JPH0478465B2 - - Google Patents

Info

Publication number
JPH0478465B2
JPH0478465B2 JP29188288A JP29188288A JPH0478465B2 JP H0478465 B2 JPH0478465 B2 JP H0478465B2 JP 29188288 A JP29188288 A JP 29188288A JP 29188288 A JP29188288 A JP 29188288A JP H0478465 B2 JPH0478465 B2 JP H0478465B2
Authority
JP
Japan
Prior art keywords
synthetic resin
steel material
coating
coating layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29188288A
Other languages
Japanese (ja)
Other versions
JPH02137920A (en
Inventor
Hiromu Rokusha
Shiro Kurosawa
Takeshi Hasui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Otsuka Koki Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Otsuka Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd, Otsuka Koki Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP29188288A priority Critical patent/JPH02137920A/en
Publication of JPH02137920A publication Critical patent/JPH02137920A/en
Publication of JPH0478465B2 publication Critical patent/JPH0478465B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はプレストレストコンクリート(以下
PCと記す)工法のポストテンシヨニング工法に
用いる発泡合成樹脂材料を使用した合成樹脂被覆
PC鋼材及びその被覆層加工方法に関するもので
ある。 (従来の技術) 従来、コンクリート内にあらかじめPC鋼材を
挿通しておき、コンクリートの固化後、そのPC
鋼材を緊張してストレスを付与するいわゆるポス
トテンシヨニング工法においては、PC鋼材がコ
ンクリート内にて移動できるものである必要か
ら、従来はPC鋼材とこれを被覆するアンボンド
被覆層をもつたアンボンドPC鋼材が使用されて
いる。 このアンボンドPC鋼材における従来のアンボ
ンド被覆層加工方法を大別すると、 (1) アスフアルト系のものをPC鋼材の表面に塗
布し、更にその表面に保護テープ等を巻いたも
の、 (2) 油脂系のものをPC鋼材の表面に塗布し、更
にその表面に押出機成形法によつて樹脂被覆層
を設けたもの、 等があるが、いずれの方法も摩擦抵抗の点では満
足できるが防錆力の点では問題となつている。そ
の原因は、アスフアルト系又は油脂系とも経年劣
化や塗布状態が不完全となることから防錆耐久力
が低下することにある。 従つて、近年防錆力に優れた単層の合成樹脂被
覆槽をPC鋼材の表面に被着させ、これをポスト
テンシヨニング工法に使用する方法が開発されて
きたが、摩擦抵抗の点で従来のものより劣るとい
う結果になつている。即ちアスフアルト系のも
のをPC鋼材の表面に塗布し、更にその表面に保
護テープ等を巻いたもののコンクリートとのすべ
りは、保護テープがコンクリートと密着しアスフ
アルトと保護テープの間ですべりを生じているの
で摩擦抵抗は小さくなり、また油脂系のものを
PC鋼材表面に塗布し、更にその表面に押出機成
形法によつて樹脂被覆を設けたもののコンクリー
トとのすべりは、樹脂被覆がコンクリートと密着
し油脂系と樹脂被覆との間ですべりを生ずるので
摩擦抵抗が小さくなるものであるが、近年開発さ
れた単層の合成樹脂被覆層を有するPC鋼材の場
合のコンクリートとのすべりは、その樹脂被覆層
表面とコンクリートとの間ですべりを生ずるの
で、樹脂被覆表面の平滑度によつて摩擦抵抗が決
まり、その平滑度のバラツキが摩擦抵抗のバラツ
キとなつて表れるという欠陥を有している。 (発明が解決しようとしている課題) 従来からアンボンドPC鋼材は防錆力と摩擦抵
抗の優れたものが要求されてきた。その要望に応
えて開発されてきたものが前述の如く単層の合成
樹脂被覆PC鋼材である。 しかし、防錆力の点では優れた特性を有してい
るが摩擦抵抗に問題があり、この点の改善が望ま
れてきた。 単層の合成樹脂被覆アンボンドPC鋼材の摩擦
抵抗増大の原因はコンクリートとのすべりが合成
樹脂被覆表面とコンクリートの間で起ることか
ら、合成樹脂被覆表面の平滑度によつて決まつて
くる。 従つて、粉体塗装合成樹脂被覆アンボンドPC
鋼材加工方法の場合、その表面平滑度を得るため
にPC鋼材を軸方向に適当な回転を与えながら塗
装を行い、冷却に於いても塗料のタレをなくすた
めに回転を与えながら冷却し被覆表面の平滑を図
つている。 また、発泡粉体塗装の場合は、それに加え発泡
が被覆表面まで起らないようPC鋼材の加熱温度
をできる限り低く抑えたり、或は、樹脂発泡率を
下げる等の調整をして被覆表面の平滑度を重視し
てきたが、摩擦抵抗の点では満足なものが得られ
なかつた。 本発明は、前述の被覆表面の平滑度によつて摩
擦抵抗の減少を図るといつた発想とはまつたく異
なつた発想による合成樹脂被覆PC鋼材及びその
被覆加工方法を提供するものである。 (課題を解決するための手段) 上記の如き従来の問題を解決するための本発明
の特徴は、第一にPC鋼材の表面に合成樹脂材料
による被覆層を備えてなる合成樹脂被覆PC鋼材
において、前記被覆層のPC鋼材側を該被覆層の
外面側よりその発泡率を小さくしたことを特徴と
してなる合成樹脂被覆PC鋼材にあり、第二にPC
鋼材の表面に発泡合成樹脂粉体塗料を付着させ
て、該発泡合成樹脂材料による被覆層を形成し、
然る後、該被覆層をその外面より加熱して外面側
の発泡率を大きくさせることを特徴としてなる合
成被覆PC鋼材の被覆加工方法、及び第三にPC鋼
材の表面に発泡しない合成樹脂被覆を形成し、そ
の後その外面に発泡粉体塗料を付着させて発泡合
成樹脂被覆層を設けることを特徴としてなる合成
樹脂被覆PC鋼材の被覆加工方法にある。 (作用) 本発明方法のアンボンド被覆層PC鋼材のコン
クリートとのすべりは、従来の合成樹脂被覆のよ
うに被覆表面の平滑度によるものではなく、次の
ような作用によつてコンクリートとのすべりを生
ずる。 合成樹脂被覆表面は発泡によつて凹凸となつて
コンクリートと密着しているが、コンクリートと
のすべりは導入応力の20〜30%ぐらいでは樹脂の
伸びによつてすべりを生ずるが、それ以上の導入
応力となると発泡が最大(気泡が大きい)の部分
と発泡が最少(気泡が微少或は気泡がない場合)
の部分とでは樹脂の伸び率が変化し、気泡が大き
くなるに従つて伸び率は低下してくる。 その理由は気泡が大きいほど気泡から気泡につ
ながつて切れを生じるため伸び率限界が気泡の微
少のもの或は普通の樹脂のものと比較すると相当
に小さくなつてくる。 その現象を利用したのが本発明方法であつて、
前述の如く、導入応力20〜30%ぐらいまでは樹脂
の伸びによつてコンクリートとのすべりを生じ、
その後は発泡の最大部分(被覆厚さの1/3ぐらい
の表面上部層又は普通樹脂と発泡樹脂の境界)と
発泡最小の部分とが伸びの違いによつて分離して
発泡最大部分と発泡最少又は発泡のない部分との
間ですべりを生じるので、従来の単層の合成樹脂
被覆PC鋼材と比較して摩擦抵抗は小さくなり防
錆力はまつたく同じである。 (実施例) 次に本発明の実施例を図面につてい説明する。
第1図、第2図は本発明に係る合成樹脂被覆PC
鋼材の別々の実施例を示している。図において1
はPC鋼材であり2〜4、及び5a,5bは合成
樹脂被覆層を示している。第1図に示すものは、
PC鋼材1の表面の合成樹脂層2,3がいずれも
発泡合成樹脂材料によつて形成されており、PC
鋼材側の層2の発泡率が外面側の層3の発泡率よ
り小さくなつている。 また、第2図に示すものは、PC鋼材側の層4
が発泡しない、即ち気泡を含まない中実の合成樹
脂材料によつて形成され、表面側の層5a,5b
が発泡合成樹脂材料をもつて形成されている。そ
して、内側の発泡合成樹脂材料層5aの発泡率が
外側の層5bより小さくなつている。 次に、上述した各合成樹脂被覆PC鋼材の被覆
加工方法について説明する。まず第3図について
前述した第1図に示す合成樹脂被覆PC鋼材の被
覆加工工程を説明すると、PC鋼材1を加熱炉6
によつて所定の温度まで加熱し、流動浸漬粉体塗
装装置又は静電粉体塗装装置7にて発泡合成樹脂
材料による粉体塗装を施した後、被覆層上部の発
泡率を最大とするために加熱炉8にて被覆層表面
を高温にて加熱し、発泡が終了した後冷却槽9に
て冷却する。これによつて第1図に示す合成樹脂
被覆層PC鋼材ができ上がる。 なお、この方法における流動浸漬粉体塗装装置
は、気流によつて被着させようとする粉体合成樹
脂材料を浮遊させておき、その中に加熱された
PC鋼材1を挿通させることにより、PC鋼材1の
外面に発泡合成樹脂材料を付着させ、外面に合成
樹脂被覆層を形成するものであり、また静電粉体
塗装装置は粉体合成樹脂材料に正または負の電位
を与え、PC鋼材にその反対の電位を与え、PC鋼
材を粉体合成樹脂材料内に通し、そのPC鋼材の
外面に静電気によつて付着させるものである。 また、第4図について前述した第2図に示す合
成樹脂被覆材の被覆加工工程を説明すると、先ず
PC鋼材1を加熱炉6によつて所定の温度まで加
熱し、流動浸漬粉体塗装装置又は静電粉体塗装装
置10にて、発泡しない粉体合成樹脂材料を使用
して通常の粉体塗装を施した後、速やかにその表
面に流動浸漬粉体塗装装置又は静電粉体塗装装置
7にて発泡合成樹脂材料による粉体塗装を行い、
次いで、被覆層上部の発泡率を最大とするために
加熱炉8にて被覆層表面を高温にて加熱し、発泡
が終了した後冷却槽9にて冷却する。これによつ
