abrasive ceramics - comprises porous and wear-resistant unit fitted to impermeable body with air and water channels