JPH0479612A - Rubidium lamp - Google Patents

Rubidium lamp

Info

Publication number
JPH0479612A
JPH0479612A JP19372490A JP19372490A JPH0479612A JP H0479612 A JPH0479612 A JP H0479612A JP 19372490 A JP19372490 A JP 19372490A JP 19372490 A JP19372490 A JP 19372490A JP H0479612 A JPH0479612 A JP H0479612A
Authority
JP
Japan
Prior art keywords
rubidium
lamp
mass number
spectrum
isotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19372490A
Other languages
Japanese (ja)
Inventor
Hideo Sumiyoshi
秀夫 住吉
Kazuharu Chiba
千葉 一治
Yoshibumi Nakajima
義文 中島
Yoshito Furuyama
義人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19372490A priority Critical patent/JPH0479612A/en
Publication of JPH0479612A publication Critical patent/JPH0479612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To reduce the using amount of metallic rubidium having a mass number of 87 by enclosing a mixture of metallic rubidium which is obtained by separating isotope and has a mass number of 87 and natural rubidium in a glass container. CONSTITUTION:The rubidium used for this rubidium lamp is prepared by enclosing a mixture of metallic rubidium which is obtained by separating isotope and has a mass number of 87 and natural rubidium in a glass container. When, for example, a mixture of the metallic rubidium which is obtained by separating isotope and has a mass number of 87 and natural rubidium containing the isotope of <87>Rb in the same quantity as that of the metallic rubidium is used, the using amount of the metallic rubidium which is obtained by separating isotope and has a mass number of 87 can be reduced to half. The spectrum of the rubidium lamp thus prepared after passing through a filter becomes almost the same as that of the conventional rubidium lamp.

Description

【発明の詳細な説明】 〔概 要〕 ルビジウム原子発振器に使用するルビジウムランプに関
し、 アイソトープ分離した117Rbの塩化物又は炭酸塩の
使用を少なくしたルビジウムランプの提供を目的とし、 同位体分離した質量数87の金属ルビジウムと、同位体
分離していない天然のルビジウムとの混合物をガラス容
器に封入した構成とする。
[Detailed Description of the Invention] [Summary] Regarding a rubidium lamp used in a rubidium atomic oscillator, the purpose of the present invention is to provide a rubidium lamp that uses less isotope-separated 117Rb chloride or carbonate. A mixture of 87 metal rubidium and natural rubidium that has not been isotopically separated is sealed in a glass container.

〔産業上の利用分野〕[Industrial application field]

本発明は、ルビジウム原子発振器に使用するルビジウム
ランプに関する。
The present invention relates to a rubidium lamp used in a rubidium atomic oscillator.

ルビジウム原子発振器は周波数安定度9価格。Rubidium atomic oscillator has frequency stability 9 price.

大きさ等の面から、高安定水晶発振器とセシウム原子発
振器の中間に位置づけられ、伝送装置、計測装置、測距
装置等に使用され、近年需要が増加している。
In terms of size, oscillators are positioned between highly stable crystal oscillators and cesium atomic oscillators, and are used in transmission equipment, measurement equipment, ranging equipment, etc., and demand has been increasing in recent years.

ところがルビジウムランプに使用する同位体分離した質
量数87の金属ルビジウムは入手が困難であり高価であ
る為に使用量を極力少なくすることが望まれている。
However, since isotopically separated metal rubidium with a mass number of 87 used in rubidium lamps is difficult to obtain and expensive, it is desired to reduce the amount used as much as possible.

〔従来の技術〕[Conventional technology]

第2図は1例のルビジウム原子発振器の構成図、第3図
はルビジウム(”Rb、”Rb ) D線の超微細構造
図、第4図は従来のルビジウムランプ使用時のスペクト
ルを示す図である。
Figure 2 is a block diagram of an example of a rubidium atomic oscillator, Figure 3 is a diagram of the ultrafine structure of the rubidium ("Rb," Rb) D line, and Figure 4 is a diagram showing the spectrum when using a conventional rubidium lamp. be.

