JPH0478802B2 - - Google Patents

Info

Publication number
JPH0478802B2
JPH0478802B2 JP60156089A JP15608985A JPH0478802B2 JP H0478802 B2 JPH0478802 B2 JP H0478802B2 JP 60156089 A JP60156089 A JP 60156089A JP 15608985 A JP15608985 A JP 15608985A JP H0478802 B2 JPH0478802 B2 JP H0478802B2
Authority
JP
Japan
Prior art keywords
ceramic layer
cooling
cooling air
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60156089A
Other languages
Japanese (ja)
Other versions
JPS6217307A (en
Inventor
Michio Yamazaki
Hiromitsu Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15608985A priority Critical patent/JPS6217307A/en
Publication of JPS6217307A publication Critical patent/JPS6217307A/en
Publication of JPH0478802B2 publication Critical patent/JPH0478802B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高温タービン等に用いられる空冷翼
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in air-cooled blades used in high-temperature turbines and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

耐熱合金部品に要求される高温特性は、年々苛
酷になつている。中でも、ガスタービン部材とし
ての耐熱合金部品は、ガスタービンの高温化に伴
い、1400℃以上のガス温度に耐えることも要求さ
れ始めている。しかしながら、従来の耐熱合金で
は、1400℃以上の高温に耐えることは難しい。こ
のため、タービン部材としてSi3N4、SiCのセラ
ミツク材料が考えられているが、その実用化には
未だ時間を必要とする。しかるに、耐熱合金を冷
却しながら、高温部材として使用する方法がとら
れているが、冷却に伴う熱効率低下が問題となつ
ている。
The high-temperature properties required for heat-resistant alloy parts are becoming more severe year by year. In particular, heat-resistant alloy parts used as gas turbine components are now being required to withstand gas temperatures of 1400° C. or more as gas turbines become hotter. However, it is difficult for conventional heat-resistant alloys to withstand high temperatures of 1400°C or higher. For this reason, ceramic materials such as Si 3 N 4 and SiC are being considered for turbine components, but it will still take time to put them into practical use. However, methods have been adopted in which the heat-resistant alloy is used as a high-temperature member while being cooled, but a problem arises in that the thermal efficiency decreases due to cooling.

このようなことから、耐熱合金製の翼本体にセ
ラミツクス層を被覆して遮熱した空冷翼が注目さ
れている。遮熱作用をなすセラミツクス層は、一
般にプラズマ溶射法によつて施工されているが、
耐熱合金の翼本体に対する付着力は機械的な結合
のみである。セラミツクスは、翼本体を形成する
耐熱合金と熱膨張係数が異なるため、常温と動作
時の温度に大きな温度差のあるガスタービンにお
いて、それらの間に大きな熱応力を生じる。従つ
て、セラミツクス層がコーテイングされた空冷翼
を長時間使用すると、セラミツクス層が翼本体か
ら剥離する現象が現われ、その遮熱機能を失う。
For these reasons, air-cooled blades that have a heat-resistant alloy blade body coated with a ceramic layer to insulate the air are attracting attention. The ceramic layer that acts as a heat shield is generally constructed using the plasma spray method.
The adhesion force of the heat-resistant alloy to the blade body is only mechanical bonding. Ceramics has a different coefficient of thermal expansion from the heat-resistant alloy that forms the blade body, so in gas turbines where there is a large temperature difference between room temperature and operating temperature, large thermal stress is generated between them. Therefore, if an air-cooled blade coated with a ceramic layer is used for a long time, the ceramic layer will peel off from the blade body and lose its heat shielding function.

そこで、耐熱合金製の翼本体とセラミツクス層
との間に金属結合層を配置して、それらの間の付
着力の向上、熱応力の緩和等によりセラミツクス
層の遮熱作用の延長化を図つていた。しかしなが
ら、現状では発電用タービンのように高度の信頼
性を要求されるシステムでの使用には不充分であ
つた。
Therefore, by placing a metal bonding layer between the heat-resistant alloy blade body and the ceramic layer, we aim to extend the heat shielding effect of the ceramic layer by improving the adhesion between them and alleviating thermal stress. was. However, the current state of the art is insufficient for use in systems that require a high degree of reliability, such as power generation turbines.

〔発明の目的〕 本発明は、冷却性能の優れたセラミツクス層が
被覆され、かつ該セラミツクス層が損傷を受けて
もガスタービンの機能を損うような翼の破損が、
少なくとも急速には生じない補償機能を具備した
空冷翼を提供しようとするものである。
[Object of the Invention] The present invention provides a blade coated with a ceramic layer having excellent cooling performance, and even if the ceramic layer is damaged, damage to the blade that would impair the function of the gas turbine is prevented.
The aim is to provide an air-cooled blade with a compensation function that does not occur at least rapidly.

