JPH0479624A - Optical spatial communication equipment - Google Patents

Optical spatial communication equipment

Info

Publication number
JPH0479624A
JPH0479624A JP2193654A JP19365490A JPH0479624A JP H0479624 A JPH0479624 A JP H0479624A JP 2193654 A JP2193654 A JP 2193654A JP 19365490 A JP19365490 A JP 19365490A JP H0479624 A JPH0479624 A JP H0479624A
Authority
JP
Japan
Prior art keywords
light
signal
coded signal
light beam
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2193654A
Other languages
Japanese (ja)
Inventor
Masao Kasahara
笠原 征夫
Hidehiko Negishi
根岸 英彦
Yoshinori Takeuchi
喜則 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2193654A priority Critical patent/JPH0479624A/en
Publication of JPH0479624A publication Critical patent/JPH0479624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the occurrence of signal errors by providing a light spreading device which emits an optical beam in a state where the beam is spread to a prescribed angle and a photodetector which receives an incident optical beam and constituting the light spreading device to be provided in front of a semiconductor laser element with a concave lens system. CONSTITUTION:The concave lens 31 of a light spreading device 30 is provided in front of the glass window 20 of a semiconductor laser element 20 in a state where the lens 31 is faced to the window 24 at a short distance. When the laser chip 23 of the element 20 is operated by supplying an electric current to the chip 23, beams B1a and B1b are emitted in a forward/backward direction from the chip 23. The backward beam B1b is made incident on a photodiode 26 where the light quantity of the beam B1b is automatically controlled and the forwarding beam B1a becomes an optical beam B1 after passing through the window 24 and made incident on the lens 31. The optical beam B1 is emitted in a state where the beam B1 is spread to an angle theta1 between lines H1 and H2 in a vertical direction by the radiation characteristic of the lens 31. When the shape of the lens 31 is changed, in addition, the spread state of the light beam can be changed arbitrarily in a three- or two-dimensional space.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、伝送する信号の半導体レーザ素子による光ビ
ームを遠距離空間で出、入射して通信する光空間通信装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical space communication device that emits and enters a light beam from a semiconductor laser element in a long distance space to communicate signals to be transmitted.

従来の技術 従来の光空間通信装置にあっては、第4図に示すように
、伝送する信号を発生する信号発生装置3からの出力信
号が変調器2により変調されてレーザ素子1に印加され
る。そして、このレーザ素子1かも出射した光ビームB
は、距離りだけ離れた受光素子4に入射して電気信号に
変換されるが、この電気信号は、復調器5で復調して受
信信号として取り出される。
2. Description of the Related Art In a conventional optical space communication device, as shown in FIG. 4, an output signal from a signal generator 3 that generates a signal to be transmitted is modulated by a modulator 2 and applied to a laser element 1. Ru. The light beam B emitted from this laser element 1 is also
is incident on the light-receiving element 4 which is separated by a certain distance and is converted into an electrical signal, and this electrical signal is demodulated by the demodulator 5 and taken out as a received signal.

発明が解決しようとする課題 しかしながら、前述した従来の光空間通信装置にあって
は、レーザ素子1からの出射光に光強度変調した光を用
いるから、受光素子4での受光パワーは、レーザ素子1
と受光素子4との間の距離りの2乗に反比例して小さく
なる。したがって、例えば最小受光感度−5Q dBm
とすると、1mW出力のレーザ光源でも数100mの距
離しか適用できず、通信距離が極めて制限されることに
なる。
Problems to be Solved by the Invention However, in the conventional optical space communication device described above, since the light intensity modulated is used as the light emitted from the laser element 1, the received light power at the light receiving element 4 is different from that of the laser element. 1
It becomes smaller in inverse proportion to the square of the distance between the light receiving element 4 and the light receiving element 4. Therefore, for example, the minimum light receiving sensitivity -5Q dBm
If this is the case, even a laser light source with an output of 1 mW can only be applied over a distance of several hundred meters, and the communication distance is extremely limited.

また、同光空間通信装置にあっては、レーザ光の指向性
が鋭いため、このレーザ光から外れると、受光素子には
受光されなくなる。このため、レーザ素子1に対して受
光素子4は厳しい位置精度が要求される。なお、図示光
空間通信装置は、レーザ素子の直接変調の場合であるが
、外部変調の場合についても同様のことが言える。
Furthermore, in the same optical space communication device, since the laser beam has sharp directivity, if the laser beam deviates from the laser beam, the light will not be received by the light receiving element. Therefore, strict positional accuracy is required for the light receiving element 4 with respect to the laser element 1. Although the illustrated optical space communication device uses direct modulation of a laser element, the same applies to external modulation.

