JPH0477752B2 - - Google Patents

Info

Publication number
JPH0477752B2
JPH0477752B2 JP22555184A JP22555184A JPH0477752B2 JP H0477752 B2 JPH0477752 B2 JP H0477752B2 JP 22555184 A JP22555184 A JP 22555184A JP 22555184 A JP22555184 A JP 22555184A JP H0477752 B2 JPH0477752 B2 JP H0477752B2
Authority
JP
Japan
Prior art keywords
compound
formula
reaction
ketomilbemycin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22555184A
Other languages
Japanese (ja)
Other versions
JPS61103884A (en
Inventor
Kazuo Sato
Takao Otsu
Shigeru Mio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP22555184A priority Critical patent/JPS61103884A/en
Priority to IL76816A priority patent/IL76816A/en
Priority to AU49045/85A priority patent/AU574852B2/en
Priority to IL85820A priority patent/IL85820A/en
Priority to NZ213972A priority patent/NZ213972A/en
Priority to ES548244A priority patent/ES8703475A1/en
Priority to ZA858197A priority patent/ZA858197B/en
Priority to DK492785A priority patent/DK161705C/en
Priority to KR1019850007942A priority patent/KR930005333B1/en
Priority to AT85307782T priority patent/ATE49001T1/en
Priority to CA000494017A priority patent/CA1267890A/en
Priority to DE8585307782T priority patent/DE3574974D1/en
Priority to EP85307782A priority patent/EP0184308B1/en
Publication of JPS61103884A publication Critical patent/JPS61103884A/en
Priority to US07/115,642 priority patent/US4835290A/en
Priority to IL85820A priority patent/IL85820A0/en
Priority to DK267190A priority patent/DK267190A/en
Priority to US07/644,880 priority patent/US5208349A/en
Publication of JPH0477752B2 publication Critical patent/JPH0477752B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、殺ダニ剤、殺虫剤および駆虫剤合成
の重要な中間体である、下記の一般式()で表
わされる化合物の製法および、一般式()で表
わされる化合物に関するものである。 上記式中、R1はメチル基、エチル基、イソプ
ロピル基またはsec−ブチル基を示し、R2は水素
原子または低級アルキル基を示す。 上記の式()の化合物は、米国特許第
4423209号により公知の化合物であつて、殺ダニ
剤、殺虫剤および駆虫剤合成の重要な中間体であ
る。 上記の米国特許によれば、式()式の化合物
は、13−ヒドロキシ−5−メトキシミルベマイシ
ン類を酢酸水銀で処理し、生成するエノールエー
テルを酸で処理することにより得られる。しかし
ながら、この方法は、原料入手性、反応温度等の
反応条件、収率等の面で難点があり、加えて、水
酸化合物を使用することから、公害対策の配慮が
必要であつて、式()の化合物の大量合成法と
しては満足すべき方法ではない。 本発明者等は、式()の化合物の合成中間体
としての重要性に鑑みて、これを有利に製造する
方法について種々検討の結果、下記一般式()
で表わされる化合物を、下記一般式()で表わ
されるカルボン酸の存在下に、二酸化セレンで処
理することにより効率よく式()の化合物を製
造することを見出した。 R2−COOH () 上記式中、R1およびR2は前記したものと同意
義である。 本発明の原料である式()の化合物は、特開
昭59−103785号および前記米国特許に記載された
公知化合物である。 本発明の方法によれば、式()の化合物を、
式()のカルボン酸の存在下に、二酸化セレン
で処理することにより、その13位が位置選択的に
アリル酸化される。 式()のカルボン酸のR2が低級アルキル基
であるとき、R2は好適には炭素原子数1ないし
4個を有する直鎖または分岐鎖状のアルキル基で
あり、たとえばメチル、エチル、プロピル、イソ
プロピル、ブチル、イソブチルである。式()
のカルボン酸は、好適にはギ酸および酢酸、さら
に好適にはギ酸である。 本発明の方法において、式()の化合物が式
()のカルボン酸の存在下に、二酸化セレンで
酸化されると、通常、式()および式()の
化合物が同時に生成される。その比率は、反応条
件、ことに式()のカルボン酸の種類、二酸化
セレンの量等により大幅に変わり、たとえばギ酸
を使用すると、式()の化合物の生成量が大き
くなる。式()の化合物は新規であり、それ自
体も若干の殺ダニ活性を有するが、13位にカルボ
ニル基もしくはホルミル基等の反応性に富む官能
基を有しているので、さらに活性が強い化合物へ
誘導するための中間体としても重要である。 式()の化合物の取得を目的とする場合に
は、それ故、本発明の方法の反応物(通常は、前
述のとおり、式()の化合物との混合物であ
る)を、単離しもしくは単離することなしに、加
水分解反応に付して、その全量を式()の化合
物とするができる。 式()の化合物の取得を目的とする場合に
は、本発明の方法の反応物を、カラム・クロマト
グラフイー等の通常の精製方法で分離・精製すれ
ばよい。 式()と式()の化合物の反応において、
式()のカルボン酸は、式()の化合物1モ
ルに対して通常1モル以上使用される。式()
のカルボン酸を大過剰量用いて、反応溶媒を兼ね
ても差支えなく、このことは本発明の有利な態様
である。 溶媒として、前記カルボン酸以外のものを使用
するときは、本応に不活性である限り、ことに限
定はなく、たとえば、ヘキサン、ベンゼンのよう
な炭化水素類、塩化メチレン、クロロホルムのよ
うなハロゲン化炭化水素類、ジエチルエーテル、
テトラヒドロフラン、ジオキサンのようエーテル
類、メタノール、エタノールのようなアルコール
類、酢酸エチル、酢酸アミルのようなエステル
類、N,N−ジメチルホルムアミド、N,N−ジ
メチルアセトアミドのようなアミド類、ジメチル
スルホキシドおよび水、並びにこれらの溶媒の混
合物があげられる。 二酸化セレンの使用量は、式()の化合物1
モルに対して、通常1ないし10倍モル、好適には
1ないし3倍モルである。 反応温度および反応時間はとくに限定はなく、
0℃ないし80℃、好適には、室温ないし、若干加
温下に30分ないし一昼夜程度、反応が行われる。 反応終了後、反応物は通常の方法で処理され
る。たとえば、反応液からセレン化合物を去
し、液から適当な有機溶媒で生成物を抽出し、
濃縮することにより、式()および()の混
合物が粗生成物として得られる。 所望により式()の化合物を加水分解するに
は、上記の反応混合物を単離し、もしくは単離す
ることなく、通常の加水分解反応に付せばよい。 式()の化合物は、通常の加水分解条件下で
は悪影響を受けることなく、そのまま保たれるの
で、加水分解反応に際して、事前に単離しておく