第2図のルビジウム原子発振器は、質量数87の金属ル
ビジウム(以下@?Rbと称す)の原子共鳴線(周波数
は略6,83468GHz)を周波数基準として使用す
るものである。
The rubidium atomic oscillator shown in FIG. 2 uses the atomic resonance line (frequency is approximately 6,83468 GHz) of metal rubidium (hereinafter referred to as @?Rb) having a mass number of 87 as a frequency reference.

即ち、内蔵する水晶発振器10の周波数を逓倍・合成器
11にて逓倍・合成して得た6、834680H2のマ
イクロ波を、静磁場内に設置した共鳴セル12に加えた
状態で、共鳴セル12内の117Rbの基底状態分離の
一方(5Sl/□F1→5P)を励起するボンピング光
をルビジウムランプ1から照射した時、マイクロ波が、
I?Rhの共鳴線からずれると光の吸収が減り、透過光
が増加することを利用して共鳴信号を得、サーボ回路1
3を介して水晶発振器lOを制御し安定な周波数を出力
出来るようにしている。
That is, a microwave of 6,834680H2 obtained by multiplying and combining the frequency of the built-in crystal oscillator 10 in the multiplier/synthesizer 11 is applied to the resonant cell 12 installed in a static magnetic field. When the rubidium lamp 1 is irradiated with bombing light that excites one of the ground state separations of 117Rb (5Sl/□F1→5P), the microwaves
I? When deviating from the resonance line of Rh, the absorption of light decreases and the transmitted light increases, which is used to obtain a resonance signal, and the servo circuit 1
3 to control the crystal oscillator lO so as to output a stable frequency.

この場合の光ボンピングの原理を説明すると、ルビジウ
ム原子には質量87と85の同位体11Rbとl5Rb
があり、そのD線の超微細構造は第3図に示す通りであ
る。
To explain the principle of optical bombing in this case, rubidium atoms have isotopes 11Rb and 15Rb with masses 87 and 85.
The ultrafine structure of the D line is as shown in FIG.

ルビジウムランプ1には117Rbが封入されており、
高周波励振により第3図(A)のa及びbの遷移にあた
るD線を発している。
Rubidium lamp 1 is filled with 117Rb,
Due to high frequency excitation, the D line corresponding to the transitions a and b in FIG. 3(A) is emitted.

共鳴セル12内の87RhはD線の照射により一旦第3
図(A)の5P準位に励起された後、自然放出によりF
=1.F=2レヘレベ同じ比率で落ちる。この過程を繰
り返すことでF=ルベルとF−2レベルの原子のポピユ
レーション(存在比)が逆転した負温度状態が得られる
。この状態でF=1.F=2間の遷移にあたるマイクロ
波(6゜83468GHz)を加えると、誘導放出を起
こし、共鳴信号が得られる。
87Rh in the resonant cell 12 is once irradiated with the D-ray
After being excited to the 5P level in Figure (A), F due to spontaneous emission
=1. F = 2 levels fall at the same rate. By repeating this process, a negative temperature state is obtained in which the population (abundance ratio) of atoms at the F=Level and F-2 levels is reversed. In this state, F=1. When microwaves (6°83468 GHz) corresponding to the transition between F=2 are applied, stimulated emission occurs and a resonance signal is obtained.

又ポンピング効率を上げる為に、ll?Rbの発光の内
ポンピングに不要なa光と波長が近い第3図(B)に示
す1lsRbのA成分をフィルタとして用いる。
Also, to increase pumping efficiency, ll? Of the Rb light emission, the A component of 1lsRb shown in FIG. 3B, which has a wavelength close to that of the a light unnecessary for pumping, is used as a filter.