更に、レーザ光の指向性、直進性により、光の伝搬路中
に異質の物質があったり、伝搬路の温度、湿度等の部分
的変化に応じ屈折率の変化が生じている場合等において
は、光信号の回折、進路変化、速度変化等を生じる。そ
のため、高速光信号の伝送では、伝送誤りを生じること
があり、外光の影響によって信号光が乱されることもあ
る。これらの不具合に対する有効な対応策は未だ提案さ
れておらず、伝送速度を落したり、光ファイバを用いた
ケーブル伝送による方法に依存している。
Furthermore, due to the directivity and straightness of the laser beam, if there is a foreign material in the light propagation path, or if the refractive index changes due to local changes in the propagation path, such as temperature or humidity, etc. , causing diffraction, path changes, speed changes, etc. of the optical signal. Therefore, in the transmission of high-speed optical signals, transmission errors may occur, and the signal light may be disturbed by the influence of external light. Effective countermeasures for these problems have not yet been proposed, and rely on methods such as lowering the transmission speed or using cable transmission using optical fibers.

また、光の直進性によって光の伝搬路以外では信号の受
信が困難であるとはいうものの、反射光等による光信号
の傍受も可能であるため、信号の秘匿性も完全ではない
等の課題がある。
In addition, although it is difficult to receive signals outside the optical propagation path due to the straightness of light, it is possible to intercept optical signals using reflected light, etc., so there are issues such as the secrecy of the signal is not perfect. There is.

本発明の課題は、このような従来の課題に鑑み、光空間
伝送の通信方式において、通信距離を遠距離化でき、光
伝搬路の種々の条件に対して伝送誤りを低減することが
でき、更に信号伝送を容易化、高品質化、低コスト化で
き、信号の秘匿性も確実化することができ、加えてシス
テム構成を簡単化できる光空間通信装置を得るにある。
In view of these conventional problems, an object of the present invention is to provide a communication system for optical space transmission that can extend the communication distance and reduce transmission errors under various conditions of the optical propagation path. Furthermore, it is an object of the present invention to obtain an optical space communication device that can facilitate signal transmission, improve quality, and reduce cost, ensure signal confidentiality, and simplify system configuration.

課題を解決するだめの手段 この課題を達成するため、本発明は、伝送する信号を符
号化して発生する符号化信号発生装置と、この符号化信
号発生装置からの符号化信号を変調する変調器と、この
変調器の変調信号により光ビームを出射する半導体レー
ザ素子と、光ビームを所定の角度で拡散して出射する光
拡散装置と、入射光ビームを受ける受光素子とを備え、
第1に、前記半導体レーザ素子の前面に設置する光拡散
装置を、凹レンズ系により構成するものである。
Means for Solving the Problem In order to achieve this problem, the present invention provides a coded signal generator that encodes and generates a signal to be transmitted, and a modulator that modulates the coded signal from the coded signal generator. and a semiconductor laser element that emits a light beam according to a modulation signal of the modulator, a light diffusion device that diffuses the light beam at a predetermined angle and emits it, and a light receiving element that receives the incident light beam,
First, the light diffusing device installed in front of the semiconductor laser element is constituted by a concave lens system.

また、第2として前記半導体レーザ素子の前面に設置す
る光拡散装置を、ホログラム鏡により構成するものであ
る。
Second, the light diffusing device installed in front of the semiconductor laser element is constituted by a hologram mirror.

作用 前述した本発明の構成によると、符号化信号発生装置か
らの符号化信号が変調され、半導体レーザ素子で光ビー
ムに変換され、更に光拡散装置によりスペクトル拡散し
た形態で受光素子の側に出、入射して光伝送通信が行わ
れる。これにより、光強度が弱い場合でも伝送誤りが小
さく、これに伴い到達距離の制限が緩和され、更に外光
の影響により信号光が乱れることながなくなり、正しく
伝送されることになる。また、高速光信号伝送の場合も
同様に伝送され、信号の秘匿性も確実化できる。半導体
レーザ素子の前方には光拡散装置が簡単に設置され、出
射光を任意の広がりで拡散できる。
Effects According to the configuration of the present invention described above, the coded signal from the coded signal generator is modulated, converted into a light beam by the semiconductor laser element, and then outputted to the light receiving element side in the form of spectrum spread by the light diffusion device. , and optical transmission communication is performed. As a result, even when the light intensity is weak, transmission errors are small, and accordingly, restrictions on the reachable distance are relaxed, and furthermore, the signal light is not disturbed by the influence of external light, and is correctly transmitted. Further, in the case of high-speed optical signal transmission, the signal is transmitted in the same manner, and the confidentiality of the signal can be ensured. A light diffusing device is easily installed in front of the semiconductor laser element, and the emitted light can be diffused to any desired extent.