必要はない。 加水分解は、酸もしくは塩基の存在下に溶媒中
で行なわれる。使用される酸としては、たとえ
ば、塩酸、硝酸、硫酸等の鉱酸、好ましくは塩酸
が挙げられ、また、塩基としては、酢酸ナトリウ
ム、酢酸カリウム、炭酸水素ナトリウム、炭酸ナ
トリウム、炭酸カリウム等があげられる。 溶媒は反応に関与しないものであれば、とくに
限定はなく、上記反応に使用されたカルボン酸が
引続き使用できる他、メタノール、エタノール、
プロパノールのようなアルコール類、ジエチルエ
ーテル、テトラヒドロフラン、ジオキサンのよう
なエーテル類および水、並びにこれらの溶媒の混
合物が使用される。 反応温度および反応時間はとくに限定はなく、
通常、−10℃ないし100℃、好適には0℃ないし50
℃で30分ないし15時間、好適には1ないし8時間
反応が行なわれる。 加水分解後、式()の化合物は、常法に従つ
て反応混合物より容易に採取することができる。 たとえば、反応混合物を水に注ぎ、必要ならば
不溶物を別後、液を中和し、水不混和性溶媒
で抽出する。抽出液を乾燥後、溶媒を留去するこ
とにより、式()の化合物が得られる。さらに
必要に応じて、式()の化合物は再結晶、カラ
ムクロマトグラフイー等の常法によつて精製する
こともできる。 本発明の方法を実施例により更に具体的に説明
する。 実施例 1 13−ヒドロキシ−5−ケトミルベマイシンA4
(R1=C2H5) 5−ケトミルベマイシンA4(2.0g)のギ酸溶液
(25ml)に二酸化セレン(0.56g)を加え、40℃
で2時間撹拌する。反応終了後、反応液にセライ
トを加え、セレン化合物を別する。液を水に
あけ、酢酸エチルで抽出し、抽出液を硫酸マグネ
シウムで乾燥後濃縮すると、1部13−ヒドロキシ
体を含む13−ホルミルオキシ−5−ケトミルベマ
イシンA4の粗生成物を得る。この粗生成物に、
メタノール(120ml)、2規定塩酸水(20ml)、1,
4−ジオキサン(30ml)を加え、室温で5時間撹
拌する。反応終了後、反応液を水にあけ、酢酸エ
チルで抽出する。有機層を硫酸マグネシウムで乾
燥後、濃縮し、残渣をカラムクロマトグラフイー
により精製すると、掲記化合物1.03gを得る。収
率50%。 質量スペクトル(m/e);556(M+)、538(M+
−18) 核磁気共鳴スペクトル(CDCl3)δppm: 1.59(s,3H,C14CH3) 1.88(s,3H,C4CH3) 3.08(dt,1H,C25H,J=2.6,9.7Hz) 3.5〜3.65(m,2H,C17H,C2H) 3.74(d,1H,C13H,J=10Hz) 3.86(s,1H,C6H) 4.0(s,1H,C7OH) 4.65〜4.85(m,2H,C8CH2) 5.25(t,1H,C15H,J=8.1Hz) 5.35〜5.5(m,2H,C19H,C11H) 5.75〜5.9(m,2H,C10H,C9H) 6.55(m,1H,C3H) 実施例 2 13−ヒドロキシ−5−ケトミルベマイシンDと
13−シセトキシ−5−ケトミルベマイシンD
(R1=i−C3H7) 5−ケトミルベマイシンD(0.56g)の酢酸溶
液(10ml)に二酸化セレン(0.22g)を加え、40
℃で1時間撹拌する。反応終了後、反応液にセラ
イトを加え、セレン化合物を別する。液を水
にあけ、酢酸エチルで抽出し、抽出液を重そう水
で洗い硫酸マグネシウムで乾燥濃縮後、残渣をカ
ラムクロマトグラフイーにより精製すると、13−
アセトキシ−5−ケトミルベマイシンD0.12g
(収率21%)と13−ヒドロキシ−5−ケトミルベ
マイシンD0.18g(収率32%)を得る。 13−アセトキシ体 赤外線吸収スペクトルνKBr nax:3480,1740,
1715,1685,1460cm-1 質量スペクトル(m/e):612(M+)、594(M+
−18) 核磁気共鳴スペクトル(CDCl3)δppm: 1.55(s,3H,C14CH3) 1.90(s,3H,C4CH3) 2.05(s)および2.07(s)(3H,
The present invention relates to a method for producing a compound represented by the following general formula (), which is an important intermediate in the synthesis of acaricides, insecticides, and anthelmintic agents, and to the compound represented by the general formula (). In the above formula, R 1 represents a methyl group, ethyl group, isopropyl group, or sec-butyl group, and R 2 represents a hydrogen atom or a lower alkyl group. The compound of formula () above is disclosed in U.S. Pat.
4423209 and is an important intermediate in the synthesis of acaricides, insecticides and anthelmintics. According to the above-mentioned US patent, compounds of formula ( ) can be obtained by treating 13-hydroxy-5-methoxymilbemycins with mercuric acetate and treating the resulting enol ether with acid. However, this method has drawbacks in terms of availability of raw materials, reaction conditions such as reaction temperature, yield, etc. In addition, since a hydroxide compound is used, consideration must be given to pollution control. This is not a satisfactory method for mass synthesis of the compound (). In view of the importance of the compound of formula () as a synthetic intermediate, the present inventors have conducted various studies on an advantageous method for producing the compound, and have found the following general formula ()
It has been discovered that the compound represented by formula () can be efficiently produced by treating the compound represented by formula () with selenium dioxide in the presence of a carboxylic acid represented by the following general formula (). R 2 —COOH () In the above formula, R 1 and R 2 have the same meanings as described above. The compound of formula () which is a raw material of the present invention is a known compound described in JP-A-59-103785 and the above-mentioned US patent. According to the method of the invention, a compound of formula ()
