JPH0478962B2 - - Google Patents

Info

Publication number
JPH0478962B2
JPH0478962B2 JP59040995A JP4099584A JPH0478962B2 JP H0478962 B2 JPH0478962 B2 JP H0478962B2 JP 59040995 A JP59040995 A JP 59040995A JP 4099584 A JP4099584 A JP 4099584A JP H0478962 B2 JPH0478962 B2 JP H0478962B2
Authority
JP
Japan
Prior art keywords
water
optical fiber
cable
acid
grease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59040995A
Other languages
Japanese (ja)
Other versions
JPS60185912A (en
Inventor
Yasuo Ijiri
Eiji Iri
Toshitaro Oguchi
Koichiro Aritomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP59040995A priority Critical patent/JPS60185912A/en
Priority to AT85100895T priority patent/ATE46973T1/en
Priority to DE8585100895T priority patent/DE3573478D1/en
Priority to EP85100895A priority patent/EP0160778B2/en
Priority to CA000473252A priority patent/CA1251669A/en
Priority to US06/698,461 priority patent/US4703997A/en
Priority to AU38454/85A priority patent/AU585847B2/en
Publication of JPS60185912A publication Critical patent/JPS60185912A/en
Publication of JPH0478962B2 publication Critical patent/JPH0478962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/285Preventing penetration of fluid, e.g. water or humidity, into conductor or cable by completely or partially filling interstices in the cable
    • H01B7/288Preventing penetration of fluid, e.g. water or humidity, into conductor or cable by completely or partially filling interstices in the cable using hygroscopic material or material swelling in the presence of liquid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、特殊な走水防止材を介して複数本の
光フアイバを遮水層で包囲してなる走水防止性及
び可とう性が改善された遮水形光フアイバケーブ
ルに関するものである。 背景技術 多数本の光フアイバとこれを包囲する遮水層と
の間に形成される空間に走水防止材を充填してな
る遮水形光フアイバケーブルが知られている。走
行防止材を介在せしめる目的は、主に遮水層に孔
等の破損部が形成された場合にその破損部より浸
入した水などが内部の光フアイバ部に浸透して悪
影響を及ぼすことを防止することにある。 従来、その走水防止材として常温では固体状に
あるものが知られていた。すなわち、充填時に加
熱溶融させてこれを光フアイバと遮水層との間の
空隙に注入するタイプのものが知られていた。 しかしながら、前記タイプのものは充填後冷却
されて常温では固化するものであるため、その冷
却過程における体積収縮に基づいて亀裂が発生し
その走水防止性能が低下する欠点を有するととも
に、該体積収縮によつて光フアイバにマイクロベ
ンドが生じる重大な欠点があつた。そのほか、固
化後に該ケーブルより除去することが困難である
ために高度の精密さが要求される光フアイバケー
ブルの接続等の端末加工において種々の不都合が
生じたり、屈曲自在性に劣り作業時等における取
扱い性に劣るなどの欠点もあつた。 発明の開示 上記に鑑みて本願発明者の一部の者は、先に走
水防止材としてグリスを用いることを提案した。
グリスは、一般に、その軟度の温度依存性が極め
て小さいので、たとえば常温での混和稠度が220
〜475程度のグリスは、十分に軟らかいために加
熱軟化の工程を加えることなく常温で光フアイバ
ケーブルへの注入充填が可能であり、しかも流動
性が過大でないので、光フアイバケーブル内で問
題となるような流動は生じない。 ところで、近時に於ては、高品質の光フアイバ
ケーブルの需要の増大のために、それを可及的に
高速度で生産する要求が高まつている。引き続く
研究から本発明者らは、一部のグリスは上記の要
求に応え得ることを見いだし、本発明を完成する