実施例 以下、図面を用いて本発明の一実施例を詳細に説明する
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明による光空間通信装置のブロック図であ
り、伝送する信号を符号化して発生する符号化信号発生
装置13を有する。この符号化信号発生装置13の符号
化信号は、変調器12に入力して変調され、半導体レー
ザ素子20に印加するようになっている。この半導体レ
ーザ素子20かも出射した光ビームB1は光拡散装置3
0に入力し、所定の角度θに拡散して出射するように処
理され、このスペクトル拡散した光ビームB!が光伝搬
路の空中に出射する。一方、光拡散装置30に対して距
離りだけ離れた場所には受光素子15が、光ビームB2
の一部の光ビームB、を入射するように設置される。
FIG. 1 is a block diagram of an optical space communication device according to the present invention, which includes a coded signal generator 13 that codes and generates a signal to be transmitted. The coded signal from the coded signal generator 13 is input to the modulator 12, modulated, and applied to the semiconductor laser element 20. The light beam B1 emitted from this semiconductor laser element 20 is also transmitted to the light diffusing device 3.
0 and is processed to be diffused at a predetermined angle θ and output, and this spectrally spread light beam B! is emitted into the air along the optical propagation path. On the other hand, a light receiving element 15 is located at a distance from the light diffusing device 30, and a light beam B2
is installed so that a part of the light beam B is incident thereon.

受光素子15は光ビームB・を電気信号に変換するもの
であり、この電気信号が復調器16に入力して復調され
、更に信号解読装置17に入力される。信号解読装置1
7は、符号化信号発生装置13の場合と逆に信号処理し
て符号化信号を解読するから、通常の受信信号が取出さ
れる。
The light receiving element 15 converts the light beam B into an electrical signal, and this electrical signal is input to a demodulator 16 to be demodulated and further input to a signal decoder 17. Signal decoding device 1
7 decodes the encoded signal by performing signal processing in the opposite manner to that of the encoded signal generator 13, so that a normal received signal is extracted.

前述した図示実施例の光空間通信装置によると、光拡散
装置30から符号化した信号の光ビームB。
According to the optical space communication device of the illustrated embodiment described above, the light beam B of the encoded signal from the light diffusion device 30.

が広範囲に拡散して出射され、この符号化信号を受光素
子15の側で再び電気的に解読して光伝送通信されるこ
とになる。したがって、このような符号化信号の伝送形
態により、光強度が弱い場合、遠距離の場合でも、出射
光を充分に受信でき、種々の外的条件や外光の影響によ
り信号光が乱されることが非常に少な(なる。即ち、光
の伝搬路中に異質の物質があったり、伝搬路の温度、湿
度等の部分的変化に応じて屈折率の変化が生じている場
合でも、光信号の回折、進路変化、速度変化等の変化を
生じることがない。また、外光の影響によって信号が乱
れることもなくなり、これにより伝送誤りがな(なって
正しく伝送される。
is emitted while being diffused over a wide area, and this encoded signal is electrically decoded again on the side of the light receiving element 15 and optically transmitted. Therefore, with this type of encoded signal transmission form, the emitted light can be received sufficiently even when the light intensity is weak or over a long distance, and the signal light is not disturbed by various external conditions or the influence of external light. In other words, even if there is a foreign substance in the light propagation path or a change in refractive index occurs due to local changes in temperature, humidity, etc. in the propagation path, the optical signal There will be no changes such as diffraction, course changes, speed changes, etc. Also, the signal will not be disturbed by the influence of external light, thereby eliminating transmission errors and ensuring correct transmission.