By treatment with selenium dioxide in the presence of a carboxylic acid of formula (), the 13th position is regioselectively allyl oxidized. When R 2 in the carboxylic acid of formula () is a lower alkyl group, R 2 is preferably a straight or branched alkyl group having 1 to 4 carbon atoms, such as methyl, ethyl, propyl. , isopropyl, butyl, isobutyl. formula()
The carboxylic acid is preferably formic acid and acetic acid, more preferably formic acid. In the method of the present invention, when a compound of formula () is oxidized with selenium dioxide in the presence of a carboxylic acid of formula (), compounds of formula () and formula () are generally produced simultaneously. The ratio varies considerably depending on the reaction conditions, especially the type of carboxylic acid of formula (), the amount of selenium dioxide, etc. For example, when formic acid is used, the amount of the compound of formula () produced is large. The compound of formula () is new and has some acaricidal activity itself, but it has a highly reactive functional group such as a carbonyl group or formyl group at the 13th position, so it is a compound with even stronger activity. It is also important as an intermediate for inducing If the aim is to obtain a compound of formula (), the reactants of the process of the invention (usually in a mixture with a compound of formula (), as mentioned above) are therefore isolated or isolated. The entire amount can be converted into a compound of formula () by subjecting it to a hydrolysis reaction without separating it. When the purpose is to obtain a compound of formula (), the reaction product of the method of the present invention may be separated and purified by a conventional purification method such as column chromatography. In the reaction of formula () and compound of formula (),
The carboxylic acid of formula () is usually used in an amount of 1 mol or more per 1 mol of the compound of formula (). formula()
It is possible to use a large excess amount of the carboxylic acid to also serve as a reaction solvent, and this is an advantageous embodiment of the present invention. When using a solvent other than the above-mentioned carboxylic acid, there is no particular limitation as long as it is inert, for example, hydrocarbons such as hexane and benzene, halogens such as methylene chloride, and chloroform. hydrocarbons, diethyl ether,
Ethers such as tetrahydrofuran and dioxane, alcohols such as methanol and ethanol, esters such as ethyl acetate and amyl acetate, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, dimethylsulfoxide and Mention may be made of water as well as mixtures of these solvents. The amount of selenium dioxide used is compound 1 of formula ()
The amount is usually 1 to 10 times the mole, preferably 1 to 3 times the mole. The reaction temperature and reaction time are not particularly limited;
The reaction is carried out at 0°C to 80°C, preferably at room temperature or with slight heating for about 30 minutes to overnight. After the reaction is complete, the reactants are treated in a conventional manner. For example, remove the selenium compound from the reaction solution, extract the product from the solution with an appropriate organic solvent,
Upon concentration, a mixture of formulas () and () is obtained as a crude product. In order to optionally hydrolyze the compound of formula (), the above reaction mixture may be isolated or subjected to a conventional hydrolysis reaction without isolation. The compound of formula () remains intact under normal hydrolysis conditions without being adversely affected, so it is not necessary to isolate it before the hydrolysis reaction. Hydrolysis is carried out in a solvent in the presence of an acid or base. Examples of acids used include mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid, preferably hydrochloric acid; examples of bases include sodium acetate, potassium acetate, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, etc. It will be done. The solvent is not particularly limited as long as it does not participate in the reaction, and in addition to the carboxylic acid used in the above reaction, methanol, ethanol,