て第2図に示す合成樹脂被覆層PC鋼材ができ上
がる。 なお、流動浸漬粉体塗装装置及び静電粉体塗装
装置は前述と同様である。 以上の工程で完了した本発明による被覆層断面
は、第3図に示した方法の場合は第1図に示すよ
うに被覆層の点線11の内側(PC鋼材側)が発
泡が小さく、点線11の外側(表面側)が発泡
(気泡)が大きく、従つて第5図に示すようにコ
ンクリート12内に埋め込んでPC鋼材1を矢印
の方向に引つ張るとコンクリート12内における
被覆層の分離は発泡の小さい内側の被覆層2と発
泡の大きい外面側の被覆層3が分離し、この間で
すべりを生じ摩擦抵抗が減少する。 第4図に示した方法による場合もこれと同様で
あつて、第2図に示す被覆層断面のものもこれと
同様にコンクリート内に埋め込み、PC鋼材を矢
印方向に引つ張ると中実の普通の樹脂被覆層4と
発泡樹脂被覆層5aが分離しこの間ですべりを生
じ摩擦抵抗は減少する。 なお、上述の実施例では、発泡合成樹脂材料層
を、その内側と外側で発泡率を違えているが、第
6図に示すように、PC鋼材1の表面に発泡しな
い合成樹脂被覆層4を付着させ、その外面に発泡
粉体塗料を付着させて内外が均一な発泡状態の合
成樹脂被覆層5を設けてもよいものである。 上述した本発明による合成樹脂被覆PC鋼材と
従来の合成樹脂被覆PC鋼材との摩擦抵抗を測定
したところ第1表のとおりであつた。
(Industrial Application Field) The present invention relates to prestressed concrete (hereinafter referred to as
Synthetic resin coating using foamed synthetic resin material used in the post-tensioning method (denoted as PC)
This article relates to prestressing steel materials and coating layer processing methods. (Conventional technology) Conventionally, a prestressing steel material is inserted into concrete in advance, and after the concrete hardens, the prestressing steel material is inserted into the concrete.
In the so-called post-tensioning method, which applies stress to steel by tensioning it, the prestressing steel material must be able to move within the concrete, so conventionally, unbonded prestressing steel, which has a prestressing steel material and an unbonded coating layer covering it, has been used. steel is used. Conventional unbonded coating layer processing methods for unbonded PC steel materials can be roughly divided into: (1) asphalt-based coatings applied to the surface of the PC steel material and protective tape etc. wrapped around the surface, and (2) oil-based coatings. There are methods such as coating the surface of prestressed steel on the surface of prestressed steel, and then applying a resin coating layer to the surface using an extrusion molding method.Although both methods are satisfactory in terms of frictional resistance, they lack rust prevention ability. This is becoming a problem. The reason for this is that both the asphalt type and the oil type deteriorate over time and the coating state becomes incomplete, resulting in a decrease in rust prevention durability. Therefore, in recent years, a method has been developed in which a single layer of synthetic resin coating with excellent anti-rust properties is applied to the surface of prestressed steel material and used in the post-tensioning method, but it is not effective in terms of frictional resistance. The result is that it is inferior to the conventional one. In other words, when asphalt-based material is applied to the surface of prestressed steel and protective tape is wrapped around the surface, slippage with concrete occurs because the protective tape adheres to the concrete, causing slippage between the asphalt and the protective tape. Therefore, frictional resistance is reduced, and oil-based materials are
If a resin coating is applied to the surface of a prestressed steel material and then a resin coating is applied to the surface using an extruder molding method, the slippage with concrete will occur because the resin coating adheres to the concrete and slippage occurs between the oil and resin coating. Frictional resistance is small, but in the case of recently developed PC steel materials with a single-layer synthetic resin coating layer, slipping with concrete occurs between the surface of the resin coating layer and the concrete. The frictional resistance is determined by the smoothness of the resin-coated surface, and variations in the smoothness manifest as variations in the frictional resistance. (Problems to be Solved by the Invention) Conventionally, unbonded PC steel materials have been required to have excellent rust prevention and friction resistance. As mentioned above, a single-layer synthetic resin-coated PC steel material has been developed in response to this demand. However, although it has excellent properties in terms of rust prevention, it has a problem with frictional resistance, and improvements in this point have been desired. The reason for the increase in frictional resistance of single-layer synthetic resin-coated unbonded PC steel is determined by the smoothness of the synthetic resin-coated surface, since slippage with concrete occurs between the synthetic resin-coated surface and the concrete. Therefore, powder coated synthetic resin coated unbonded PC