一方、前述のように光伝送の効率が向上することで、高
速光信号伝送の場合にも、高速で正しく伝送される。信
号の符号化により秘匿性が確実に得られる。更に、光ビ
ームが拡散して出射されるため、光学系の位置精度の厳
しさはなくなり、拡散角θの範囲内であれば、良好な受
信が可能となる。
On the other hand, as described above, by improving the efficiency of optical transmission, even in the case of high-speed optical signal transmission, high-speed and correct transmission is possible. Signal encoding ensures confidentiality. Furthermore, since the light beam is emitted in a diffused manner, the positional accuracy of the optical system is no longer critical, and good reception is possible within the range of the diffusion angle θ.

次に、光伝送の実例を以下に説明する。Next, an example of optical transmission will be explained below.

先ず、半導体レーザ素子20の光出力を1mw発光波長
を53Q nm、光拡散装置30での挿入損失を約8d
B、拡散角θを約60度とすると、距離りが約5m離れ
た場所において、受光素子15の受光パワーが約−43
dBmであった。符号化信号発生装置13での拡散符号
は、m系列で、周波数帯域800MHzの直接スペクト
ル拡散方式とした。信号語長は8ビツト255とし、復
調にはコンボリューション型マツチドフィルタを用いた
。勿論、超音波遅延線型マツチドフィルタを用いてもよ
い。拡散方式については、直接スペクトル拡散の代わり
に周波数ホッピング方式でもよく、拡散符号はm系列、
G−old系列等の他の系列を用いてもよい。
First, the optical output of the semiconductor laser element 20 is 1 mw, the emission wavelength is 53 Q nm, and the insertion loss in the light diffusing device 30 is approximately 8 d.
B. When the diffusion angle θ is about 60 degrees, the light receiving power of the light receiving element 15 is about -43 at a distance of about 5 m.
It was dBm. The spreading code in the encoded signal generator 13 was an m-sequence, and a direct spectrum spread method with a frequency band of 800 MHz was used. The signal word length was 8 bits, 255, and a convolution type matched filter was used for demodulation. Of course, an ultrasonic delay line matched filter may also be used. Regarding the spreading method, a frequency hopping method may be used instead of direct spectrum spreading, and the spreading code is m-sequence,
Other sequences such as the G-old sequence may also be used.

外光による信号妨害についての実験では、約3mvの白
色光を混入したところ、殆ど妨害は起こらなかった。な
お、この実験では、半導体レーザを用いたが、気体レー
ザ、固体レーザまたは半導体レーザを用いてもよい。
In an experiment regarding signal interference due to external light, when approximately 3 mV of white light was mixed, almost no interference occurred. Although a semiconductor laser was used in this experiment, a gas laser, solid-state laser, or semiconductor laser may also be used.

一部2図は本発明による光空間通信装置の半導体レーザ
素子と光拡散装置の部分の実施例の側面図であり、半導
体レーザ素子20はカン21の内部で台座22の上にレ
ーザチップ23が接着固定され、カン21内には窒素ガ
ス等の不活性ガスが封入される。
Part 2 is a side view of an embodiment of the semiconductor laser device and light diffusion device portion of the optical space communication device according to the present invention. The can 21 is fixed with adhesive, and an inert gas such as nitrogen gas is filled inside the can 21 .

レーザチップ23の前方にはガラス窓24が約8度の角
度で傾斜して設けられ、レーザチップ23の後方のベー
ス25の内側にAPC(自動光量制御)モニタ用フォト
ダイオード26が設置され、ベース25の外側にレーザ
チップ23、フォトダイオード26へ電流を供給するピ
ン27が設けられている。そして、この半導体レーザ素
子20のガラス窓24の前面に光拡散装置30の凹レン
ズ31が、近接対向して設置されている。
A glass window 24 is provided in front of the laser chip 23 at an angle of about 8 degrees, and an APC (automatic light control) monitor photodiode 26 is installed inside the base 25 behind the laser chip 23. A pin 27 for supplying current to the laser chip 23 and photodiode 26 is provided on the outside of the pin 25 . A concave lens 31 of a light diffusing device 30 is installed in front of the glass window 24 of this semiconductor laser element 20 so as to face each other in close proximity.

前述した図示実施例により、半導体レーザ素子20のレ
ーザチップ23に符号化信号の電流を供給して動作する
と、レーザチップ23の前後方向に出射光B、・、  
Bmbが出る。後方出射光B1bはフォトダイオード2
6に入射して、光量が自動制御され、前方出射光8口は
ガラス窓24を通りて光ビームBsになり、凹レンズ3
1に入射する。そして、光ビームB1は凹レンズ31の
放射特性による上下方向H1゜)(1の間の角度θ1に
拡散して出射されるのである。
According to the illustrated embodiment described above, when the laser chip 23 of the semiconductor laser device 20 is operated by supplying the current of the encoded signal, the emitted light B, . . .
Bmb comes out. The rear emitted light B1b is the photodiode 2
6, the amount of light is automatically controlled, and the 8 front emitted lights pass through the glass window 24 and become the light beam Bs, which is then turned into the concave lens 3.
1. The light beam B1 is emitted after being diffused at an angle θ1 between H1° (1°) in the vertical direction due to the radiation characteristics of the concave lens 31.