Alcohols such as propanol, ethers such as diethyl ether, tetrahydrofuran, dioxane and water, as well as mixtures of these solvents are used. The reaction temperature and reaction time are not particularly limited;
Usually -10°C to 100°C, preferably 0°C to 50°C
The reaction is carried out at 0.degree. C. for 30 minutes to 15 hours, preferably 1 to 8 hours. After hydrolysis, the compound of formula () can be easily recovered from the reaction mixture according to conventional methods. For example, the reaction mixture is poured into water, and if necessary, after separating off insoluble materials, the liquid is neutralized and extracted with a water-immiscible solvent. After drying the extract, the solvent is distilled off to obtain a compound of formula (). Furthermore, if necessary, the compound of formula () can be purified by conventional methods such as recrystallization and column chromatography. The method of the present invention will be explained in more detail with reference to Examples. Example 1 13-Hydroxy-5-ketomilbemycin A 4
(R 1 = C 2 H 5 ) Selenium dioxide (0.56 g) was added to a formic acid solution (25 ml) of 5-ketomilbemycin A 4 (2.0 g), and the mixture was heated at 40°C.
Stir for 2 hours. After the reaction is completed, celite is added to the reaction solution to separate the selenium compound. The solution is poured into water, extracted with ethyl acetate, and the extract is dried over magnesium sulfate and concentrated to obtain a crude product of 13-formyloxy-5-ketomilbemycin A4 containing a portion of 13-hydroxy compound. In this crude product,
Methanol (120ml), 2N hydrochloric acid (20ml), 1,
Add 4-dioxane (30 ml) and stir at room temperature for 5 hours. After the reaction is complete, the reaction solution is poured into water and extracted with ethyl acetate. The organic layer is dried over magnesium sulfate, concentrated, and the residue is purified by column chromatography to obtain 1.03 g of the above compound. Yield 50%. Mass spectrum (m/e); 556 (M + ), 538 (M +
−18) Nuclear magnetic resonance spectrum (CDCl 3 ) δppm: 1.59 (s, 3H, C 14 CH 3 ) 1.88 (s, 3H, C 4 CH 3 ) 3.08 (dt, 1H, C 25 H, J = 2.6, 9.7 Hz) 3.5 to 3.65 (m, 2H, C 17 H, C 2 H) 3.74 (d, 1H, C 13 H, J=10Hz) 3.86 (s, 1H, C 6 H) 4.0 (s, 1H, C 7 OH) 4.65 to 4.85 (m, 2H, C 8 CH 2 ) 5.25 (t, 1H, C 15 H, J = 8.1Hz) 5.35 to 5.5 (m, 2H, C 19 H, C 11 H) 5.75 to 5.9 ( m, 2H, C 10 H, C 9 H) 6.55 (m, 1H, C 3 H) Example 2 13-Hydroxy-5-ketomilbemycin D and
13-cicetoxy-5-ketomilbemycin D
(R 1 = i-C 3 H 7 ) Selenium dioxide (0.22 g) was added to an acetic acid solution (10 ml) of 5-ketomilbemycin D (0.56 g), and 40
Stir at ℃ for 1 hour. After the reaction is completed, celite is added to the reaction solution to separate the selenium compound. The liquid was poured into water, extracted with ethyl acetate, the extract was washed with deuterated water, dried over magnesium sulfate, concentrated, and the residue was purified by column chromatography to obtain 13-
Acetoxy-5-ketomilbemycin D0.12g
(yield 21%) and 0.18 g (yield 32%) of 13-hydroxy-5-ketomilbemycin D were obtained. 13-acetoxy form Infrared absorption spectrum ν KBr nax : 3480, 1740,
1715, 1685, 1460 cm -1 Mass spectrum (m/e): 612 (M + ), 594 (M +
−18) Nuclear magnetic resonance spectrum (CDCl 3 ) δppm: 1.55 (s, 3H, C 14 CH 3 ) 1.90 (s, 3H, C 4 CH 3 ) 2.05 (s) and 2.07 (s) (3H,