に至つた。 すなわち、本発明は、40℃における動粘度が2
〜1000cStの有機液体100重量部と、炭素数が4〜
40の有機酸のリチウム系又はアルミニウム系金属
石ケン2〜15重量部とからなり、25℃における混
和稠度が220〜475の範囲にあるグリースを介して
複数本の光フアイバを遮水層で包囲してなる遮水
形光フアイバケーブルを提供するものである。 本発明において用いられ上記のグリスは、他の
グリスと比較して、混和稠度が同じでも見かけ粘
度が低い特徴を有する。したがつて光フアイバケ
ーブルへの注入充填時の圧力が小さくなつて光フ
アイバにマイクロベンドを生ぜしめる程度が小さ
くて高品質の光フアイバケーブルの生産が可能と
なる、あるいは光フアイバに与える力を同じとし
た場合、光フアイバケーブルへの注入充填時の圧
力を一層大きくして該ケーブルの生産速度を高め
ることができる、などの顕著な作用効果がある。 本発明のケーブルは、例えば添付図面のような
構造をしたものである。これは、例えばケプラ
ー、FRPのような有機高分子系繊維や金属線な
どからなるテンシヨンメンバ11を中心としてそ
の周りに6本の光フアイバ12を集合させ、これ
に抑え巻きテープ13を適度のテープ間隔を設け
て粗巻きすることにより形成した6芯光フアイバ
ユニツト1の8ユニツトを、例えばゴム製、プラ
スチツク製あるいはこれらの繊維補強物製のロツ
ド、金属線、有機高分子系繊維などからなるテン
シヨンメンバ2の周囲に集合させ、得られた集合
体の内部空間に走水防止材5を圧入充填するとと
もに、集合体の外周にも若干量の走水防止材層を
成形創設したのちこれを例えばアルミニウムや鉛
のような金属のラミネートテープなどを縦添えす
ることにより形成した遮水層3で包囲し、その上
に該ラミネートテープなどの接着剤層と接着した
状態にポリエチレンやポリ塩化ビニルなどのシー
ス材からなる保護シース層4を押出成形方式で形
成することにより製造したものである。なお、走
水防止材5は、必須ではないが光フアイバユニツ
ト1の内部にも密な状態で充填されていることが
望ましい。前記の光フアイバユニツトにおける抑
え巻きテープ13の粗巻きは、その目的を達成す
るためのものである。すなわち、該テープ13の
テープ間より走水防止材が圧入するようにしたも
のである。 本発明においては走水防止材として、40℃にお
ける動粘度が2〜〜1000cSt、好ましくは5〜
500cStの有機液体100重量部と、炭素数が4〜40
の有機酸のリチウム系又はアルミニウム系金属石
ケン2〜15重量部、好ましくは3〜10重量部とか
らなり、JIS K 2220−5.3に基づいて測定した
25℃における混和稠度が220〜475の範囲にあるグ
リースが用いられる。有機液体の40℃における動
粘度が2cSt未満であると、また有機液体100重量
部に対する金属石ケンの割合が2重量部未満であ
ると得られるグリースが流動性過大となり該ケー
ブル用としては不向きなものとなる。他方、該動
粘度が1000cStを、該金属石ケンの割合が15重量
部を超えると得られるグリースが流動性過小とな
り充填性に劣つて好ましくない。一方、前記条件
で得たグリースであつてもその混和稠度が220未
満であると充填時における流動性に乏しくなる
し、他方475を超えると流動性が過大となつてケ
ーブルを垂直にないし傾斜させて布設した場合に
ケーブル内で流下したり、ケーブルの下位部分の
内部にシース破損の原因となりうる水頭圧を生ぜ
しめたり、ケーブルの上位部分に走水防止上問題
となる空隙を生ぜしめたりして好ましくない。 本発明において用いられる有機液体としては、
40℃における動粘度が2〜1000cStの範囲にある
例えばトランス油、スピンドル油、ケーブル油、
絶縁油、マシン油のような石油系油、ロジン油、
ヒマシ油、オリーブ油、鯨油のような天然油、ポ
リブテン、α−オレフインオリゴマー、塩素化パ
ラフイン、ポリアルキレングリコール、エステル
のような合成油などをあげることができる。 また、金属石ケンとしては、炭素数が4〜40の
有機酸からなるリチウム石ケン、リチウムコンプ
レツクス石ケン、アルミニウム石ケン、アルミニ
ウムコンプレツクス石ケンなどのリチウム系、又
はアルミニウム系金属石ケンが、他の石ケンと比
較して、混和稠度が同じでも見かけ粘度が低いグ
リスを得る点から、本発明において選択的に用い
られる。前記有機酸としては、上記条件下でグリ
ース形成能を有する直鎖状、分岐状の飽和あるい
は不飽和脂肪酸、芳香族カルボン酸などをあげる
ことができ、その代表例としては酪酸、吉草酸、
カプリン酸、パルミチン酸、ステアリン酸、オレ
イン酸、リノール酸、ベヘニン酸、セロチン酸、
メリシン酸、安息香酸、カプリル酸、ミリスチン
酸、パルミチン酸、ラウリン酸、リノレン酸、モ
ンタン酸、12−ヒドロキシステアリン酸、セバチ
ン酸、アゼライン酸などをあげることができる。 本発明の走水防止剤は、前記のグリースのみか
らなつていてもよいし、該グリースと例えば上記
した石油系炭化水素油、ポリブテンのようなオレ
フイン重合油、ポリアルキレングリコール油、塩
素化パラフインのようなハロゲン化炭化水素油、
液状クロロプレンゴム、液状ブタジエンゴム、液
状ニトリルゴムのような液状ゴム、シリコーン油
などの高分子化合物との混合物としてのグリース
であつてもよい。 発明の利点 本発明においては、走水防水材として適度の混
和稠度と低見かけ粘度とを有するグリスを選択使
用する。このため前記した通りの理由から、本発
明の光フアイバケーブルは高品質を維持しつつ、
高速度での生産が可能となるいう顕著な作用効果
がある。しかも該グリスは、適度の混和稠度を有
