JPH0477584A - Low-viscosity varnish and production of electronic device using the same - Google Patents

Low-viscosity varnish and production of electronic device using the same

Info

Publication number
JPH0477584A
JPH0477584A JP18638290A JP18638290A JPH0477584A JP H0477584 A JPH0477584 A JP H0477584A JP 18638290 A JP18638290 A JP 18638290A JP 18638290 A JP18638290 A JP 18638290A JP H0477584 A JPH0477584 A JP H0477584A
Authority
JP
Japan
Prior art keywords
formula
varnish
viscosity
electronic device
above formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18638290A
Other languages
Japanese (ja)
Inventor
Hisae Shimanoki
嶋之木 久恵
Yoshiaki Okabe
義昭 岡部
Takao Miwa
崇夫 三輪
Shunichi Numata
俊一 沼田
Takae Ikeda
池田 孝栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP18638290A priority Critical patent/JPH0477584A/en
Publication of JPH0477584A publication Critical patent/JPH0477584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject low-viscosity varnish capable of providing polyimide films, excellent in flatness and exhibiting low dielectric properties at a high concentration by using a specific electron attractive group-containing tetracarboxylic acid dianhydride and a specified electron attractive group- containing diamine. CONSTITUTION:The objective varnish is obtained by blending equimolar amounts of a tetracarboxylic acid dianhydride expressed by formula I [Ar is formula II or III (R, R' and R'' are fluorinated alkyl, fluorinated alkoxy, etc.; (l) is 1-2; (m) is 1-3), etc.] and a diamine (e.g. diaminodiphenyl sulfone) expressed by formula IV (X is formula V or SO2; (n) is 1-4) in a solvent (e.g. THF) capable of dissolving both. The above-mentioned varnish has <=0.1 P viscosity of the solution. For example, phenyltetracarboxylic acid dianhydride having a fluorinated alkyl group in the benzene skeleton is cited as the compound expressed by formula I.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、極めて高い平坦性の低誘電率ポリイミド被膜
を与える低粘度ワニス、および該ワニスの硬化膜を眉間
絶縁膜とする電子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low viscosity varnish that provides a low dielectric constant polyimide film with extremely high flatness, and to an electronic device in which a cured film of the varnish is used as a glabellar insulating film.

[従来の技術] 近年、半導体装置等の電子装置は高性能化、小型化が益
々要求されるに従い、その構造は微細化、複雑化してい
る。LSIを例にとれば、多層配線が不可欠となり、多
層配線素子の層間絶縁膜は、薄くとも上下両配線間を充
分に絶縁できる絶縁特性を有すると同時に、製造時に、
次層の配線の形成時に段差や断線等が生じない信頼性の
優れたものが求められている。
[Background Art] In recent years, as electronic devices such as semiconductor devices are increasingly required to have higher performance and smaller size, their structures have become finer and more complex. Taking LSI as an example, multilayer wiring is essential, and the interlayer insulating film of multilayer wiring elements has insulation properties that can sufficiently insulate both upper and lower wirings even if it is thin, and at the same time, during manufacturing,
There is a need for a highly reliable device that does not cause steps or disconnections when forming the next layer of wiring.

こうした要求に対し、前記絶縁層材料としては、有機、
無機両面から検討されているが、平坦化性能(以下平坦
性と称す)と云う点で有機材料の方が有利である。
In response to these demands, the insulating layer materials include organic,
Although both inorganic and inorganic materials have been studied, organic materials are more advantageous in terms of flattening performance (hereinafter referred to as flatness).

これまでこうした有機材料の代表的なものとして、日立
化成■製のPIQが挙げられる6PIQは、加熱硬化あ
るいは化学イミド化することによってポリイミド系の樹
脂を与えるワニスであり、得られる絶縁膜は耐熱性、機
械特性に優れている。
Until now, PIQ manufactured by Hitachi Chemical has been cited as a typical example of such organic materials.6PIQ is a varnish that provides a polyimide resin by heat curing or chemical imidization, and the resulting insulating film is heat resistant. , has excellent mechanical properties.