この場合の、ルビジウムランプのスペクトルフィルタの
スペクトル及びルビジウムランプのスペクトルがフィル
タ通過後のスペクトルを示すと第4図の如くで、イで示
すフィルタ通過後のスペクトルが使用されるスペクトル
である。
In this case, the spectrum of the spectral filter of the rubidium lamp and the spectrum of the rubidium lamp after passing through the filter are as shown in FIG. 4, and the spectrum after passing through the filter shown by A is the spectrum to be used.

ルビジウム原子発振器には、l?nbを封入したルビジ
ウムランプと共鳴セル l5Rhを封入したフィルタセ
ルの3種類のセルが用いられるものと、フィルタセルと
共鳴セルを一体化した2セル型のものとがあり、第2図
は2セル型のものを示している。
Rubidium atomic oscillator has l? There are three types of cells: a rubidium lamp filled with nb, a resonance cell, and a filter cell filled with l5Rh, and a two-cell type that integrates a filter cell and a resonance cell. It shows the type.

この2セル型及び3セル型のルビジウム原子発振器に使
用されているルビジウムランプとしては、ランプ内に、
アイソトープ分離したII ?Rbの塩化物又は炭酸塩
を原料とし、真空中で還元することで金属状の1′1R
bを生成し、これを封入することでルビジウムランプと
している。
The rubidium lamps used in these 2-cell and 3-cell rubidium atomic oscillators contain:
Isotopically separated II? Using Rb chloride or carbonate as raw material, reduction in vacuum produces metallic 1'1R.
A rubidium lamp is produced by generating b and encapsulating it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、原料であるアイソトープ分離した@?R
hの塩化物又は炭酸塩は極めて高価(ダラム当たり10
0万円以上)であるばかりでなく、この同位元素分離技
術を持つ製造元が米ソの2が所に限られ生産量も少ない
ことがら、ルビジウムランプの量産が困難になった問題
点がある。
However, the raw material isotope separated @? R
The chlorides or carbonates of h are extremely expensive (10
In addition to the fact that there are only two manufacturers in the United States and the Soviet Union who have this isotope separation technology, and the production volume is small, it has become difficult to mass produce rubidium lamps.

本発明は、アイソトープ分離した#?Rhの塩化物又は
炭酸塩の使用を少なくしたルビジウムランプの提供を目
的としている。
The present invention is an isotope-separated #? The object of the present invention is to provide a rubidium lamp that uses less Rh chloride or carbonate.

〔課題を解決するための手段] 同位体分離していない、質量数87と85のルビジウム
の化合物である天然のルビジウムには117Rbの同位
体が27.8%程度含まれており安価(ダラム当たり数
100円)で入手し易い点に着目し、同位体分離した質
量数87の金属ルビジウムと、同位体分離していない天
然のルビジウムとの混合物をガラス容器に封入するよう
にする。
[Means for solving the problem] Natural rubidium, which is a compound of rubidium with mass numbers 87 and 85, which has not been isotopically separated, contains about 27.8% of the 117Rb isotope and is inexpensive (per duram). Focusing on the fact that it is easily available for a few hundred yen), a mixture of isotopically separated metal rubidium with a mass number of 87 and natural rubidium that is not isotopically separated is sealed in a glass container.

〔作 用] 本発明によれば、同位体分離した質量数87の金属ルビ
ジウムと、同位体分離していない天然のルビジウムとの
混合物をガラス容器に封入してルビジウムランプとして
おり、例えば、同位体分離した質量数87の金属ルビジ
ウムと同じ量の@?Rbの同位体を含む天然のルビジウ
ムとの混合物を用いるようにすれば、同位体分離した質
量数87の金属ルビジウムの使用量は1/2となり価格
も略1/2となり、量産が可能となる。
[Function] According to the present invention, a mixture of isotopically separated metal rubidium having a mass number of 87 and natural rubidium that is not isotopically separated is sealed in a glass container to make a rubidium lamp. The same amount @ as the isolated metal rubidium with mass number 87? If a mixture with natural rubidium containing the Rb isotope is used, the amount of isotopically separated metal rubidium with a mass number of 87 will be halved and the price will be reduced to approximately half, making mass production possible. .