するので、本発明のケーブルはその内部で問題と
なる程のグリースの流動は生じない。 実施例、比較例 参考例 1 なたね硬化脂肪酸12重量部とひまし硬化脂肪酸
36重量部に40℃における動粘度が86.4cStのα−
オレフインオリゴマー100重量部を加え90℃に加
熱して溶解させたものと、水酸化リチウム(1水
塩)16.5重量部を水70重量部に加熱溶解させたも
のとを混合し、撹拌下にケン化させたのち、150
℃に加温して水分を除去し、次いで前記α−オレ
フインオリゴマー油900重量部を加えて撹拌下に
220℃に加温し、ここで撹拌下にゆつくり冷却し
たのち酸化防止剤として4,4′−チオビス(3−
メチル−6−第三ブチル−フエノール)10重量部
を入れミーリングして混和稠度(25℃、JIS
K2220−5.3以下同じ)436のリチウム石ケングリ
ース(みかけ粘度;40℃、せん断率10s-1、JIS
K2220−5.15(以下同じ):65ポアズ)を得た。 参考例 2〜7 参考例1に準じて第1表に示す組成及び物性の
グリースを調製した。
Detailed Description of the Invention Technical Field The present invention provides a water shield with improved water running prevention properties and flexibility, which is obtained by surrounding a plurality of optical fibers with a water blocking layer through a special water running prevention material. This invention relates to shaped optical fiber cables. BACKGROUND ART A water-shielding optical fiber cable is known in which a space formed between a large number of optical fibers and a water-shielding layer surrounding the optical fibers is filled with a water running prevention material. The purpose of interposing the anti-travel material is mainly to prevent water that has entered through the damaged part, such as a hole, from penetrating into the internal optical fiber section and causing negative effects when a damaged part such as a hole is formed in the water-blocking layer. It's about doing. Conventionally, materials that are solid at room temperature have been known as water running prevention materials. That is, a type is known in which the fiber is heated and melted at the time of filling and injected into the gap between the optical fiber and the water-shielding layer. However, since the above-mentioned type is cooled after filling and solidifies at room temperature, it has the disadvantage that cracks occur due to volumetric shrinkage during the cooling process, reducing its water running prevention performance. This has the serious disadvantage of causing microbends in the optical fiber. In addition, it is difficult to remove from the cable after solidification, which causes various inconveniences in terminal processing such as connecting optical fiber cables that require a high degree of precision, and poor flexibility during work. It also had drawbacks such as poor handling. DISCLOSURE OF THE INVENTION In view of the above, some of the inventors of the present application have previously proposed the use of grease as a water running prevention material.