〔発明の概要〕[Summary of the invention]

本発明は、内部に冷却空気の流通路を有し、か
つ外部表面を冷却するための冷却空気噴出孔が開
孔された耐熱合金からなる翼本体と、この本体の
外部表面に前記噴出孔を覆うようにコーテイング
されたセラミツクス層とを具備したことを特徴と
するものである。かかる本発明の空冷翼によれ
ば、翼本体にコーテイングされたセラミツクス層
が健全である時には、そのセラミツクス層の遮熱
作用により内部の僅かな冷却で充分な高温状態で
の使用が可能となり、結果的には高効率ガスター
ビンとしで動作できる。一方、空冷翼の使用中に
何等かの要因によつてセラミツクス層の一部又は
全面が耐熱合金製の翼本体から剥離した場合、翼
本体の冷却空気の流通路と連通した冷却空気噴出
孔から冷却空気が流出し、翼本体の表面にその冷
却空気の膜が形成されて、冷却される。冷却空気
量の増加により効率は低減されるものの、空冷翼
としの機能は維持され、安全な運転を続行でき
る。従つて、高効率が得られる高温動作タービン
に有効に適用できる高信頼性の空冷翼を得ること
ができる。
The present invention provides a blade body made of a heat-resistant alloy that has a cooling air flow path inside and has cooling air jet holes for cooling the external surface, and a blade body that is made of a heat-resistant alloy and has the jet holes formed on the external surface of the main body. The device is characterized by comprising a ceramic layer coated to cover the device. According to the air-cooled blade of the present invention, when the ceramic layer coated on the blade body is healthy, the heat shielding effect of the ceramic layer makes it possible to use the air-cooled blade in a sufficiently high temperature state with a slight internal cooling. In general, it can operate as a high-efficiency gas turbine. On the other hand, if part or all of the ceramic layer peels off from the heat-resistant alloy blade body due to some reason during use of the air-cooled blade, the cooling air ejection holes communicating with the cooling air flow path of the blade body The cooling air flows out and forms a film of the cooling air on the surface of the wing body, thereby cooling the wing body. Although efficiency is reduced due to the increase in the amount of cooling air, the function as an air-cooled blade is maintained and safe operation can continue. Therefore, it is possible to obtain a highly reliable air-cooled blade that can be effectively applied to high-temperature operating turbines that provide high efficiency.

この際、補償機能によりセラミツクス層が健全
に存在している場合の冷却状態を実現して、翼の
設計寿命を全うすることも期待できる。この場
合、少なくともセラミツクス層の剥離による急速
な損傷が生じて、前兆なしに事故が発生すること
がない程度の効果であつても、実用上は大きな意
義がある。従つて、セラミツクス層が剥離した後
の冷却空気の膜の形成が、不規則状に残余するセ
ラミツクスの付着物の存在等のために、たとえ不
完全なものであつたとしても、本発明の空冷翼は
信頼性の向上に役立つものである。
At this time, it is expected that the compensating function will realize a cooling state when the ceramic layer is in good condition, and the design life of the blade will be fulfilled. In this case, even if the effect is such that at least rapid damage due to peeling of the ceramic layer does not occur and an accident occurs without warning, it is of great practical significance. Therefore, even if the formation of a cooling air film after the ceramic layer is peeled off is incomplete due to the presence of irregularly remaining ceramic deposits, the air cooling of the present invention Wings help improve reliability.

なお、セラミツクス層が全面的に剥離すること
は考え難く、実際には熱歪の大きいところが部分
的に剥離する場合が多いいと考えられる。この場
合、部分的に剥離した箇所はたとえ空冷空気の膜
の形成がなくとも、他部分の遮熱効果の存在のた
め、セラミツクス層が全体的に存在していない場
合に比べて低温になる。その結果、更に本発明に
よる冷却効果が加わることによつて、翼の破損が
一層有効に防止される。
Note that it is difficult to imagine that the ceramic layer will peel off entirely, and in fact, it is thought that it often peels off partially in areas where the thermal strain is large. In this case, even if there is no formation of a cooling air film, the temperature at the partially peeled area will be lower than when the entire ceramic layer is not present due to the presence of the heat shielding effect of other areas. As a result, by adding the cooling effect of the present invention, damage to the blades can be more effectively prevented.