In the case of the steel processing method, the prestressing steel material is coated while being rotated appropriately in the axial direction in order to obtain the surface smoothness, and the coated surface is cooled while being rotated to eliminate paint sag during cooling. We are trying to smooth the area. In addition, in the case of foam powder coating, the heating temperature of the prestressing steel material must be kept as low as possible to prevent foaming from reaching the coating surface, or adjustments such as lowering the resin foaming rate may be made to improve the coating surface. Although emphasis has been placed on smoothness, it has not been possible to obtain a satisfactory result in terms of frictional resistance. The present invention provides a synthetic resin-coated PC steel material and a method for coating the same, based on a completely different idea from the above-mentioned idea of reducing frictional resistance by increasing the smoothness of the coated surface. (Means for Solving the Problems) The features of the present invention for solving the conventional problems as described above are as follows: Firstly, in a synthetic resin-coated PC steel material in which a coating layer of a synthetic resin material is provided on the surface of the PC steel material. , the synthetic resin-coated PC steel material is characterized in that the foaming rate of the PC steel material side of the coating layer is smaller than that of the outer surface side of the coating layer,
Adhering a foamed synthetic resin powder coating to the surface of the steel material to form a coating layer of the foamed synthetic resin material,
A method for coating a synthetically coated PC steel material, which is characterized in that the coating layer is then heated from its outer surface to increase the foaming rate on the outer surface side, and thirdly, a synthetic resin coating that does not foam on the surface of a PC steel material. The method of coating a synthetic resin-coated PC steel material is characterized by forming a foamed synthetic resin coating layer on the outer surface of the prestressed steel material and then applying a foamed powder coating to the outer surface thereof to form a foamed synthetic resin coating layer. (Function) The slippage of the unbonded coating layer PC steel material with concrete in the method of the present invention is not due to the smoothness of the coating surface as in the case of conventional synthetic resin coatings, but the following effects prevent the slippage with concrete. arise. The surface of the synthetic resin coating becomes uneven due to foaming and adheres closely to the concrete, but slipping with the concrete occurs due to the elongation of the resin at about 20 to 30% of the introduced stress, but if it is introduced beyond that level, it will slip. When it comes to stress, the areas with maximum foaming (large bubbles) and the least foaming (small bubbles or no bubbles)
The elongation rate of the resin changes at the portion , and as the bubbles become larger, the elongation rate decreases. The reason for this is that the larger the bubbles are, the more bubbles are connected to each other and breakage occurs, so the elongation limit is considerably smaller compared to those with very small bubbles or ordinary resins. The method of the present invention utilizes this phenomenon,
As mentioned above, when the introduced stress reaches about 20-30%, the resin stretches and slips with the concrete.
After that, the maximum foaming part (the upper surface layer of about 1/3 of the coating thickness or the boundary between normal resin and foamed resin) and the minimum foaming part are separated due to the difference in elongation, and the maximum foaming part and the minimum foaming part are separated. Otherwise, slipping occurs between the foam and the non-foamed parts, so the frictional resistance is lower than that of conventional single-layer synthetic resin-coated PC steel materials, and the rust prevention ability is exactly the same. (Example) Next, an example of the present invention will be described with reference to the drawings.
Figures 1 and 2 show a synthetic resin-coated PC according to the present invention.
3 shows different examples of steel materials. In the figure 1
2 to 4 are PC steel materials, and 5a and 5b are synthetic resin coating layers. What is shown in Figure 1 is
The synthetic resin layers 2 and 3 on the surface of the PC steel material 1 are both formed of foamed synthetic resin material, and the
The foaming rate of the layer 2 on the steel material side is smaller than the foaming rate of the layer 3 on the outer surface side. Also, what is shown in Figure 2 is the layer 4 on the PC steel material side.