Grease generally has extremely low temperature dependence in its softness, so for example, the consistency of grease at room temperature is 220.
~475 grease is sufficiently soft and can be injected into optical fiber cables at room temperature without adding a heat softening process, and does not have excessive fluidity, which causes problems within optical fiber cables. No such flow occurs. Incidentally, in recent years, due to the increasing demand for high-quality optical fiber cables, there has been an increasing demand for producing them at as high a speed as possible. Through subsequent research, the present inventors discovered that some greases could meet the above requirements, and completed the present invention. That is, the present invention has a kinematic viscosity of 2 at 40°C.
~100 parts by weight of an organic liquid of ~1000 cSt and a carbon number of ~4
Surround multiple optical fibers with a water-shielding layer through a grease consisting of 2 to 15 parts by weight of lithium-based or aluminum-based metal soap of 40% organic acid and having a consistency of 220 to 475 at 25°C. The present invention provides a water-shielded optical fiber cable. The above-mentioned grease used in the present invention is characterized by a lower apparent viscosity than other greases even if the mixing consistency is the same. Therefore, the pressure during injection and filling into the optical fiber cable is reduced, and the degree of microbending in the optical fiber is reduced, making it possible to produce high-quality optical fiber cables, or by reducing the force applied to the optical fiber at the same level. In this case, there are remarkable effects such as the ability to further increase the pressure when injecting and filling an optical fiber cable, thereby increasing the production speed of the cable. The cable of the present invention has a structure as shown in the attached drawings, for example. In this method, six optical fibers 12 are assembled around a tension member 11 made of organic polymer fibers such as Kepler or FRP, or metal wires, and a wrapped tape 13 is wrapped around the tension member 11 in an appropriate manner. The 8 units of the 6-core optical fiber unit 1 formed by coarsely winding the tapes at intervals are made of, for example, rubber, plastic, or rods made of fiber reinforced materials thereof, metal wires, organic polymer fibers, etc. This is assembled around the tension member 2, and the water running prevention material 5 is press-fitted into the internal space of the resulting assembly, and a slight amount of water running prevention material layer is also formed on the outer periphery of the assembly. is surrounded by a water-blocking layer 3 formed by longitudinally applying a laminated tape made of metal such as aluminum or lead, and on top of that is a layer of polyethylene or polyvinyl chloride bonded to an adhesive layer such as the laminated tape. It is manufactured by forming a protective sheath layer 4 made of a sheath material such as by extrusion molding. Although it is not essential, it is desirable that the anti-water running material 5 is also densely filled inside the optical fiber unit 1. The coarse winding of the tape 13 in the optical fiber unit described above is intended to achieve this purpose. That is, the water running prevention material is press-fitted between the tapes 13. In the present invention, the water running prevention material has a kinematic viscosity of 2 to 1000 cSt at 40°C, preferably 5 to 1000 cSt.
100 parts by weight of an organic liquid of 500 cSt and a carbon number of 4 to 40
2 to 15 parts by weight, preferably 3 to 10 parts by weight of a lithium-based or aluminum-based metal soap of an organic acid, measured based on JIS K 2220-5.3.