またセラミツク層が剥離した場合、空気の流
量、圧力等が変化するため、逆に前記空気の流
量、圧力等を測定することによつて、セラミツク
ス層の剥離を検知することができ、事故発生を未
然に防止することができる。
In addition, if the ceramic layer peels off, the air flow rate, pressure, etc. will change, so by measuring the air flow rate, pressure, etc., it is possible to detect the peeling of the ceramic layer and prevent accidents from occurring. This can be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

まず、インピンジ冷却を冷却基本としたNi基
超合金(インコ社製商品名:IN−738)からなる
翼本体に、0.5ミリ径の冷却空気噴出孔を該本体
内部の冷却空気流通路と連通するように複数開孔
した。つづいて、前記噴出孔を石膏で封孔し、該
翼本体をブラスト処理した後、プラズマ溶射によ
つて金属結合層としてのNiCoCrAlY層を100μm
の厚さでコーテイングした。次いで、プラズマ溶
射によつてZrO2−8Y2O3のセラミツクス層を
200μmの厚さでコーテイングした。この後、コ
ーテイング済みの翼本体をHCl水溶液中に浸漬
し、噴出孔中の石膏を溶解除去した。こうした工
程により、図面に示すような内部に冷却空気の流
通路1を有し、かつ該流通路1と連通した複数の
冷却空気噴出孔2が開孔された翼本体3と、該本
体3の表面にNiCoCrAlY層4を介してコーテイ
ングされ、各噴出孔2を覆うZrO2−8Y2O3製の
セラミツクス層5とからなる空冷翼が作製され
た。
First, a cooling air jet hole with a diameter of 0.5 mm is connected to the cooling air flow passage inside the wing body, which is made of a Ni-based superalloy (product name: IN-738, manufactured by Inco Corporation) that uses impingement cooling as its basic cooling method. Multiple holes were drilled. Subsequently, the ejection hole was sealed with plaster, and the blade body was blasted, and then a 100 μm thick NiCoCrAlY layer was applied as a metal bonding layer by plasma spraying.
Coated with a thickness of . Next, a ceramic layer of ZrO 2 −8Y 2 O 3 is applied by plasma spraying.
It was coated with a thickness of 200 μm. Thereafter, the coated blade body was immersed in an aqueous HCl solution to dissolve and remove the gypsum in the nozzle. Through these steps, as shown in the drawings, a blade body 3 having a cooling air flow path 1 therein and a plurality of cooling air ejection holes 2 communicating with the flow path 1 is formed, and a blade body 3 of the main body 3 is formed. An air-cooled blade was fabricated, the surface of which was coated with a NiCoCrAlY layer 4 interposed therebetween, and a ceramic layer 5 made of ZrO 2 -8Y 2 O 3 covering each nozzle hole 2.

しかして、本実施例で得た空冷翼をガス温度;
1450℃、流速;0.85マツハ、圧力;5ataの高温風
洞試験を行なつたところ、翼本体3の温度を900
℃以下に押えることができた。
Therefore, the air-cooled blade obtained in this example has a gas temperature of
A high temperature wind tunnel test was conducted at 1450℃, flow rate: 0.85℃, pressure: 5ata, and the temperature of the blade body 3 was 900℃.
We were able to keep the temperature below ℃.

更に、同一条件で冷却空気量を減らし、結合層
としてのNiCoCrAlY層4の温度が1275℃になる
ように設定し、該結合層の酸化劣化を生じせし
め、しかる後にセラミツクス層5に機械的衝撃を
与えて強制的に剥離を起こさせた。その結果、セ
ラミツクス層が剥離した部分は、その下地に存在
する翼本体3の噴出孔2からの冷却空気の流出に
より、冷却空気量の増大は見られたものの、翼本
体3の温度上昇は見られず、健全なままの状態を
維持された。
Furthermore, under the same conditions, the amount of cooling air was reduced and the temperature of the NiCoCrAlY layer 4 as a bonding layer was set to 1275°C to cause oxidative deterioration of the bonding layer, and then mechanical shock was applied to the ceramic layer 5. and forced the peeling to occur. As a result, in the area where the ceramic layer had peeled off, an increase in the amount of cooling air was observed due to the outflow of cooling air from the jet holes 2 of the blade body 3 that existed underneath, but no increase in the temperature of the blade body 3 was observed. It was not damaged and remained in good health.

〔発明の効果〕 以上詳述した如く、本発明によれば冷却性能の
優れたセラミツクス層が被覆され、かつ該セラミ
ツクス層が損傷を受けても翼本体の破損に至らな
いよう補償機能を有し、高効率のガスタービンに
有効で高信頼性の空冷翼を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, a ceramic layer with excellent cooling performance is coated, and even if the ceramic layer is damaged, it has a compensating function to prevent damage to the blade body. , can provide effective and highly reliable air-cooled blades for high-efficiency gas turbines.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例における空冷翼の要部
を示す断面図である。 1……冷却空気の流通路、2……冷却空気噴出
孔、3……翼本体、4……NiCoCrAlY層(結合
層)、5……セラミツクス層。
The drawing is a sectional view showing essential parts of an air-cooled blade in an embodiment of the present invention. 1...Cooling air flow path, 2...Cooling air outlet, 3...Blade body, 4...NiCoCrAlY layer (bonding layer), 5...Ceramics layer.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に冷却空気の流通路を有し、かつ外部表
面を冷却するための冷却空気噴出孔が開孔された
耐熱合金からなる翼本体と、この本体の外部表面
に前記噴出孔を覆うようにコーテイングされたセ
ラミツクス層とを具備したことを特徴とする空冷
翼。
1. A wing body made of a heat-resistant alloy that has a cooling air flow path inside and has cooling air jet holes for cooling the external surface, and a wing body that is made of a heat-resistant alloy and has a cooling air jet hole formed on the outside surface of the main body so as to cover the jet hole. An air-cooled blade characterized by comprising a coated ceramic layer.
JP15608985A 1985-07-17 1985-07-17 Air-cooled blade Granted JPS6217307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15608985A JPS6217307A (en) 1985-07-17 1985-07-17 Air-cooled blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15608985A JPS6217307A (en) 1985-07-17 1985-07-17 Air-cooled blade