なお、凹レンズ31の形状を変えることにより、3次元
的または2次元的に光の広がりを任意に設定できる。
Note that by changing the shape of the concave lens 31, the spread of light can be set arbitrarily three-dimensionally or two-dimensionally.

第4図は前述の他の実施例であり、半導体レーザ素子2
0は第3図と同様に構成され、ガラス窓24の前面にホ
ログラム素子32が設置される。したがって、この実施
例では光ビームB1が、ホログラム素子32の放射特性
による方向H,,)(4の角度θ!の間に拡散して出射
されることになる。なお、この実施例でもホログラム素
子32の形状により、光の拡散状態を任意に設定できる
FIG. 4 shows another embodiment described above, in which the semiconductor laser element 2
0 has the same configuration as that shown in FIG. 3, and a hologram element 32 is installed in front of the glass window 24. Therefore, in this embodiment, the light beam B1 is emitted while being diffused within the angle θ! of direction H,,)(4) due to the radiation characteristics of the hologram element 32. The shape of 32 allows the light diffusion state to be set arbitrarily.

発明の効果 以上に説明したように、本発明による光空間通信装置は
、指向性がな(、外光による妨害も発生せず、受信信号
誤差が極めて小さυさため、高品質光通信の装置として
の利用価値が大幅に向上する。
Effects of the Invention As explained above, the optical space communication device according to the present invention has no directivity (no interference caused by external light, and the received signal error is extremely small), making it suitable for high-quality optical communication devices. The utility value as a material is greatly improved.

システム構成上も簡単に設置でき、更に安価であるため
、今後の情報化社会における情報伝送のキーデバイスと
して産業上価値あるものである。また、半導体レーザの
光ビームを用いるので、前述の効果が充分に発揮でき、
半導体レーザ素子の前面に光拡散装置が設置されるので
、コンパクトに一体化できる。
Since the system configuration is easy to install and is inexpensive, it has industrial value as a key device for information transmission in the future information society. In addition, since the light beam of a semiconductor laser is used, the above-mentioned effects can be fully demonstrated.
Since the light diffusing device is installed in front of the semiconductor laser element, it can be integrated compactly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光空間通信装置のブロック結線図
、第2図は半導体レーザ素子と光拡散装置の実施例の側
面図、第3図は同梱の実施例の側面図、第4図は従来の
光空間通信装置のブロック結線図である。 20・・・半導体レーザ素子、12・・・変調器、13
・・・符号化信号発生装置、30・・・光拡散装置、1
5・・・受光素子。 代理人の氏名 弁理士 粟 野 重 孝ほか1名第2図 第 図
Fig. 1 is a block wiring diagram of the optical space communication device according to the present invention, Fig. 2 is a side view of an embodiment of a semiconductor laser element and a light diffusion device, Fig. 3 is a side view of an embodiment included in the package, and Fig. 4 is a block diagram of a conventional optical space communication device. 20... Semiconductor laser element, 12... Modulator, 13
...Encoded signal generator, 30...Light diffusion device, 1
5... Light receiving element. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)伝送する信号を符号化して発生する符号化信号発
生装置と、この符号化信号発生装置からの符号化信号を
変調する変調器と、この変調器の変調信号により光ビー
ムを出射する半導体レーザ素子と、光ビームを所定の角
度で拡散して出射する光拡散装置と、入射光ビームを受
ける受光素子とを備え、前記半導体レーザ素子の前面に
設置する光拡散装置を、凹レンズ系により構成すること
を特徴とする光空間通信装置。
(1) A coded signal generator that encodes and generates a signal to be transmitted, a modulator that modulates the coded signal from this coded signal generator, and a semiconductor that emits a light beam based on the modulation signal of this modulator. The light diffusing device includes a laser element, a light diffusing device that diffuses and emits a light beam at a predetermined angle, and a light receiving element that receives the incident light beam, and is installed in front of the semiconductor laser device and is configured with a concave lens system. An optical space communication device characterized by:
(2)符号化信号発生装置は、符号化信号形態として、
m系列信号を用いたスペクトル拡散方式であることを特
徴とする請求項1記載の光空間通信装置。
(2) The coded signal generator has the following coded signal format:
2. The optical space communication device according to claim 1, wherein the optical space communication device uses a spread spectrum method using an m-sequence signal.
(3)伝送する信号を符号化して発生する符号化信号発
生装置と、この符号化信号発生装置からの符号化信号を
変調する変調器と、この変調器の変調信号により光ビー
ムを出射する半導体レーザ素子と、光ビームを所定の角
度で拡散して出射する光拡散装置と、入射光ビームを受
ける受光素子とを備え、前記半導体レーザ素子の前面に
設置する光拡散装置を、ホログラム鏡により構成するこ
とを特徴とする光空間通信装置。
(3) A coded signal generator that encodes and generates a signal to be transmitted, a modulator that modulates the coded signal from this coded signal generator, and a semiconductor that emits a light beam based on the modulation signal of this modulator. The light diffusing device, which includes a laser element, a light diffusing device that diffuses and emits a light beam at a predetermined angle, and a light receiving element that receives the incident light beam, and is installed in front of the semiconductor laser device, is configured with a hologram mirror. An optical space communication device characterized by:
(4)符号化信号発生装置は、符号化信号形態として、
m系列信号を用いたスペクトル拡散方式であることを特
徴とする請求項3記載の光空間通信装置。
(4) The coded signal generator has the following coded signal format:
4. The optical space communication device according to claim 3, wherein the optical space communication device uses a spread spectrum method using an m-sequence signal.
JP2193654A 1990-07-20 1990-07-20 Optical spatial communication equipment Pending JPH0479624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193654A JPH0479624A (en) 1990-07-20 1990-07-20 Optical spatial communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193654A JPH0479624A (en) 1990-07-20 1990-07-20 Optical spatial communication equipment