A grease having a working consistency at 25° C. in the range of 220 to 475 is used. If the kinematic viscosity of the organic liquid at 40°C is less than 2 cSt, or if the ratio of metal soap to 100 parts by weight of the organic liquid is less than 2 parts by weight, the resulting grease will have excessive fluidity and will be unsuitable for use in the cable. Become something. On the other hand, if the kinematic viscosity exceeds 1000 cSt and the proportion of the metal soap exceeds 15 parts by weight, the resulting grease will have insufficient fluidity and poor filling properties, which is not preferred. On the other hand, even if the grease obtained under the above conditions has a mixing consistency of less than 220, it will have poor fluidity during filling, and on the other hand, if it exceeds 475, the fluidity will be excessive and the cable will not run vertically or at an angle. When installed in the cable, it may flow down inside the cable, create water head pressure inside the lower part of the cable that can cause sheath damage, or create air gaps in the upper part of the cable that can cause problems in preventing water running. I don't like it. The organic liquid used in the present invention includes:
For example, transformer oil, spindle oil, cable oil, etc. whose kinematic viscosity at 40℃ is in the range of 2 to 1000 cSt.
Insulating oil, petroleum oil such as machine oil, rosin oil,
Natural oils such as castor oil, olive oil, and whale oil; synthetic oils such as polybutenes, alpha-olefin oligomers, chlorinated paraffins, polyalkylene glycols, and esters; and the like. In addition, examples of metal soaps include lithium-based or aluminum-based metal soaps such as lithium soap, lithium complex soap, aluminum soap, and aluminum complex soap made of organic acids with carbon numbers of 4 to 40. , is selectively used in the present invention because compared to other soaps, it provides a grease with a lower apparent viscosity even though the mixing consistency is the same. Examples of the organic acids include linear or branched saturated or unsaturated fatty acids, aromatic carboxylic acids, etc., which have grease-forming ability under the above conditions, and typical examples include butyric acid, valeric acid,
Capric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, behenic acid, cerotic acid,
Examples include melisic acid, benzoic acid, caprylic acid, myristic acid, palmitic acid, lauric acid, linolenic acid, montanic acid, 12-hydroxystearic acid, sebacic acid, and azelaic acid. The anti-water running agent of the present invention may consist of the above-mentioned grease alone, or may consist of the above-mentioned grease and, for example, the above-mentioned petroleum-based hydrocarbon oil, olefin polymerized oil such as polybutene, polyalkylene glycol oil, or chlorinated paraffin. halogenated hydrocarbon oils, such as
The grease may be a mixture of a liquid rubber such as liquid chloroprene rubber, liquid butadiene rubber, or liquid nitrile rubber, or a polymer compound such as silicone oil. Advantages of the Invention In the present invention, a grease having appropriate mixing consistency and low apparent viscosity is selected and used as the running waterproofing material. Therefore, for the reasons mentioned above, the optical fiber cable of the present invention maintains high quality and
It has the remarkable effect of enabling high-speed production. Furthermore, since the grease has an appropriate mixing consistency, the cable of the present invention does not cause any problem-prone grease flow inside the cable. Examples, Comparative Examples Reference Example 1 12 parts by weight of rapeseed hydrogenated fatty acid and castor hydrogenated fatty acid
36 parts by weight of α− with a kinematic viscosity of 86.4 cSt at 40°C
100 parts by weight of olefin oligomer was added and dissolved by heating to 90°C, and 16.5 parts by weight of lithium hydroxide (monohydrate) was dissolved by heating in 70 parts by weight of water. After converting to 150
℃ to remove moisture, then add 900 parts by weight of the α-olefin oligomer oil and stir.
After heating to 220°C and slowly cooling with stirring, 4,4'-thiobis(3-
Add 10 parts by weight of methyl-6-tert-butyl-phenol) and mill to obtain a mixing consistency (25℃, JIS
K2220−5.3 and below) 436 lithium soap grease (apparent viscosity: 40℃, shear rate 10 s-1 , JIS
K2220−5.15 (same below): 65 poise) was obtained. Reference Examples 2 to 7 Greases having the composition and physical properties shown in Table 1 were prepared according to Reference Example 1.