is formed of a solid synthetic resin material that does not foam, that is, does not contain air bubbles, and the surface side layers 5a and 5b
is made of foamed synthetic resin material. The foaming rate of the inner foamed synthetic resin material layer 5a is smaller than that of the outer layer 5b. Next, a coating method for each of the above-mentioned synthetic resin-coated PC steel materials will be explained. First, to explain the process of coating the synthetic resin-coated PC steel material shown in FIG. 1 described above with reference to FIG.
In order to maximize the foaming rate of the upper part of the coating layer, after heating it to a predetermined temperature by using a fluidized dip powder coating device or electrostatic powder coating device 7, powder coating is performed using a foamed synthetic resin material. The surface of the coating layer is heated at a high temperature in a heating furnace 8, and after foaming is completed, it is cooled in a cooling tank 9. As a result, the synthetic resin coated PC steel material shown in FIG. 1 is completed. Note that the fluidized dip powder coating equipment used in this method suspends the powdered synthetic resin material to be coated by airflow, and then
By inserting the PC steel material 1, a foamed synthetic resin material is attached to the outer surface of the PC steel material 1, and a synthetic resin coating layer is formed on the outer surface. A positive or negative potential is applied, the opposite potential is applied to the prestressed steel material, the prestressed steel material is passed through a powdered synthetic resin material, and the prestressed steel material is attached to the outer surface of the prestressed steel material using static electricity. In addition, to explain the covering process of the synthetic resin covering material shown in Fig. 2, which was described above with reference to Fig. 4, first,
The PC steel material 1 is heated to a predetermined temperature in a heating furnace 6, and then is coated with normal powder using a non-foaming powder synthetic resin material in a fluidized dip powder coating device or an electrostatic powder coating device 10. After applying, immediately powder coating the surface with a foamed synthetic resin material using a fluidized dip powder coating device or an electrostatic powder coating device 7,
Next, the surface of the coating layer is heated at a high temperature in a heating furnace 8 in order to maximize the foaming rate in the upper part of the coating layer, and after foaming is completed, it is cooled in a cooling tank 9. As a result, the synthetic resin coated PC steel material shown in FIG. 2 is completed. Note that the fluidized immersion powder coating device and the electrostatic powder coating device are the same as those described above. In the case of the method shown in FIG. 3, the cross section of the coating layer according to the present invention completed through the above steps shows that foaming is small on the inside of the dotted line 11 of the coating layer (on the PC steel material side) as shown in FIG. The foaming (air bubbles) is large on the outside (surface side), so when the PC steel material 1 is embedded in the concrete 12 and pulled in the direction of the arrow as shown in Fig. 5, the coating layer within the concrete 12 will separate. The inner coating layer 2 with less foaming and the outer coating layer 3 with more foaming are separated, causing slippage between them and reducing frictional resistance. The method shown in Figure 4 is similar to this, and the cross-section of the coating layer shown in Figure 2 is similarly embedded in concrete, and when the PC steel material is pulled in the direction of the arrow, it becomes solid. The ordinary resin coating layer 4 and the foamed resin coating layer 5a separate and slip between them, reducing frictional resistance. In the above embodiment, the foamed synthetic resin material layer has different foaming rates on the inside and outside, but as shown in FIG. Alternatively, a foamed powder coating may be applied to the outer surface of the synthetic resin coating layer 5 to form a foamed synthetic resin coating layer 5 uniform on the inside and outside. The frictional resistance between the synthetic resin-coated PC steel material according to the present invention described above and the conventional synthetic resin-coated PC steel material was measured, and the results were as shown in Table 1.