Publications (1)

Publication Number Publication Date
JPH0479624A true JPH0479624A (en) 1992-03-13

Family

ID=16311542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193654A Pending JPH0479624A (en) 1990-07-20 1990-07-20 Optical spatial communication equipment

Country Status (1)

Country Link
JP (1) JPH0479624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460738B1 (en) * 1999-12-18 2004-12-09 에스케이씨 주식회사 The Feedblock Type Die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460738B1 (en) * 1999-12-18 2004-12-09 에스케이씨 주식회사 The Feedblock Type Die

Similar Documents

Publication Publication Date Title
US7306378B2 (en) Method and apparatus providing an electrical-optical coupler
KR100860667B1 (en) Portable wireless terminal for visible light communication
RU2212763C2 (en) Open optical communication system
CA1154829A (en) Modular fibre-optic bus system
JPH07327010A (en) Space optical transmitter and space optical transmission method
US20020149822A1 (en) Optical commuincation system for a portable computing device and method of use
US8064772B2 (en) Optical space transmitter and optical space transmission method for wavelength-multiplexed light
CA2352680A1 (en) Multi-wavelength generating method and apparatus based on flattening of optical spectrum
EP0933664A2 (en) Improved tunable transmitter with Mach-Zehnder modulator
JPS5965809A (en) Electrooptic transmitter and/or optical coupler for connect-ing for electro-optic transmitter and/or optoelectronic receiver to light wave guide depending on wavelengh
US20070253716A1 (en) Optical wireless transmission system
JP2004503175A (en) Free space optical signal system
JP3782260B2 (en) Distributed waveguide tap
JPH0479624A (en) Optical spatial communication equipment
JPS6315846Y2 (en)
CN115173947B (en) Underwater wireless optical communication system
Nelson et al. Wavelength division multiplexed optical interconnect using short pulses
Teli et al. Experimental characterization of fiber optic lighting-optical camera communications
JPH0479623A (en) Optical spatial communication equipment
CN114499675B (en) Wireless optical communication system
US20030035627A1 (en) Slanted Bragg grating optical fiber and process for manufacturing such a fiber
FI105606B (en) Optical communication unit
US11742977B2 (en) Polarization division multiplexed (PDM) communication systems and devices and methods of use thereof
JPH05333248A (en) Wavelength division multiplex system transmit-receive module and optical transmitter using same
JPH10242912A (en) Light emission device and its method for optical radio communication, optical member for controlling luminous flux, optical member for restricting luminous flux, and optical radio communication equipment