【表】【table】

【表】 実施例 1 コア径50μm、クラツド径125μmのGI形光フア
イバ素線にナイロンジヤケツトを施した直径0.9
mmの光フアイバの6本を直径1.0mmのピアノ線を
芯線としてこれに各光フアイバが10cmピツチで1
周する割合で巻き付けて得たものに厚さ50μm、
幅2.5mmの延伸ポリエチレンフイルムからなる抑
え巻きテープを1.0cmのテープ間隔で巻き付けて
形成した6応光フアイバユニツト(外径3.0mm)
の8本を直径5.0mmのピアノ線製テンシヨンメン
バの周りに各該ユニツトが40cmピツチで1周する
割合で巻き付けて連続的に得た外径11mmの集合体
を直径5mmの小孔を多数有するテーパ状の円筒体
(常温)を通過させた。この円筒体の小孔からは
走水防止材が1.0Kg/cm2の圧力で押出されており、
その結果、これを通過する集合体の該ユニツト間
及び各光フアイバ間の空隙に走水防止材が圧入充
填される。 このようにして得た走水防止材が外周を被う直
径16mmのものに片面に変性ポリオレフイン系接着
剤が厚さ50μmで貼合わされた厚さ250μm、幅57
mmのアルミラミネートテープを縦添えして遮水層
を形成し、次いでこれを押出成形機に導入して厚
さ3mmのポリエチレンシース層を形成することに
より外径23mmの遮水形光フアイバケーブルを
15m/分の速さで連続的に得た。 走水防止剤としては参考例1のものを用いた。 得られたケーブルは、光フアイバユニツト間及
び該ユニツト内の光フアイバ間の空隙の全部にグ
リースが充填されたものであつた。また、ケーブ
ルの性能は第2表に示したようにすぐれたもので
あつた。 なお、ケーブルの遮水性については、長さ2m
のケーブル試験片の長さ方向のほぼ中央部のシー
ス層及び縦添え遮水層を25mmにわたりはぎとり、
そこに1mの高さに水を満したポリエチレン管
(直径30mm)を設けて14日後におけるケーブル両
端からの漏水の有無を調べた。さらに、漏水が無
の場合はケーブルを解体し、浸水距離を調べた。 また、ケーブルの屈曲性については、曲げ半径
200mmのマンドレルに沿つて±180度、10往復の繰
返し屈曲を与えるマンドレル巻付法を適用し、光
損失増加量が0.1dB/Km以下を良、それ以外を不
良とした。なお、その後、ケーブル内の光フアイ
バはすべて直列接続し端部をエポキシ樹脂で固定
したのち、0.85μmの光を常時透光させ受光レベ
ルの変化より光損失増加量を測定した。 実施例 2 光フアイバユニツト層の上にさらにもう一層8
本のユニツトからなる20cmピツチで巻回した光フ
アイバユニツト層を設けたほかは実施例1と同様
にしてケーブルを得た。 このケーブルにおける充填性は良であり、その
性能は第2表に示した。 実施例 3〜5 走水防止材の種類を代え、実施例1と同様にし
てケーブルを得た。結果を第2表に示した。 比較例 1 走水防止材として米国ウイツトコ社製#5Bを
用い、これは常温で固体であるので105℃に加熱
溶融して充填し、常温下で放冷したほかは実施例
1と同様にしてケーブルを得た。 このものの充填性、性能を第2表に示した。 比較例 2〜3 走水防止材として参考例6〜7のものを用いた
ほかは実施例1と同様にしてケーブルを得た。そ
の結果を第2表に示した。 なお、充填性の評価における不良は、光フアイ
バユニツト間における走水防止材の充填部に空泡
としての非充填部が認められたことを意味する。
[Table] Example 1 A GI type optical fiber with a core diameter of 50 μm and a cladding diameter of 125 μm is coated with a nylon jacket and has a diameter of 0.9
Six optical fibers with a diameter of 1.0 mm are connected to a piano wire with a diameter of 1.0 mm, and each optical fiber is connected at a pitch of 10 cm.
Thickness of 50 μm is obtained by winding at a circular rate.
A 6-optical fiber unit (outer diameter 3.0 mm) formed by winding a stretched polyethylene film tape with a width of 2.5 mm at a tape spacing of 1.0 cm.