【式】) 6.57(m,1H,C3H) 13−ヒドロキシ体 赤外線吸収スペクトルνnujol nax: 3450,1735,
1715,1580cm-1 質量スペクトル(m/e):570(M+)、552(M+
−18) 核磁気共鳴スペクトル(CDCl3)δppm: 1.58(s,3H,C14CH3) 1.89(m,3H,C4CH3) 4.6〜4.8(m,2H,C8CH2) 5.23(t,C15H) 5.3〜5.45(m,C11H,C19H) 5.6〜5.9(m,C9H,C10H,C15H) 6.57(m,C3H) 6.52(m,C3H) 上記の方法により得られる13−アセトキシ−5
−ケトミルベマイシンD(0.10g)に、メタノー
ル(20ml)、2規定塩酸(5ml)、1,4−ジオキ
サン(10ml)を加え、50℃で5時間加熱撹拌す
る。反応終了後、13−ホルミルオキシ−5−ケト
ミルベマイシンA4の加水分解と同様の後処理に
よつて、0.015gの13−ヒドロキシ−5−ケトミ
ルベマイシンDを得る。 実施例 3 13−ホルミルオキシ−5−ケトミルベマイシン
D(R1=i−C3H7) 5−ケトミルベマイシンD(0.56g)のギ酸溶
液(10ml)に、二酸化セレン(0.17g)を加え、
40℃で2時間撹拌する。反応終了後、反応液にセ
ライトを加え、セレン化合物を別した後、液
を水にあけ、酢酸エチルで抽出する。抽出液の濃
縮残渣をシリカゲルカラムクロマトグラフイーに
より精製して、0,27g(収率44%)の13−ホル
ミル体と、0.02gの13−ヒドロキシ体を得る。 13−ホルミル体 赤外線吸収スペクトルνKBr nax:3550,1730,
1685,1460cm-1 質量スペクトル(m/e):598(M+)、580(M+
−18) 核磁気共鳴スペクトル(CDCl3)δppm: 1.56(s,3H,C14CH3) 1.91(m,3H,C4CH3) 5.06(d,1H,C13,H,J=10Hz) 5.35〜5.45(m,3H,C11H,C19,C15H) 5.8〜5.9(m,2H,C9H,C10H) 6.58(m,1H,C3H) 8.09(m,1H,−OCHO) 上記の方法により得られる13−ホルミルオキシ
−5−ケトミルベマイシンD(0.20g)に、メタ
ノール(25ml)、1規定塩酸水(10ml)、1,4−
ジオキサン(15ml)を加え、室温で一晩撹拌後、
反応液を水にあけ、酢酸エチルで抽出する。抽出
液の濃縮残渣をシリカゲルカラムクロマトグラフ
イーにより精製して、0.14gの13−ヒドロキシ−
5−ケトミルベマイシンDを得る。 実施例 4 13−ヒドロキシ−5−ケトミルベマイシンA4
+A3(R1=C2H5とR1=CH3の3:1の混合物) 5−ケトミルベマイシンA4と5−ケトミルベ
マイシンA3の混合物(混合比A4/A3=3/1)
(12.44g)のギ酸溶液(8.7ml)に二酸化セレン
(3.83g)を加え、40℃で2時間撹拌した。反応
終了後、反応液にセライトを加え、セレン化合物
を濾別した。濾液を水にあけ、酢酸エチルで抽出
し、抽出液を硫酸マグネシウムで乾燥後濃縮し、
一部13−ヒドロキシ体を含む13−ホルミルオキシ
−5−ケトミルベマイシンA4+A3の粗生成物を
得た。この粗生成物に、メタノール(200ml)、2
規定塩酸水(50ml)、1,4−ジオキサン(100
ml)を加え、室温で5時間撹拌した。反応終了
後、反応液を水にあけ、酢酸エチルで抽出した。
有機層を硫酸マグネシウムで乾燥後、濃縮し、残
渣をカラムクロマトグラフイーにより精製し、標
記化合物5.59g(収率44%)を得た。 質量スペクトル(m/e):556(M+forR1
C2H5)、542(M+forR1=CH3)、538(M+
18)、524(M+−18) 核磁気共鳴スペクトル(CDCl3)δppm: 3.01−3.15(m,0.75H,C25 CH2CH3)、
3.28(m,0.25H,C25 CH3)、3.73(d,
1H,C13H,J=10Hz)、3.86(s,1H,
C6H)、3.99(s,1H,C7OH)、4.71(br.s,
2H,C8CH2)、5.22(m,1H,C15H)、
5.32−5.51(m,2H,C11,C19H)、5.60−
5.91(m,2H,C9H,C10H)、6.54(br.s,
1H,C3H)
[Formula]) 6.57 (m, 1H, C 3 H) 13-hydroxy form Infrared absorption spectrum ν nujol nax : 3450, 1735,
1715, 1580cm -1 Mass spectrum (m/e): 570 (M + ), 552 (M +
−18) Nuclear magnetic resonance spectrum (CDCl 3 ) δppm: 1.58 (s, 3H, C 14 CH 3 ) 1.89 (m, 3H, C 4 CH 3 ) 4.6-4.8 (m, 2H, C 8 CH 2 ) 5.23 ( t, C 15 H) 5.3 to 5.45 (m, C 11 H, C 19 H) 5.6 to 5.9 (m, C 9 H, C 10 H, C 15 H) 6.57 (m, C 3 H) 6.52 (m, C 3 H) 13-acetoxy-5 obtained by the above method
- Methanol (20 ml), 2N hydrochloric acid (5 ml), and 1,4-dioxane (10 ml) were added to ketomilbemycin D (0.10 g), and the mixture was heated and stirred at 50°C for 5 hours. After the reaction is completed, 0.015 g of 13-hydroxy-5-ketomilbemycin D is obtained by post-treatment similar to the hydrolysis of 13-formyloxy-5-ketomilbemycin A4 . Example 3 13-Formyloxy-5-ketomilbemycin D ( R1 = i - C3H7 ) Selenium dioxide (0.17 g) was added to a formic acid solution (10 ml) of 5-ketomilbemycin D (0.56 g),