〔実施例] 第1図は本発明のルビジウムランプ使用時のスペクトル
を示す図である。
[Example] FIG. 1 is a diagram showing a spectrum when the rubidium lamp of the present invention is used.

第1図は、同位体分離した質量数87の金属ルビジウム
と同じ量の1lffRbの同位体を含む天然のルビジウ
ムとの混合物を用いた場合の、ルビジウムランプのスペ
クトル、フィルタのスペクトル及びルビジウムランプの
スペクトルがフィルタ通過後のスペクトルを示すもので
ある。
Figure 1 shows the spectrum of a rubidium lamp, the spectrum of a filter, and the spectrum of a rubidium lamp using a mixture of isotopically separated metal rubidium with a mass number of 87 and natural rubidium containing the same amount of 1lffRb isotope. shows the spectrum after passing through the filter.

この場合のルビジウムランプのスペクトルは85Rbも
含んだものとなるので、aとb間にも発光スペクトルが
あるがフィルタ通過後のスペクトルはは第1図斜線で示
すスペクトルとなり、第4図に示すスペクトルに略近い
ものとなり、ルビジウム発振器として略満足するものが
得られた。
In this case, the spectrum of the rubidium lamp includes 85Rb, so there is also an emission spectrum between a and b, but the spectrum after passing through the filter is the shaded spectrum in Figure 1, and the spectrum shown in Figure 4. The result was almost satisfactory as a rubidium oscillator.

以上詳細に説明せる如く本発明によれば、同位体分離し
た質量数87の金属ルビジウムの使用量が減少し価格も
低下し、量産が可能となる効果がある。
As explained in detail above, according to the present invention, the amount of isotopically separated metal rubidium having a mass number of 87 is reduced, the price is also reduced, and mass production becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のルビジウムランプ使用時のスペクトル
を示す図、 第2図は1例のルビジウム原子発振器の構成図、第3図
はルビジウム(”Rh、85Rb ) D線の超微細構
造図、 第4図は従来のルビジウムランプ使用時のスペクトルを
示す図である。 図において、 ■はルビジウムランプ、 10は水晶発振器、 11は逓倍器、 12は共鳴セル、 〔発明の効果〕 1伊1のルビジウム原子発振器の惺域”2凭2図 (A) (B) 1b 85%。 1図 ルビジウム(27Rb7りF?b)[)線の起黴細慎造
図第5図
Fig. 1 is a diagram showing the spectrum when using the rubidium lamp of the present invention, Fig. 2 is a configuration diagram of an example of a rubidium atomic oscillator, and Fig. 3 is a diagram of the ultrafine structure of rubidium (Rh, 85Rb) D line. Fig. 4 is a diagram showing a spectrum when using a conventional rubidium lamp. In the figure, ① is a rubidium lamp, 10 is a crystal oscillator, 11 is a multiplier, 12 is a resonant cell, [Effects of the invention] 1 and 1. Figure 2 (A) (B) 1b 85%. Figure 1. Origin of rubidium (27Rb7riF?b) [) line. Figure 5.

Claims (1)

【特許請求の範囲】[Claims] 同位体分離した質量数87の金属ルビジウムと、同位体
分離していない天然のルビジウムとの混合物をガラス容
器に封入したことを特徴とするルビジウムランプ。
A rubidium lamp characterized in that a mixture of isotopically separated metallic rubidium having a mass number of 87 and natural rubidium that is not isotopically separated is sealed in a glass container.
JP19372490A 1990-07-20 1990-07-20 Rubidium lamp Pending JPH0479612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19372490A JPH0479612A (en) 1990-07-20 1990-07-20 Rubidium lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19372490A JPH0479612A (en) 1990-07-20 1990-07-20 Rubidium lamp

Publications (1)