The 8 pieces were wound around a tension member made of piano wire with a diameter of 5.0 mm so that each unit made one turn at a pitch of 40 cm, and the aggregate with an outer diameter of 11 mm was obtained by forming a large number of small holes with a diameter of 5 mm. The sample was passed through a tapered cylindrical body (at room temperature). Water running prevention material is extruded from the small holes of this cylindrical body at a pressure of 1.0 kg/cm 2 .
As a result, the anti-water running material is press-fitted into the gaps between the units and between each optical fiber of the assembly passing through this. A 16 mm diameter piece covered with the water running prevention material thus obtained was laminated with a modified polyolefin adhesive on one side at a thickness of 50 μm.Thickness: 250 μm, Width: 57 mm
A water-shielding optical fiber cable with an outer diameter of 23 mm is created by vertically attaching aluminum laminate tape with a diameter of 23 mm to form a water-shielding layer, and then introducing this into an extrusion molding machine to form a polyethylene sheath layer with a thickness of 3 mm.
Obtained continuously at a speed of 15 m/min. As the water running inhibitor, the one in Reference Example 1 was used. The resulting cable was one in which all the gaps between the optical fiber units and between the optical fibers within the units were filled with grease. Furthermore, the performance of the cable was excellent as shown in Table 2. Regarding the water shielding property of the cable, the length is 2m.
Strip off 25 mm of the sheath layer and vertical water shielding layer at approximately the center of the cable test piece.
A polyethylene pipe (diameter 30 mm) filled with water was installed at a height of 1 m, and the presence or absence of water leakage from both ends of the cable was investigated after 14 days. Furthermore, if there was no water leakage, the cable was dismantled and the distance of water intrusion was investigated. In addition, regarding cable flexibility, bending radius
A mandrel winding method was applied in which repeated bending was performed 10 times at ±180 degrees along a 200 mm mandrel, and an increase in optical loss of 0.1 dB/Km or less was considered good, and anything else was judged as poor. After that, all the optical fibers in the cable were connected in series and the ends were fixed with epoxy resin, and then 0.85 μm light was constantly transmitted through the cable, and the increase in optical loss was measured from the change in the received light level. Example 2 Another layer 8 on top of the optical fiber unit layer
A cable was obtained in the same manner as in Example 1, except that an optical fiber unit layer consisting of book units wound at a pitch of 20 cm was provided. The filling properties of this cable were good, and its performance is shown in Table 2. Examples 3 to 5 Cables were obtained in the same manner as in Example 1 except that the type of water running prevention material was changed. The results are shown in Table 2. Comparative Example 1 #5B manufactured by Utsutco, USA was used as the anti-water running material, and as it is solid at room temperature, it was heated to 105°C, melted, filled, and left to cool at room temperature, but in the same manner as in Example 1. Got cable. The filling properties and performance of this product are shown in Table 2. Comparative Examples 2 and 3 Cables were obtained in the same manner as in Example 1, except that the materials of Reference Examples 6 and 7 were used as water running prevention materials. The results are shown in Table 2. In addition, a defect in the evaluation of filling property means that an unfilled portion as voids was observed in the filled portion of the water running prevention material between the optical fiber units.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の遮水形光フアイバケーブルの構
造例を表わした横断面図である。 1:6芯光フアイバユニツト、2,11:テン
シヨンメンバ、3:遮水層、4:保護シース層、
5:走水防止材、12:光フアイバ、13:抑え
巻きテープ。
The figure is a cross-sectional view showing a structural example of the water-shielded optical fiber cable of the present invention. 1: 6-core optical fiber unit, 2, 11: tension member, 3: water-blocking layer, 4: protective sheath layer,
5: Water running prevention material, 12: Optical fiber, 13: Pressure winding tape.

Claims (1)

【特許請求の範囲】[Claims] 1 走水防止材を介して複数本の光フアイバを遮
水層で包囲してなる遮水形光フアイバケーブルに
おいて、走水防止材が、40℃における動粘度2〜
100cStの有機液体100重量部と、炭素数が4〜40
の有機酸のリチウム系又はアルミニウム系金属石
ケン2〜15重量部とからなり、25℃における混和
稠度が220〜475の範囲にあるグリースであること
を特徴とする前記ケーブル。
1 In a water-shielding optical fiber cable formed by surrounding a plurality of optical fibers with a water-shielding layer through a water-running prevention material, the water-running prevention material has a kinematic viscosity of 2 to 2 at 40°C.