【表】 (発明の効果) 本発明は前述の如く防錆力と摩擦抵抗に優れた
アンボンド被覆層PC鋼材であつて、長年に亘つ
てアンボンド被覆層PC鋼材に要求されてきた諸
条件を満足せしめたものである。 従つて、本発明方法を用いることによつて保護
シース等もまつたく不要となり、本発明方法アン
ボンド被覆層PC鋼材を直接コンクリートに埋没
することが可能となつて、プレストレストコンク
リート工法に於ける工費も格安となり、しかも、
樹脂被覆表面平滑度を必要としないため塗装方法
が簡易となつて生産性は向上し、工業的にも画期
的発明でありその効果は多大なものがある。
[Table] (Effects of the Invention) As mentioned above, the present invention is an unbonded coated PC steel material that has excellent rust prevention and friction resistance, and satisfies various conditions that have been required of unbonded coated PC steel materials for many years. It was forced upon me. Therefore, by using the method of the present invention, there is no need for protective sheaths, etc., and the unbonded coating layer PC steel material of the present invention can be directly buried in concrete, reducing the construction cost of the prestressed concrete method. It's cheap, and
Since smoothness of the resin coating surface is not required, the coating method is simplified and productivity is improved.This is an industrially groundbreaking invention and has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の合成樹脂被覆PC鋼
材の別々の実施例を示す断面図、第3図、第4図
は本発明の被覆加工方法の別々の実施例の加工工
程を示す工程図、第5図は本発明に係る合成樹脂
被覆PC鋼材のコンクリート内における緊張時の
状態を示す断面図、第6図は更に他の実施例の断
面図である。 1……PC鋼材、2,3,4,5,5a,5b
……合成樹脂被覆層、6……加熱炉、7……粉体
塗装装置、8……加熱炉、9……冷却槽、10…
…粉体塗装装置。
Figures 1 and 2 are cross-sectional views showing different embodiments of the synthetic resin-coated PC steel material of the present invention, and Figures 3 and 4 show processing steps of different embodiments of the coating method of the present invention. 5 is a sectional view showing the state of the synthetic resin-coated PC steel material in concrete according to the present invention under stress, and FIG. 6 is a sectional view of still another embodiment. 1...PC steel material, 2, 3, 4, 5, 5a, 5b
... Synthetic resin coating layer, 6 ... Heating furnace, 7 ... Powder coating device, 8 ... Heating furnace, 9 ... Cooling tank, 10 ...
...Powder coating equipment.

Claims (1)

【特許請求の範囲】 1 PC鋼材の表面に合成樹脂材料による被覆層
を備えてなる合成樹脂被覆PC鋼材において、前
記被覆層のPC鋼材側を該被覆層の外面側よりそ
の発泡率を小さくしたことを特徴としてなる合成
樹脂被覆PC鋼材。 2 PC鋼材の表面に発泡合成樹脂粉体塗料を付
着させて、該発泡合成樹脂材料による被覆層を形
成し、然る後、該被覆層をその外面より加熱して
外面側の発泡率を大きくさせることを特徴として
なる合成被覆PC鋼材の被覆加工方法。 3 PC鋼材の表面に発泡しない合成樹脂被覆層
を形成し、その後その外面に発泡粉体塗料を付着
させて発泡合成樹脂被覆層を設けることを特徴と
してなる合成樹脂被覆PC鋼材の被覆加工方法。
[Claims] 1. In a synthetic resin-coated PC steel material comprising a coating layer made of a synthetic resin material on the surface of the PC steel material, the foaming rate of the coating layer on the PC steel material side is lower than that on the outer surface side of the coating layer. Synthetic resin coated PC steel material is characterized by: 2 A foamed synthetic resin powder coating is applied to the surface of the PC steel material to form a coating layer made of the foamed synthetic resin material, and then the coating layer is heated from the outer surface to increase the foaming rate on the outer surface side. A coating processing method for synthetically coated PC steel material, which is characterized by: 3. A method for coating a synthetic resin-coated PC steel material, which is characterized by forming a non-foaming synthetic resin coating layer on the surface of the PC steel material, and then applying a foamed powder coating to the outer surface to provide a foamed synthetic resin coating layer.
JP29188288A 1988-11-18 1988-11-18 Synthetic resin coated pc steel material and its coating processing method Granted JPH02137920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29188288A JPH02137920A (en) 1988-11-18 1988-11-18 Synthetic resin coated pc steel material and its coating processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29188288A JPH02137920A (en) 1988-11-18 1988-11-18 Synthetic resin coated pc steel material and its coating processing method