LSIの絶縁層に用いる場合は、スピンコード等適当な
方法でウェハ上に塗布し、加熱処理等を行うことにより
目的とする眉間絶縁膜が得られる。
When used as an insulating layer of an LSI, the desired glabellar insulating film can be obtained by applying it onto a wafer using a suitable method such as a spin cord, and performing heat treatment or the like.

また、現在、LSI以外の電子装置においてもこうした
ワニスが使用されている。例えば、iil膜磁気ヘッド
、磁気バブル素子等平坦性が特に重視される装置のほか
に、半導体素子のα線遮蔽膜やパッシベーション膜、フ
レキシブルプリント板の基板等が挙げられる。これらの
絶縁膜等の形成に使用されるワニスの濃度は比較的低く
、十数%のものが一般的である。
Furthermore, such varnishes are currently used in electronic devices other than LSIs. For example, in addition to devices in which flatness is particularly important, such as II-film magnetic heads and magnetic bubble elements, examples include α-ray shielding films and passivation films for semiconductor devices, substrates for flexible printed boards, and the like. The concentration of the varnish used to form these insulating films and the like is relatively low, typically around ten percent.

[発明が解決しようとする課題] 前記絶縁膜は、無機材料のCVD等によって得られる無
機膜と比較して優れた平坦性を示すが、より一層の平坦
性が求められている。
[Problems to be Solved by the Invention] The insulating film exhibits superior flatness compared to inorganic films obtained by CVD of inorganic materials, etc., but even higher flatness is required.

絶縁膜の平坦性の向上は、ワニス中の固形分含量を増加
することによっても達成される。しかし、固形分含量の
増加は粘度の著増を招き、作業性を低下させる。
Improving the flatness of the insulating film is also achieved by increasing the solids content in the varnish. However, an increase in solids content leads to a significant increase in viscosity, which reduces workability.

上記に対しては、ポリアミック酸の分子量を低下させオ
リゴアミック酸とする方法(特開昭62−280257
号公報)、可溶性のイミドオソゴマを利用する方法(特
開昭63−207867号公報〉が提案されている。こ
れにより高濃度低粘度化がかなり進歩した。これらは、
スピンコード等の作業時にはオリゴマでありながら、加
熱等の処理により反応性の末端基が反応し、最終的には
高分子量化して優れた絶縁膜を得ることを狙ったもので
ある。
For the above, a method for reducing the molecular weight of polyamic acid to form oligoamic acid (Japanese Patent Application Laid-Open No. 62-280257
(Japanese Patent Application Laid-Open No. 63-207867) has been proposed. This has made considerable progress in achieving high concentration and low viscosity. These methods include:
Although it is an oligomer during work such as a spin cord, the reactive end groups react with treatments such as heating, and the aim is to eventually increase the molecular weight and obtain an excellent insulating film.

前記したように、こうしたワニスの濃度は一般に低く、
その濃度は十数%である。これ以上の濃度では充分な特
性の塗膜を得ることができながったためである。
As mentioned above, the concentration of these varnishes is generally low;
Its concentration is more than ten percent. This is because a coating film with sufficient characteristics could not be obtained at a concentration higher than this.

大型計算機において、信号伝送の高速化を図るためにマ
ルチチップモジュール方式の開発が盛んになってきてい
る。これは、絶縁層にポリイミド等の有機薄膜を用い、
微細加工技術により低誘電率化を図って、信号伝送の高
速化を図るものである。
Multi-chip module systems are being actively developed in large-scale computers in order to speed up signal transmission. This uses an organic thin film such as polyimide as the insulating layer,
The goal is to use microfabrication technology to lower the dielectric constant and speed up signal transmission.

低誘電率化には含フツ素ポリイミドが有効と考えられる
。含フツ素ポリイミドの研究はがなり以前から行われて
いたが、その狙いは低誘電率化ではなく、透明性、可溶
性、溶融性等の付与にあった(英国特許第1,077.
243号、米国特許第3.356,648号、第3,9
59,350号)。
Fluorine-containing polyimide is considered effective for lowering the dielectric constant. Research on fluorine-containing polyimides had been conducted since before the advent of the United Kingdom, but the aim was not to lower the dielectric constant, but to provide transparency, solubility, meltability, etc. (British Patent No. 1,077).
No. 243, U.S. Pat. No. 3,356,648, No. 3,9
No. 59,350).

低誘電性ポリイミドとしては、■Anne K、St。As a low dielectric polyimide, ■Anne K, St.

C1air、T、L、St、C]air and W、
P、Winfree、 Proc、AC5Div、Po
lym、Mat、 : Sci、Eng、 、 59.
p、28,1988 FallMeeting L、A
、 、 @David L、Goff and Edw
ard L。
C1air, T, L, St, C] air and W,
P, Winfree, Proc, AC5Div, Po
lym, Mat, : Sci, Eng, , 59.
p, 28, 1988 Fall Meeting L, A
, , @David L, Goff and Edw
ard L.

Yuan、 Proc、AC3Div、Polym、M
at、 : Sci、Eng、 、 59゜p、 18
6.1988 Fal l Meeting L、A、
 、■G、 Hougham、 J 。
Yuan, Proc, AC3Div, Polym, M
at, : Sci, Eng, , 59°p, 18
6.1988 Fall Meeting L, A,
, ■G., Houghham, J.

Shaw and G、Te5oro、 Intern
ational Conferanceon Poly
imides、Proc、/Abstracts of
 Th1rd、(1988)等の報告がある。これらは
(CF2  )nあるいはへキサフルオロイソプロピリ
デン基を導入することにより低誘電率化を図っている。
Shaw and G, Te5oro, Intern
ational Conference Poly
imides, Proc, /Abstracts of
There are reports such as Th1rd, (1988). These are intended to lower the dielectric constant by introducing (CF2)n or hexafluoroisopropylidene groups.

しかし、これらはポリイミドのガラス転移温度を低くす
ると云う問題がある。
However, these have the problem of lowering the glass transition temperature of polyimide.

本発明の目的は、平坦性が優れ、低誘電率性を有するポ
リイミドを与える低粘度ワニスおよび該ワニス用いた電
子装置を提供することにある。
An object of the present invention is to provide a low-viscosity varnish that provides a polyimide with excellent flatness and a low dielectric constant, and to provide an electronic device using the varnish.

[課題を解決するための手段] 凹凸面上に塗布したワニスの平坦性は、ワニスの濃度と
該ワニスの硬化時のメルトフロー特性に左右される。ワ
ニスの濃度が高いほど硬化時の体積の収縮が少なく、ま
た、メルトフローがよいものほど段差を解消できるため
である。
[Means for Solving the Problems] The flatness of a varnish applied on an uneven surface depends on the concentration of the varnish and the melt flow characteristics when the varnish is cured. This is because the higher the concentration of the varnish, the less the shrinkage of volume during curing, and the better the melt flow, the better the level difference can be eliminated.

高分子濃厚溶液の濃度と粘度の間には、次式〔4〕の関
係があることが知られている。
It is known that the following equation [4] exists between the concentration and viscosity of a concentrated polymer solution.

ηoc n”φ6        ・・・ [4〕(但
し、nは重合度、φはポリマ体積分率)つまり、ワニス
の濃度を増加させると、その粘度は急激に大きくなり、
ワニスとしては利用できない。本発明は、式[4〕で示
されるように、ワニス中のポリマの重合度を抑えた高1
しかつ、低粘度のワニスにあり、その要旨は、 式〔1〕で示されるテトラカルボン酸二無水物と 1]11 CC (但し、Arは、 R,R’、R”はフッ素化アルキル基、フッ素化アルコ
キシ基、フッ素基がら選ばれ、eは1〜2の整数、mは
1〜3の整数、nは1〜4の整数である。) 式〔2〕で示されるジアミン CF3 (但し、Xは−C−−SO。
ηoc n"φ6 ... [4] (where n is the degree of polymerization and φ is the polymer volume fraction) In other words, when the concentration of the varnish is increased, its viscosity increases rapidly,
It cannot be used as a varnish. As shown in formula [4], the present invention provides a high polymerization solution that suppresses the degree of polymerization of the polymer in the varnish.
Moreover, it is a low viscosity varnish, and the gist thereof is: a tetracarboxylic dianhydride represented by the formula [1] and 1]11 CC (wherein, Ar is R, R', R'' is a fluorinated alkyl group , a fluorinated alkoxy group, and a fluorine group, e is an integer of 1 to 2, m is an integer of 1 to 3, and n is an integer of 1 to 4.) Diamine CF3 represented by formula [2] (However, , X is -C--SO.