100 parts by weight of an organic liquid of 100 cSt and a carbon number of 4 to 40
2 to 15 parts by weight of a lithium-based or aluminum-based metal soap of an organic acid, and having a mixing consistency at 25° C. in the range of 220 to 475.
JP59040995A 1984-03-03 1984-03-03 Water shielding optical fiber cable Granted JPS60185912A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59040995A JPS60185912A (en) 1984-03-03 1984-03-03 Water shielding optical fiber cable
AT85100895T ATE46973T1 (en) 1984-03-03 1985-01-29 WATER RESISTANT OPTICAL CABLE.
DE8585100895T DE3573478D1 (en) 1984-03-03 1985-01-29 Waterproof optical fiber cable
EP85100895A EP0160778B2 (en) 1984-03-03 1985-01-29 Waterproof optical fiber cable
CA000473252A CA1251669A (en) 1984-03-03 1985-01-31 Waterproof optical fiber cable
US06/698,461 US4703997A (en) 1984-03-03 1985-02-05 Waterproof optical fiber cable
AU38454/85A AU585847B2 (en) 1984-03-03 1985-02-05 Waterproof optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040995A JPS60185912A (en) 1984-03-03 1984-03-03 Water shielding optical fiber cable

Publications (2)

Publication Number Publication Date
JPS60185912A JPS60185912A (en) 1985-09-21
JPH0478962B2 true JPH0478962B2 (en) 1992-12-14

Family

ID=12596005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040995A Granted JPS60185912A (en) 1984-03-03 1984-03-03 Water shielding optical fiber cable

Country Status (1)

Country Link
JP (1) JPS60185912A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687005A (en) * 1979-11-22 1981-07-15 Noane Georges Le Submarine cable with photofiber
JPS58122996A (en) * 1982-01-14 1983-07-21 Nippon Steel Chem Co Ltd Grease composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687005A (en) * 1979-11-22 1981-07-15 Noane Georges Le Submarine cable with photofiber
JPS58122996A (en) * 1982-01-14 1983-07-21 Nippon Steel Chem Co Ltd Grease composition

Also Published As

Publication number Publication date
JPS60185912A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
EP0160778B2 (en) Waterproof optical fiber cable
CA1250468A (en) Waterproof optical fiber cable
KR940000838B1 (en) Optical fiber cable
EA016504B1 (en) Electrical cable having a surface with reduced coefficient of friction
JPS62502499A (en) Optical fiber cable and its manufacturing method
US4898451A (en) Wax encased fiber optic cable
US3333049A (en) Alkali metal composite electrical conductors
US3888709A (en) Cable filling compounds
US3333037A (en) Process for the production of alkali metal composite electrical conductors
JPH0478962B2 (en)
JPS59157913A (en) Method and apparatus for producing long distance communication cable
CN206594343U (en) A kind of layer-stranding cable of anti-cable core after-contraction
JPH0478963B2 (en)
JPH0656447B2 (en) Water-proof optical fiber cable for low temperature
JPS60185914A (en) Water shield type optical fiber cable
JPH0624084B2 (en) Water-blocking light cable
JPS60184219A (en) Water shielding optical cable
CN210136731U (en) Service robot body cable with self-repairing insulation breakdown function
CN217521774U (en) Moisture-proof control cable
CN114864193B (en) Preparation method of special cable
JPH0440684B2 (en)
CA1039891A (en) Cable filling compositions consisting of blends of low density polyethylenes
JP2780311B2 (en) Fiber optic cable
DE3839596A1 (en) THIXOTROPES GEL AND THE USE THEREOF AS FILLING MEASUREMENT FOR LIGHTWAVE LEAD CABLES
JPS62102211A (en) Water-proof type optical fiber cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees