JPH0478360B2 - - Google Patents

Info

Publication number
JPH0478360B2
JPH0478360B2 JP23755784A JP23755784A JPH0478360B2 JP H0478360 B2 JPH0478360 B2 JP H0478360B2 JP 23755784 A JP23755784 A JP 23755784A JP 23755784 A JP23755784 A JP 23755784A JP H0478360 B2 JPH0478360 B2 JP H0478360B2
Authority
JP
Japan
Prior art keywords
hydrogen
containing organic
substance
viscoelastic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23755784A
Other languages
Japanese (ja)
Other versions
JPS61118200A (en
Inventor
Takeo Satake
Koichi Sano
Hiroshi Ushama
Toshitaka Ekuni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE GIKEN KK
Original Assignee
SATAKE GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE GIKEN KK filed Critical SATAKE GIKEN KK
Priority to JP59237557A priority Critical patent/JPS61118200A/en
Publication of JPS61118200A publication Critical patent/JPS61118200A/en
Publication of JPH0478360B2 publication Critical patent/JPH0478360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、ピート、有機質汚泥、有機質産業
廃棄物、セルロース等の水分含有量が多くてその
ままでは有効に利用し得ない含水素有機物を原料
にして還元剤や固体燃料等として有用なコークス
を製造するための方法に関する。 〔従来の技術〕 未利用の、又は、利用度の低い、あるいは、廃
棄処分の困難な含水素有機物は多く、この含水素
有機物の有効利用を図ることの意義は大きい。そ
して、この様な含水素有機物としては、例えば、
ピート、有機質汚泥、有機質産業廃棄物、セルロ
ースを含有するパルプ廃液等があるが、これらの
含水素有機物は含水状態で存在することが多く、
そのままでは利用価値が少ないだけでなく、焼却
処理するのも困難であり、集積場所での自然乾燥
等により予め乾燥処理してからボイラー等の燃料
として利用したり、あるいは、焼却処理している
のが実情である。 〔発明が解決しようとする問題点〕 この様な含水素有機物は、ものによつてはこれ
を乾燥処理する際に周囲に悪臭を発したり、粉塵
を発生させる等二次公害の問題をかかえ、また、
たとえこの様な乾燥処理を行つた場合であつても
含水素有機物を完全に乾燥させることは困難であ
り、そのままでは燃料等として利用できないばか
りでなく、焼却の際に重油等の他の燃料が必要に
なる等その処理に経済性が無いのが普通であり、
しかも、たとえそれが乾燥状態のものであつても
単にボイラー等の燃料として利用されているにす
ぎず、有効利用されているとはいえない。 従つて、この様な含水素有機物については、そ
の経済性を無視して処理しているのが現状であ
り、この含水素有機物を利用して付加価値の高い
ものを生産し得る方法を開発することが強く要請
されていた。 〔問題点を解決するための手段及び作用〕 本発明は、かかる観点に鑑みて創案されたもの
で、特に水素含有量の多い有機物に着目し、これ
を効率良く有効に有利するための方法を提供する
ものである。 すなわち、本発明は、多量の水分を含有する含
水素有機物に、その固形分100重量部に対して高
剪断力下に曳糸性を示す粘弾性物質20〜200重量
部を配合し、これらを高剪断力下に曳糸性を示す
状態で充分に混練して含水素有機物中の水分の多
くを遊離させて除去すると共に、粘弾性物質中に
含水素有機物が微細に分散し、かつ、塊状に成形
された塊状分散組成物を調製し、次いでこの塊状
分散組成物をその水分含有量が10重量%以下とな
るまで乾燥し、この乾燥した塊状分散組成物をコ
ークス製造用乾留炉で還元性雰囲気下に650〜
1600℃の温度で乾留するコークスの製造方法であ
り、好ましくは粘弾性物質としてコールタールピ
ツチを使用するコークスの製造方法である。 本発明において、含水素有機物とは炭素含有量
に比して水素含有量が多く、これを熱分解した際
に水素を発生して水素供与体となるものを意味
し、水分含有量が多くてそのままでは有効に利用
し得ない含水素有機物をも包含するものである。 そして、この様な含水素有機物としては、例え
ば、有機質産業廃棄物、セルロース、ピート等が
挙げられるほか、工業排水、生活排水、下水性活
排水等の排水から得られる有機質汚泥等も挙げる
ことができる。 また、この含水素有機物が微細に分散される粘
弾性物質とは、高剪断力を与えた場合に曳糸性を
示す物質であり、好ましくは常温では固体であつ
て加熱すれば、軟化する性質を有し、比較的低融
点であつて高粘性を有するものが望ましい。この
粘弾性物質としては、アタクチツクポリプロピレ
ン等の炭素含有量に比して水素含有量が比較的多
いものもあるが、経済性その他を考慮すれば好ま
しくは炭素含有量に比して水素含有量が比較的少
ないものがよく、この様な粘弾性物質としては、
例えば、石炭乾留の際に副生するコールタールピ
ツチ、石油精製の際に副生するアスフアルト、天
然に存在する炭素を主成分とするビチユーメン等
を挙げることができ、特に好ましくはコールター
ルピツチである。 本発明方法においては、上記含水素有機物に高
剪断力下に曳糸性を示す粘弾性物質を配合し、こ
れらを高剪断力下に曳糸性を示す状態で充分に混
練して含水素有機物中の水分の多くを遊離させて
除去すると共に、粘弾性物質中に含水素有機物が
微細に分散し、かつ、塊状に成形された塊状分散
組成物を調製する。 ここで、粘弾性物質中に含水素有機物を微細に
分散させた状態の塊状分散組成物とは、分散系の
中で粘弾性物質が分散媒となり、この分散媒中で
含水素有機物が微細粒子となつて分散相を形成
し、かつ混練過程でブリケツト状等の塊状に成形
された状態の組成物をいう。この様に含水有機物
を粘断性物質中に微細に分散させ、塊状に成形す
る方法としては、これら含水素有機物と粘弾性物
質とを高剪断力下に曳糸性を示す状態で充分に混
練し、含水素有機物中の水分の多くを遊離させて
除去できると共に、粘弾性物質中に含水素有機物
を微細に分散させ、かつ、塊状に成形できる方法
であれば如何なる方法であつてもよく、代表的に
は、両者を粘弾性物質の軟化点以下の温度で高剪
断力下に曳糸性を示す状態で充分に混練する方法
が挙げられる(特公昭53−37675号公報)。 上記粘弾性物質を分散媒とし含水素有機物を分
散相とする分散系を形成することにより、含水素
有機物が含水状態であるとその中の水分の多くは
分散系から遊離して除去され、これによつて次の
乾燥工程を容易にかつ有利に遂行することができ
るばかりでなく、得られた分散組成物は塊状とな
り、これを乾燥した後に還元性雰囲気下で乾留し
た際に、生成したコークスが所定の大きさを維持
した塊コークスになり、粉末状になつて取扱いづ
らくなるようなことがない。 上記含水素有機物と粘弾性物質との配合割合に
ついては、粘弾性物質を分散媒とし含水素有機物
を分散相とする分散系を形成すると共に塊状に形
成する必要があることから、含水素有機物の固形
分100重量部に対して粘弾性物質20〜200重量部を
配合する。そして、この際、上記粘弾性物質中に
含水素有機物を微細に分散させる操作を能率的に
行うために、混練性が悪いような場合には適当な
高分子分散剤を添加してもよい。また、脱硫剤と
しては、例えば消石灰、水酸化マグネシウム等の
アルカリ金属、アルカリ土類金属の酸化物、水酸
化物又は塩を含有硫黄分に対し1〜1.5モル%の
範囲内で併用することもできる。なお、これらの
アルカリ金属化合物等は脱硫剤としてのみなら
ず、熱分解促進剤としても作用することが確認さ
れている。 また、これら含水素有機物と粘弾性物質とを混
練する際に使用する装置やその際の条件として
は、粘弾性物質が混練可能な状態になる限り特に
制限はないが、混練装置としては含水素有機物及
び粘弾性物質の種類や性質等に応じて従来公知の
ものを使用することができ、また、その操業条件
については粘弾性物質が軟化する温度になるよう
に加熱する場合もある。 この様に、含水素有機物と粘弾性物質との混練
操作により含水素有機物中の水分は分離除去さ
れ、得られた塊状分散組成物中の水分含有量は通
常20〜50重量%になるまで脱水されるが、本発明
方法においては、水分含有量が10重量%以下とな
るまでこの塊状分散組成物を乾燥する。この塊状
分散組成物中の水分含有量10重量%を越えると、
次の乾留工程での熱負荷が大きくなりすぎ、ま
た、タール分やガス分の生成量が相対的に多くな
つて好ましくない。この塊状分散組成物の乾燥に
ついては、通常の加熱乾燥機等、従来公知の方法
及び装置を使用することができる。 上記の如くして得られた乾燥状態の塊状分散組
成物は還元性雰囲気下に乾留される。ここで、還
元性雰囲気下で行う乾留というのは、酸素濃度が
低く、含水素有機物と粘弾性物質の塊状分散組成
物が完全燃焼をしない条件で行われる熱分解であ
り、この含水素有機物と粘弾性物質の塊状分散組
成物を固体燃料等の種々の用途に使用することが
できる高付加価値のコークスに変換する処理をい
う。 この様な乾留の方法としては、例えば、高炉用
コークス製造と同様な乾留法があり、また、この
乾留の際の温度条件については、含水素有機物と
粘弾性物質の塊状分散組成物が如何なるものであ
るかによつても異なるが、好ましくは650〜1600
℃である。 この塊状分散組成物の乾留は、上述したように
粘弾性物質中に含水素有機物が微細に分散した状
態になつているので、均一かつ容易に起こり、塊
状分散組成物は容易にかつ効果的に固体状コーク
スに変換される。 この様にして製造されたコークスは、乾留時に
多量の揮発分が放出されて多孔質の塊状であり、
粉末状にならないのでコークス炉から容易に取り
出すことができるほか取り扱い易く、還元剤や固
体燃料等として利用でき、特に多孔質で燃焼性が
よく、しかも、燃焼時に有害ガスや臭いのあるガ
ス等が発生しないので、寒冷地でのクリーンな固
体燃料としての用途に有用である。 〔実施例〕 以下、実施例に基づいて、本発明方法を具体的
に説明する。 実施例 1〜8 含水素有機物として水分含有量92重量%の北海
道産ピート又は水分含有量92重量%のパルプ工業
廃セルロースを使用し、粘弾性物質として軟化点
35℃、炭素含有量92.3重量%のコールタールピツ
チ又は針入度60/80のアスフアルトを使用し、ま
た、脱硫剤として消石灰を使用し、これらを第1
表に示す割合で混合し、ニーダーで水分を抜出し
ながら常温で混練した。この様にして粘弾性物質
中に含水素有機物を微細に分散させ、脱水するこ
とにより上記含水素有機物中の水分を20〜50重量
%まで低下させることができた。 この様にして得られた混練物は塊状になつてお
り、これをそのまま100℃の乾燥機で水分含有量
10重量%以下に乾燥し、2メツシユの大きさに破
砕したものをコークス製造用原料とした。このコ
ークス製造用原料の組成を第1表に示す。
[Field of Industrial Application] This invention is a method for producing reducing agents and solid fuels using hydrogen-containing organic materials such as peat, organic sludge, organic industrial waste, and cellulose, which have a high water content and cannot be used effectively as they are. The present invention relates to a method for producing coke useful as such. [Prior Art] There are many hydrogen-containing organic substances that are unused, have low utilization, or are difficult to dispose of, and it is of great significance to try to utilize these hydrogen-containing organic substances effectively. Examples of such hydrogen-containing organic substances include:
There are peat, organic sludge, organic industrial waste, pulp wastewater containing cellulose, etc., but these hydrogen-containing organic substances often exist in a water-containing state,
Not only does it have little utility value as it is, but it is also difficult to incinerate it. Therefore, it is necessary to dry it in advance by natural drying at the collection site and then use it as fuel for boilers, etc., or to incinerate it. is the reality. [Problems to be solved by the invention] Some of these hydrogen-containing organic substances may cause secondary pollution problems such as emitting bad odors or generating dust when they are dried. Also,
Even if such drying treatment is performed, it is difficult to completely dry hydrogen-containing organic substances, and not only can they not be used as fuel as is, but other fuels such as heavy oil may be used when incinerated. It is normal that it is not economical to process it because it is necessary,
Moreover, even if it is in a dry state, it is merely used as fuel for boilers and the like, and cannot be said to be used effectively. Therefore, at present, such hydrogen-containing organic substances are treated without considering their economic efficiency, and it is necessary to develop a method that can produce high value-added products using these hydrogen-containing organic substances. This was strongly requested. [Means and effects for solving the problem] The present invention was devised in view of this point of view, and focuses particularly on organic substances with a high hydrogen content, and provides a method for efficiently and effectively benefiting organic substances. This is what we provide. That is, in the present invention, 20 to 200 parts by weight of a viscoelastic substance that exhibits stringiness under high shear force is blended with a hydrogen-containing organic material containing a large amount of water per 100 parts by weight of its solid content. By thoroughly kneading the material while exhibiting stringiness under high shearing force, most of the moisture in the hydrogen-containing organic matter is liberated and removed, and the hydrogen-containing organic matter is finely dispersed in the viscoelastic material and is formed into lumps. A lumpy dispersion composition is prepared, and then this lumpy dispersion composition is dried until its water content becomes 10% by weight or less, and this dried lumpy dispersion composition is reducible in a carbonization furnace for coke production. 650~ under atmosphere
This is a coke production method that involves carbonization at a temperature of 1600°C, preferably using coal tar pitch as the viscoelastic substance. In the present invention, a hydrogen-containing organic substance is one that has a high hydrogen content compared to carbon content, and when it is thermally decomposed, generates hydrogen and becomes a hydrogen donor. It also includes hydrogen-containing organic substances that cannot be effectively utilized as they are. Examples of such hydrogen-containing organic substances include organic industrial waste, cellulose, peat, etc., as well as organic sludge obtained from wastewater such as industrial wastewater, domestic wastewater, and sewage wastewater. can. In addition, the viscoelastic substance in which the hydrogen-containing organic substance is finely dispersed is a substance that exhibits stringiness when high shear force is applied, and preferably has the property of being solid at room temperature and softening when heated. It is desirable to have a relatively low melting point and high viscosity. Some viscoelastic materials have a relatively high hydrogen content compared to the carbon content, such as atactic polypropylene, but if economic efficiency and other considerations are taken into consideration, it is preferable that the hydrogen content is relatively high compared to the carbon content. A viscoelastic substance with a relatively small amount of
Examples include coal tar pitch produced as a by-product during coal carbonization, asphalt produced as a by-product during petroleum refining, and bitumen whose main component is naturally occurring carbon. Particularly preferred is coal tar pitch. . In the method of the present invention, a viscoelastic substance that exhibits stringiness under high shear force is blended with the above-mentioned hydrogen-containing organic substance, and these are sufficiently kneaded in a state that exhibits stringiness under high shear force to form the hydrogen-containing organic substance. A bulk dispersion composition is prepared in which most of the moisture contained therein is liberated and removed, and the hydrogen-containing organic substance is finely dispersed in the viscoelastic substance and is shaped into a block. Here, a bulk dispersion composition in which a hydrogen-containing organic substance is finely dispersed in a viscoelastic substance means that the viscoelastic substance serves as a dispersion medium in the dispersion system, and in this dispersion medium, the hydrogen-containing organic substance is finely dispersed. This refers to a composition that forms a dispersed phase and is formed into a lump shape such as a briquette during the kneading process. In this way, the method of finely dispersing a hydrous organic substance in a viscous substance and molding it into a lump is to thoroughly knead the hydrogen-containing organic substance and a viscoelastic substance under high shear force in a state that exhibits stringiness. However, any method may be used as long as it is capable of liberating and removing most of the moisture in the hydrogen-containing organic substance, finely dispersing the hydrogen-containing organic substance in the viscoelastic substance, and molding it into a lump. A typical method is to sufficiently knead both materials under high shear force at a temperature below the softening point of the viscoelastic material in a state that exhibits stringiness (Japanese Patent Publication No. 37675/1983). By forming a dispersion system in which the above-mentioned viscoelastic substance is used as a dispersion medium and a hydrogen-containing organic substance as a dispersed phase, when the hydrogen-containing organic substance is in a hydrated state, most of the water in it is liberated from the dispersion system and removed. Not only can the next drying process be carried out easily and advantageously, but also the obtained dispersion composition becomes a lump, and when it is dried and carbonized under a reducing atmosphere, the coke produced can be removed. becomes lump coke that maintains a predetermined size, and does not become powdery and difficult to handle. Regarding the blending ratio of the above-mentioned hydrogen-containing organic substance and viscoelastic substance, it is necessary to form a dispersion system in which the viscoelastic substance is the dispersion medium and the hydrogen-containing organic substance is the dispersed phase, and it is necessary to form the hydrogen-containing organic substance in a lump. 20 to 200 parts by weight of a viscoelastic substance is blended with 100 parts by weight of solid content. At this time, in order to efficiently perform the operation of finely dispersing the hydrogen-containing organic substance in the viscoelastic substance, an appropriate polymeric dispersant may be added if kneading properties are poor. In addition, as a desulfurizing agent, for example, an alkali metal or alkaline earth metal oxide, hydroxide or salt such as slaked lime or magnesium hydroxide may be used in combination within the range of 1 to 1.5 mol% based on the sulfur content. can. It has been confirmed that these alkali metal compounds act not only as desulfurizing agents but also as thermal decomposition accelerators. In addition, there are no particular restrictions on the equipment and conditions used to knead these hydrogen-containing organic substances and viscoelastic substances as long as the viscoelastic substances can be kneaded. Conventionally known materials can be used depending on the type and properties of the organic substance and viscoelastic substance, and the operating conditions may include heating to a temperature that softens the viscoelastic substance. In this way, the water in the hydrogen-containing organic material is separated and removed by kneading the hydrogen-containing organic material and the viscoelastic material, and the water content in the resulting bulk dispersion composition is usually dehydrated until the water content is 20 to 50% by weight. However, in the method of the present invention, the bulk dispersion composition is dried until the water content becomes 10% by weight or less. If the water content in this bulk dispersion composition exceeds 10% by weight,
The heat load in the next carbonization step becomes too large, and the amount of tar and gas produced becomes relatively large, which is undesirable. For drying this bulk dispersion composition, conventionally known methods and devices such as a common heating dryer can be used. The dry bulk dispersion composition obtained as described above is carbonized under a reducing atmosphere. Here, carbonization carried out under a reducing atmosphere is thermal decomposition carried out under conditions where the oxygen concentration is low and the bulk dispersion composition of the hydrogen-containing organic substance and the viscoelastic substance is not completely combusted. A process that converts a bulk dispersion composition of a viscoelastic substance into high value-added coke that can be used in various applications such as solid fuel. As a method of such carbonization, for example, there is a carbonization method similar to that used in the production of coke for blast furnaces, and the temperature conditions during this carbonization are such that the bulk dispersion composition of the hydrogen-containing organic substance and the viscoelastic substance is Preferably 650 to 1600, although it depends on
It is ℃. As mentioned above, the hydrogen-containing organic matter is finely dispersed in the viscoelastic material, so carbonization of this bulk-dispersed composition occurs uniformly and easily, and the bulk-dispersed composition can be easily and effectively Converted to solid coke. The coke produced in this way is porous and lumpy due to the release of a large amount of volatile matter during carbonization.
Since it does not turn into powder, it can be easily removed from the coke oven and is easy to handle, and can be used as a reducing agent or solid fuel. It is particularly porous and has good combustibility, and does not emit harmful or odor gases when burned. Since it does not emit gas, it is useful as a clean solid fuel in cold regions. [Example] Hereinafter, the method of the present invention will be specifically explained based on Examples. Examples 1 to 8 Hokkaido peat with a moisture content of 92% by weight or pulp industry waste cellulose with a moisture content of 92% by weight was used as the hydrogen-containing organic substance, and the softening point was determined as the viscoelastic substance.
Coal tar pitch with a carbon content of 92.3% by weight or asphalt with a penetration degree of 60/80 was used at 35°C, and slaked lime was used as a desulfurizing agent.
They were mixed in the proportions shown in the table and kneaded at room temperature while removing moisture using a kneader. By finely dispersing the hydrogen-containing organic substance in the viscoelastic material and dehydrating it in this manner, it was possible to reduce the water content in the hydrogen-containing organic substance to 20 to 50% by weight. The kneaded material obtained in this way is in the form of a lump, and this is directly dried in a dryer at 100℃ to reduce the moisture content.
The material was dried to 10% by weight or less and crushed into 2 mesh pieces, which was used as a raw material for coke production. The composition of this raw material for coke production is shown in Table 1.

【表】 次に、以上の様にして得られたコークス製造用
原料100重量部をアソブ式電気乾留炉に装入し、
装入嵩密度0.7t/m3、昇温速度10℃/3分、炉の
温度1100℃に到達後2時間の条件で乾留し、ブリ
ケツトの乾留を行つた。得られた乾留生成物の生
成割合を第2表に示すと共に、得られたコークス
及びタール分の元素分析値を第3表に示し、ま
た、ガス分の成分組成を第4表に示す。 第2表ないし第4表の結果から明らかように、
粘弾性物質としてコールタールピツチを使用した
場合には炭素分の多いコークスの生成量が50%を
越えており、また、粘弾性物質としてアスフアル
トを使用した場合においてもコークスの生成量が
35〜40%の割合で得られることが判明した。
[Table] Next, 100 parts by weight of the raw material for coke production obtained as described above was charged into an assembling type electric carbonization furnace.
The briquettes were carbonized under the following conditions: charging bulk density 0.7 t/m 3 , heating rate 10° C./3 minutes, and 2 hours after the furnace temperature reached 1100° C. Table 2 shows the production ratio of the obtained carbonized product, Table 3 shows the elemental analysis values of the coke and tar components, and Table 4 shows the composition of the gas components. As is clear from the results in Tables 2 to 4,
When coal tar pitch is used as the viscoelastic material, the amount of coke produced with a high carbon content exceeds 50%, and even when asphalt is used as the viscoelastic material, the amount of coke produced is
It turned out that it is obtained at a rate of 35-40%.

【表】【table】

【表】【table】

【表】 実施例 9 含水素有機物として水分含有量92重量%の北海
道産ピートを使用し、粘弾性物質として針入度15
0/200のビチユーメンを使用し、上記実施例と同
様に、ニーダーで水分を抜出しながら常温で混練
した。この様にして粘弾性物質中に含水素有機物
を微細に分散させ、脱水することにより上記含水
素有機物中の水分を約90重量%まで低下させた。 この様にして得られた混練物は塊状になつてお
り、これをそのまま100℃の乾燥機で水分含有量
10重量%まで乾燥し、コークス製造用原料として
平均20mmφ×4mmHの大きさのブリケツト形状の
塊状分散組成物を得た。 このコークス製造用原料を上記実施例と同様に
して乾留した結果、乾留生成物の生成割合は安水
16.8%、タール分20.2%、NH30.16%、ガス分
18.9%、ガス中のS分0.47%及びコークス分40.0
%であり、得られたコークスは平均18mmφ×37mm
Hの大きさのブリケツト形状を維持していた。 〔発明の効果〕 本発明によれば、従来においては全く有効に利
用されていないか、あるいは、経済性を無視して
二次公害を引起さないように処理されているに過
ぎなかつた利用価値の低い含水素有機物を原料に
して、付加価値の高い還元剤や固体燃料等として
有用な、特に多孔質塊状であつて取り扱い易く、
燃焼性やクリーン性に優れていて寒冷地での固体
燃料として有用なコークスを製造することができ
る。
[Table] Example 9 Hokkaido peat with a moisture content of 92% by weight was used as the hydrogen-containing organic substance, and the penetration depth was 15 as the viscoelastic substance.
0/200 bityumen was used and kneaded at room temperature while removing water with a kneader in the same manner as in the above example. In this way, the hydrogen-containing organic substance was finely dispersed in the viscoelastic material and dehydrated to reduce the water content in the hydrogen-containing organic substance to about 90% by weight. The kneaded material obtained in this way is in the form of a lump, and this is directly dried in a dryer at 100℃ to reduce the moisture content.
The mixture was dried to 10% by weight to obtain a briquette-shaped mass dispersion composition with an average size of 20 mmφ x 4 mmH as a raw material for coke production. As a result of carbonizing this raw material for coke production in the same manner as in the above example, the production ratio of the carbonization product was
16.8%, tar content 20.2%, NH 3 0.16%, gas content
18.9%, S content in gas 0.47% and coke content 40.0
%, and the obtained coke has an average size of 18mmφ×37mm
The briquette shape of size H was maintained. [Effects of the Invention] According to the present invention, utility values that have not been utilized effectively at all in the past or have been treated in a way that does not cause secondary pollution, ignoring economic efficiency. Made from low hydrogen-containing organic matter, it is useful as a high value-added reducing agent, solid fuel, etc., and is particularly porous and easy to handle.
It is possible to produce coke that has excellent combustibility and cleanliness and is useful as a solid fuel in cold regions.

Claims (1)

【特許請求の範囲】 1 多量の水分を含有する含水素有機物に、その
固形分100重量部に対して高剪断力下に曳糸性を
示す粘弾性物質20〜200重量部を配合し、これら
を高剪断力下に曳糸性を示す状態で充分に混練し
て含水素有機物中の水分の多くを遊離させて除去
すると共に、粘弾性物質中に含水素有機物が微細
に分散し、かつ、塊状に成形された塊状分散組成
物を調製し、次いでこの塊状分散組成物をその水
分含有量が10重量%以下となるまで乾燥し、この
乾燥した塊状分散組成物をコークス製造用乾留炉
で還元性雰囲気下に650〜1600℃の温度で乾留す
ることを特徴とするコークスの製造方法。 2 粘弾性物質がコールタールピツチである特許
請求の範囲第1項記載のコークスの製造方法。
[Claims] 1. A hydrogen-containing organic material containing a large amount of water is blended with 20 to 200 parts by weight of a viscoelastic substance that exhibits stringiness under high shear force per 100 parts by weight of its solid content. is sufficiently kneaded under high shear force in a state that exhibits stringiness to liberate and remove most of the water in the hydrogen-containing organic substance, and at the same time, the hydrogen-containing organic substance is finely dispersed in the viscoelastic substance, and A lump-shaped dispersion composition is prepared, and then this lump-dispersion composition is dried until its water content becomes 10% by weight or less, and the dried lump-dispersion composition is reduced in a carbonization furnace for coke production. A method for producing coke, which is characterized by carbonization at a temperature of 650 to 1600°C in a neutral atmosphere. 2. The method for producing coke according to claim 1, wherein the viscoelastic substance is coal tar pitch.
JP59237557A 1984-11-13 1984-11-13 Decomposition treatment of hydrogenous organic material Granted JPS61118200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237557A JPS61118200A (en) 1984-11-13 1984-11-13 Decomposition treatment of hydrogenous organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237557A JPS61118200A (en) 1984-11-13 1984-11-13 Decomposition treatment of hydrogenous organic material

Publications (2)

Publication Number Publication Date
JPS61118200A JPS61118200A (en) 1986-06-05
JPH0478360B2 true JPH0478360B2 (en) 1992-12-10

Family

ID=17017082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237557A Granted JPS61118200A (en) 1984-11-13 1984-11-13 Decomposition treatment of hydrogenous organic material

Country Status (1)

Country Link
JP (1) JPS61118200A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344163A (en) * 1976-10-05 1978-04-20 Toshiba Corp Gate control circuit of gate turn-of gate turn-off thyristor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344163A (en) * 1976-10-05 1978-04-20 Toshiba Corp Gate control circuit of gate turn-of gate turn-off thyristor

Also Published As

Publication number Publication date
JPS61118200A (en) 1986-06-05

Similar Documents

Publication Publication Date Title
RU2128685C1 (en) Solid fuel product and method of formation thereof
US4111755A (en) Method of producing pelletized fixed sulfur fuel
Lahijani et al. Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes
WO2019200424A1 (en) Method of producing solid composites
CN109607529A (en) A kind of essence/distillation waste prepares molding carbon-based material and preparation method thereof
KR100918945B1 (en) Accelerant composition for producing fuel from sluge and method for preparing thereof, and sludge solid fuel produced by using the same
US4690914A (en) Process for the preparation of an absorbing and adsorbing agent; and the product produced therefrom
WO2018155955A1 (en) Method for producing solid fuel molding of organic sludge, produced by using combustible dry distillation gas of waste
KR100768591B1 (en) A new solid fuel like bituminous coal from organic sludge and preparation method thereof
WO2007089046A1 (en) Coal/biomass composite fuel
JPH0478360B2 (en)
US4259085A (en) Pelletized fixed sulfur fuel
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
KR100930055B1 (en) Solid fuel manufacturing method using food waste
JPH11323359A (en) Preparation of solid fuel using sewage sludge as raw material
CN104926073A (en) Method for preparing desulfurizer by utilizing municipal sludge
RU2601316C1 (en) Method for production of briquettes
WO1987000855A1 (en) Inorganic clay-containing coal briquettes and methods for production thereof
RU2535473C1 (en) Production procedure of petroleum coke with low content of sulphur oxides in combustion gases
CN1033756C (en) Water-proof high-intensity coal binder
KR880002515B1 (en) Process for the preparation of solid fuels
RU2560186C1 (en) Fuel briquette
RU83503U1 (en) FUEL BRIQUETTE
CN105925332B (en) A kind of efficiency of sulfur retention composite adhesive for briquette
CN112479529B (en) Dry distillation process for treating oil sludge