Publications (2)

Publication Number Publication Date
JPH02137920A JPH02137920A (en) 1990-05-28
JPH0478465B2 true JPH0478465B2 (en) 1992-12-11

Family

ID=17774665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29188288A Granted JPH02137920A (en) 1988-11-18 1988-11-18 Synthetic resin coated pc steel material and its coating processing method

Country Status (1)

Country Link
JP (1) JPH02137920A (en)

Also Published As

Publication number Publication date
JPH02137920A (en) 1990-05-28

Similar Documents

Publication Publication Date Title
US3514312A (en) Process for coating a metal surface
US20120015187A1 (en) Method of making a load bearing member for an elevator system
US4661387A (en) Steel materials for use with prestressed concrete
US4776161A (en) Unbonded PC steel strand
US20080037940A1 (en) Tube for Air Blown Installation and Tube Cable Using the Same
EP0093177A1 (en) Method and apparatus for coating two sides
US4635433A (en) Unbonded PC steel strand
US4649823A (en) Mechanical bond between a solid rocket propellant composition and a substrate and a method of effecting such a bond
JPH0478465B2 (en)
CA1228998A (en) Metal strand having improved corrosion resistance and/or bonding characteristics, particularly for prestressing concrete
RU2424254C2 (en) Procedure of application of coating on pipe with bead weld
JP3930841B2 (en) Reinforcing bar with highly anti-adhesive coating and method for producing the same
US6200678B1 (en) Corrosion resistant coated metal strand
US3155530A (en) Process for producing protected metal surfaces
DE3230955C2 (en) Process for sheathing a steel pipe with a sheathing layer made of polyethylene
US5681623A (en) Process for producing electrostatic clad conduit innerduct liner
EP0146126B1 (en) A prestressed concrete member obtained by post tensioning
JPH0314487Y2 (en)
JPS5823105A (en) Cable with ant preventive sheath
KR20020074453A (en) Method and apparatus of coating a moving substrate surface
JPH10232333A (en) Optical fiber unit and its production
JPS61121927A (en) Unbonding processing of pc-steel stranded wire
JPH1077587A (en) Anticorrosive pc stranded steel cable excellent in relaxation and its production
JPS6336930B2 (en)
JPH0526176Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20071211

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20071211

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 15

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20081211

EXPY Cancellation because of completion of term