Stir at 40°C for 2 hours. After the reaction is complete, celite is added to the reaction solution to separate the selenium compound, then the solution is poured into water and extracted with ethyl acetate. The concentrated residue of the extract is purified by silica gel column chromatography to obtain 0.27 g (yield 44%) of 13-formyl compound and 0.02 g of 13-hydroxy compound. 13-formyl compound Infrared absorption spectrum ν KBr nax : 3550, 1730,
1685, 1460cm -1 Mass spectrum (m/e): 598 (M + ), 580 (M +
−18) Nuclear magnetic resonance spectrum (CDCl 3 ) δppm: 1.56 (s, 3H, C 14 CH 3 ) 1.91 (m, 3H, C 4 CH 3 ) 5.06 (d, 1H, C 13 , H, J = 10Hz) 5.35 to 5.45 (m, 3H, C 11 H, C 19 , C 15 H) 5.8 to 5.9 (m, 2H, C 9 H, C 10 H) 6.58 (m, 1H, C 3 H) 8.09 (m, 1H , -OCHO) To 13-formyloxy-5-ketomilbemycin D (0.20 g) obtained by the above method, methanol (25 ml), 1N hydrochloric acid water (10 ml), 1,4-
Add dioxane (15 ml) and stir overnight at room temperature.
Pour the reaction solution into water and extract with ethyl acetate. The concentrated residue of the extract was purified by silica gel column chromatography to obtain 0.14 g of 13-hydroxy-
5-Ketomilbemycin D is obtained. Example 4 13-Hydroxy-5-ketomilbemycin A 4
+A 3 (3:1 mixture of R 1 = C 2 H 5 and R 1 = CH 3 ) Mixture of 5-ketomilbemycin A 4 and 5-ketomilbemycin A 3 (mixture ratio A 4 /A 3 = 3/1 )
Selenium dioxide (3.83 g) was added to a formic acid solution (8.7 ml) of (12.44 g) and stirred at 40°C for 2 hours. After the reaction was completed, celite was added to the reaction solution, and the selenium compound was filtered off. The filtrate was poured into water, extracted with ethyl acetate, and the extract was dried over magnesium sulfate and concentrated.
A crude product of 13-formyloxy-5-ketomilbemycin A 4 +A 3 containing a portion of 13-hydroxy compound was obtained. To this crude product was added methanol (200 ml), 2
Normal hydrochloric acid (50ml), 1,4-dioxane (100ml)
ml) and stirred at room temperature for 5 hours. After the reaction was completed, the reaction solution was poured into water and extracted with ethyl acetate.
The organic layer was dried over magnesium sulfate, concentrated, and the residue was purified by column chromatography to obtain 5.59 g (yield: 44%) of the title compound. Mass spectrum (m/e): 556 (M + forR 1 =
C 2 H 5 ), 542 (M + forR 1 = CH 3 ), 538 (M +
18), 524 (M + −18) Nuclear magnetic resonance spectrum (CDCl 3 ) δppm: 3.01−3.15 (m, 0.75H, C 25 H CH 2 CH 3 ),
3.28 (m, 0.25H, C 25 H CH 3 ), 3.73 (d,
1H, C 13 H, J = 10Hz), 3.86 (s, 1H,
C 6 H), 3.99 (s, 1H, C 7 OH), 4.71 (br.s,
2H, C 8 CH 2 ), 5.22 (m, 1H, C 15 H),
5.32−5.51 (m, 2H, C 11 , C 19 H), 5.60−
5.91 (m, 2H, C 9 H, C 10 H), 6.54 (br.s,
1H, C3H )