Publications (2)

Publication Number Publication Date
JPS6217307A JPS6217307A (en) 1987-01-26
JPH0478802B2 true JPH0478802B2 (en) 1992-12-14

Family

ID=15620064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15608985A Granted JPS6217307A (en) 1985-07-17 1985-07-17 Air-cooled blade

Country Status (1)

Country Link
JP (1) JPS6217307A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215903A (en) * 1989-02-13 1990-08-28 Toshiba Corp Bucket structure of turbo machine
US5279111A (en) * 1992-08-27 1994-01-18 Inco Limited Gas turbine cooling
EP1669545A1 (en) * 2004-12-08 2006-06-14 Siemens Aktiengesellschaft Coating system, use and method of manufacturing such a coating system
JP2009063072A (en) * 2007-09-06 2009-03-26 Railway Technical Res Inst Brake disc, method for surface modification thereof, and surface modification device for brake disc
US9718735B2 (en) * 2015-02-03 2017-08-01 General Electric Company CMC turbine components and methods of forming CMC turbine components
US11041389B2 (en) * 2017-05-31 2021-06-22 General Electric Company Adaptive cover for cooling pathway by additive manufacture
WO2019074514A1 (en) * 2017-10-13 2019-04-18 General Electric Company Coated components having adaptive cooling openings and methods of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121010A (en) * 1974-08-14 1976-02-19 Tokyo Shibaura Electric Co GASUTAABINYOKU
JPS6045703A (en) * 1983-07-28 1985-03-12 エム・テ−・ウ−・モト−レン−・ウント・ツルビ−ネン−ウニオ−ン・ミユンヘン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Constitutional member, load thereto is increased thermally and which is cooled

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121010A (en) * 1974-08-14 1976-02-19 Tokyo Shibaura Electric Co GASUTAABINYOKU
JPS6045703A (en) * 1983-07-28 1985-03-12 エム・テ−・ウ−・モト−レン−・ウント・ツルビ−ネン−ウニオ−ン・ミユンヘン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Constitutional member, load thereto is increased thermally and which is cooled

Also Published As

Publication number Publication date
JPS6217307A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
US6224337B1 (en) Thermal barrier coated squealer tip cavity
US9309001B2 (en) Aircraft ice protection system and method
JP4166977B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
EP1647611B1 (en) Thermal barrier coating
EP1375825B1 (en) Failsafe film cooled wall
US4594053A (en) Housing for a fluid flow or jet engine
JP5517163B2 (en) Cooling hole machining method for turbine blade
Nissley Thermal barrier coating life modeling in aircraft gas turbine engines
US20090108134A1 (en) Icing protection system and method for enhancing heat transfer
EP3058183B1 (en) Segmented ceramic coating interlayer
CN108715988B (en) Thermal barrier coating with thermal barrier and CMAS corrosion adhesion resistance and preparation process thereof
BRPI0902199A2 (en) method of repairing a thermal barrier cover and repaired cover thus formed
EP2959111B1 (en) Insulating coating to permit higher operating temperatures
JP7154806B2 (en) Segmented environmental barrier coating system and method of forming same
KR20070025958A (en) Methods for applying a hybrid thermal barrier coating, and coated articles
US4473336A (en) Turbine blades
JP3872632B2 (en) Thermal barrier coating material, gas turbine member and gas turbine using the same
KR20030011690A (en) Thermal barrier coating
JPH0715141B2 (en) Heat resistant parts
JPH0478802B2 (en)
JP2000144365A (en) Thermal barrier coating member, production of thermal barrier coating member and high temperature gas turbine using thermal barrier coating member
JP3290976B2 (en) Ceramic thermal barrier coating
JP3219594B2 (en) Thermal barrier coating method for high temperature oxidation prevention
EP2857637A1 (en) Turbine airfoil and corresponding method of manufacturing
JPH06101064A (en) Heat insulating coating fixed by whisker

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term