Publication Number Publication Date
JPH0479612A true JPH0479612A (en) 1992-03-13

Family

ID=16312746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19372490A Pending JPH0479612A (en) 1990-07-20 1990-07-20 Rubidium lamp

Country Status (1)

Country Link
JP (1) JPH0479612A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011432A1 (en) * 1993-10-22 1995-04-27 Komatsu Ltd. Detector for wavelength of excimer laser
EP0739583A1 (en) 1995-04-27 1996-10-30 Nihon Tensaiseito Kabushiki Kaisha Continuously assembled pots for raising and transplanting seedlings
US5653055A (en) * 1995-01-31 1997-08-05 Nihon Tensaiseito Kabushiki Kaisha Continuously assembled pots for raising and transplanting seedlings
EP0898867A1 (en) 1997-08-26 1999-03-03 Nihon Tensaiseito Kabushiki Kaisha Machine for transplanting seedlings
JP2012004469A (en) * 2010-06-21 2012-01-05 Seiko Epson Corp Atomic oscillator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011432A1 (en) * 1993-10-22 1995-04-27 Komatsu Ltd. Detector for wavelength of excimer laser
US5653055A (en) * 1995-01-31 1997-08-05 Nihon Tensaiseito Kabushiki Kaisha Continuously assembled pots for raising and transplanting seedlings
EP0739583A1 (en) 1995-04-27 1996-10-30 Nihon Tensaiseito Kabushiki Kaisha Continuously assembled pots for raising and transplanting seedlings
EP0898867A1 (en) 1997-08-26 1999-03-03 Nihon Tensaiseito Kabushiki Kaisha Machine for transplanting seedlings
US5996513A (en) * 1997-08-26 1999-12-07 Nihon Tensaiseito Kabushiki Kaisha Machine for transplanting seedlings
JP2012004469A (en) * 2010-06-21 2012-01-05 Seiko Epson Corp Atomic oscillator

Similar Documents

Publication Publication Date Title
Davidovits et al. The optically pumped rubidium maser
Neuhauser et al. Visual observation and optical cooling of electrodynamically contained ions
EP1224709B1 (en) Subminiature microwave cavity
US4405905A (en) Atomic frequency standard having microwave loop around absorption cell
EP0224093B1 (en) Integrated microwave cavity resonator and magnetic shield for an atomic frequency standard
Holloway Jr et al. Hyperfine structure of atomic nitrogen
Mrozowski Forbidden lines in the laboratory
JPH0479612A (en) Rubidium lamp
Ekström et al. Nuclear spins and magnetic moments of some neutron-rich rubidium and cesium isotopes
Münch et al. Precise ground-state hyperfine splitting in i i 173
Hougen et al. Electronic and vibrational Raman spectra of PrC l3 and LaCl3
US3192472A (en) Alkali vapor frequency standard utilizing optical pumping
Arditi et al. The principles of the double resonance method applied to gas cell frequency standards
US5491451A (en) Method and apparatus for reduction of atomic frequency standard phase noise
Tsvetkov et al. Selective laser ionisation of radionuclide 63Ni
US3304516A (en) Optically pumped atomic resonance apparatus with improved optical pumping means
US3609570A (en) Light excited maser
Ozaki Resonance radiations from high-pressure sodium plasma
Chrysalidis Improving the Spectral Coverage and Resolution of the ISOLDE RILIS
Bondybey et al. Ion–matrix interactions: Optical spectrum of the Ca+ cation in solid argon
Davidovits 14. AN OPTICALLY PUMPED Rb87 MASER OSCILLATOR
Huber et al. Determination of the isotopic shift of 192 Hg in the line λ= 2537 Å by Zeeman scanning the Hanle signal
Jardino et al. Measurement of relaxation time constants of optically pumped stored mercury ions
Eichhorn et al. Laser spectroscopic measurement of isotope shifts of transitions 3 d-4 p in the ionic spectra of argon, chlorine and sulphur
Itano et al. Time and frequency standards based on charged particle trapping