Claims (1)

【特許請求の範囲】 1 一般式() (式中、R1はメチル基、エチル基、イソプロ
ピル基またはsec−ブチル基を示す)で表わされ
る化合物を、一般式() R2−COOH (式中、R2は水素原子または低級アルキル基
を示す)で表わされるカルボン酸の存在下、二酸
化セレンで処理して、一般式()または() (式中、R1およびR2は、前記したものと同意
義である)で表わされる化合物とし、必要に応じ
て、一般式()の化合物を加水分解することを
特徴とする、一般式()で表わされる化合物の
製造法。
[Claims] 1 General formula () (In the formula, R 1 represents a methyl group , an ethyl group, an isopropyl group, or a sec - butyl group). is treated with selenium dioxide in the presence of a carboxylic acid represented by the general formula () or (). (wherein R 1 and R 2 have the same meanings as defined above), and if necessary, the compound of general formula () is hydrolyzed. ) A method for producing a compound represented by
JP22555184A 1984-10-26 1984-10-26 13-substituted-5-ketomilbemycin and its preparation Granted JPS61103884A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP22555184A JPS61103884A (en) 1984-10-26 1984-10-26 13-substituted-5-ketomilbemycin and its preparation
IL76816A IL76816A (en) 1984-10-26 1985-10-24 Process for preparing 13-hydroxy-5-ketomilbemycin
AU49045/85A AU574852B2 (en) 1984-10-26 1985-10-24 13 - acyloxy - 5 - ketomilbemycin derivatives and preparation of 13 - hydroxy - 5 - ketomilbemycin derivatives
IL85820A IL85820A (en) 1984-10-26 1985-10-24 13-substituted-5-ketomilbemycin derivatives and processes for the preparation thereof
NZ213972A NZ213972A (en) 1984-10-26 1985-10-25 13-hydroxy-5-ketomilbemycins: derivatives thereof
ES548244A ES8703475A1 (en) 1984-10-26 1985-10-25 Process for preparing milbemycin derivatives and certain novel compounds employed therein.
ZA858197A ZA858197B (en) 1984-10-26 1985-10-25 Process for preparing milbemycin derivatives and certain novel compounds employed therein
DK492785A DK161705C (en) 1984-10-26 1985-10-25 PROCEDURE FOR PREPARING A 13-HYDROXY-5-KETOMIL BEMYCINE DERIVATIVE
KR1019850007942A KR930005333B1 (en) 1984-10-26 1985-10-26 Process for preparing milbemycin derivatives
AT85307782T ATE49001T1 (en) 1984-10-26 1985-10-28 PROCESSES FOR THE MANUFACTURE OF MILBEMYCIN DERIVATIVES AND SOME DERIVATIVES USED IN THIS PROCESS.
CA000494017A CA1267890A (en) 1984-10-26 1985-10-28 Process for preparing milbemycin derivatives and certain compounds employed therein
DE8585307782T DE3574974D1 (en) 1984-10-26 1985-10-28 METHOD FOR PRODUCING MILBEMYCINE DERIVATIVES AND SOME DERIVATIVES USED IN THIS METHOD.
EP85307782A EP0184308B1 (en) 1984-10-26 1985-10-28 Process for preparing milbemycin derivatives and certain novel compounds employed therein
US07/115,642 US4835290A (en) 1984-10-26 1987-10-26 Process for preparing 13-hydroxy-5-ketomibemycin derivatives having acaricidal, insecticidal and anthelmintic activity
IL85820A IL85820A0 (en) 1984-10-26 1988-03-23 13-substituted-5-ketomilbemycin derivatives and processes for the preparation thereof
DK267190A DK267190A (en) 1984-10-26 1990-11-07 13-substituted-5-ketomilbemycin derivatives
US07/644,880 US5208349A (en) 1984-10-26 1991-01-24 Process for preparing milbemycin derivatives and certain novel compounds employed therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22555184A JPS61103884A (en) 1984-10-26 1984-10-26 13-substituted-5-ketomilbemycin and its preparation

Publications (2)

Publication Number Publication Date
JPS61103884A JPS61103884A (en) 1986-05-22
JPH0477752B2 true JPH0477752B2 (en) 1992-12-09

Family

ID=16831062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22555184A Granted JPS61103884A (en) 1984-10-26 1984-10-26 13-substituted-5-ketomilbemycin and its preparation

Country Status (2)

Country Link
JP (1) JPS61103884A (en)
ZA (1) ZA858197B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806527A (en) * 1987-03-16 1989-02-21 Merck & Co., Inc. Avermectin derivatives

Also Published As

Publication number Publication date
JPS61103884A (en) 1986-05-22
ZA858197B (en) 1987-07-29

Similar Documents

Publication Publication Date Title
JPWO2004099149A1 (en) Process for producing 2-chloro-5-fluoro-3-substituted pyridine or a salt thereof
US5840961A (en) Asymmetric synthesis of chiral beta-amiNo acids
JP2002535380A (en) Method for synthesizing nitroxymethylphenyl ester of aspirin derivative
JP3351563B2 (en) Method for producing 3-hydroxybutyric acid derivative
JPH0477752B2 (en)
JP2546559B2 (en) In-situ production of diisopinocampheyl chloroborane
US4395561A (en) Synthesis of 3-hydroxyoxetane
JPH0558638B2 (en)
JPH029585B2 (en)
JPH0523756B2 (en)
JP2571939B2 (en) Cyclopentenone derivatives and their production
JPH11130711A (en) Intermediate for synthesizing 1 alpha, 24,25-trihydroxyvitamin d3 compounds and production thereof
FR2569194A1 (en) PROCESS FOR THE PREPARATION OF AMINOLACTONE
JP2791572B2 (en) Macrocyclic compound and method for producing the same
JPH0733769A (en) Pyrazolopyridine derivative and its production
JPS6126555B2 (en)
JPH0243732B2 (en) SHINKINA ARUDEHIDOKAGOBUTSUOYOBISONOSEIZOHOHO
JPS6246552B2 (en)
JPS632251B2 (en)
JPH0220616B2 (en)
JPH0216318B2 (en)
JPH04279536A (en) Production of (s)-(-)-alpha-damascone and its new intermediate
JPS6153358B2 (en)
JPH1135575A (en) 3-alkyl-3-chloroflavanone derivative and its production and 3-alkylflavanol derivative using the same
JP2000044571A (en) Production of 13-ester derivatives of milbemycin compounds