CF。C.F.

R,R’はフッ素化アルキル基、フッ素化アルコキシ基
、フッ素基から選ばれ、nは1〜4の整数である。) が、両者を溶解する溶媒中に実質的に等モル配合されて
おり、該溶液の粘度が0.1ポイズ以下であることを特
徴とする低粘度ワニス並びに該ワニスを絶縁層に用いた
電子装置の製法にある。
R and R' are selected from a fluorinated alkyl group, a fluorinated alkoxy group, and a fluorine group, and n is an integer of 1 to 4. ) are blended in substantially equimolar amounts in a solvent that dissolves both, and the viscosity of the solution is 0.1 poise or less, and an electronic varnish using the varnish as an insulating layer. It's in the manufacturing method of the device.

前記テトラカルボン酸二無水物は、ベンゼン骨格に、フ
ッ素基、フッ素化アルキル基、フッ素化アルコキシル基
のような電子吸引性基を有するもので、カルボニル基の
酸性の強い、フェニルテトラカルボン酸二無水物、ビフ
ェニルテトラカルボン酸二無水物、ターフェニルテトラ
カルボン酸二無水物である。
The above-mentioned tetracarboxylic dianhydride has an electron-withdrawing group such as a fluorine group, a fluorinated alkyl group, or a fluorinated alkoxyl group in the benzene skeleton, and is a phenyltetracarboxylic dianhydride with a strongly acidic carbonyl group. dianhydride, biphenyltetracarboxylic dianhydride, and terphenyltetracarboxylic dianhydride.

前記ジアミンは、低反応性のジアミン、即ち、ベンゼン
骨格にフッ素基、フッ素化アルキル基、フッ素化アルコ
キシ基のような電子吸引性基を有する芳香族ジアミンで
、ジアミノジフェニルスルホン、ジアミノジフェニルへ
キサフルオロプロパン等がある。
The diamine is a low-reactivity diamine, that is, an aromatic diamine having an electron-withdrawing group such as a fluorine group, a fluorinated alkyl group, or a fluorinated alkoxy group in the benzene skeleton, and includes diaminodiphenylsulfone, diaminodiphenylhexafluoro, etc. There are propane, etc.

前記テトラカルボン酸二無水物と、前記ジアミンの溶媒
としては、N−メチルピロリドン、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルアセトアミド、テ
トラヒドロフラン等の極性溶媒またはこれらと無極性溶
媒との混合溶媒がある。溶媒の配合量は、ワニスの粘度
が0.1ボイス以下となるように調製する。これより、
粘度が高くなると平坦性が低下するので好ましくない。
Examples of the solvent for the tetracarboxylic dianhydride and the diamine include polar solvents such as N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide, dimethylacetamide, and tetrahydrofuran, or mixed solvents of these and nonpolar solvents. The amount of the solvent is adjusted so that the viscosity of the varnish is 0.1 voice or less. Than this,
If the viscosity becomes high, flatness decreases, which is not preferable.

なお、平坦性としては、前託〔3]式で示される平坦率
が 0.7以上のものが好ましい。
In addition, regarding the flatness, it is preferable that the flatness ratio shown by the predetermined formula [3] is 0.7 or more.

前記テトラカルボン酸二無水物と、前記ジアミンは、室
温ではジアミンの反応性が低いためテトラカルボン酸二
無水物との反応が制御され、反応してもせいぜいダイマ
ーあるいはトリマー程度のオリゴマでその粘度は低く、
ワニスを高濃度化することが可能となる。
The reaction of the tetracarboxylic dianhydride and the diamine with the tetracarboxylic dianhydride is controlled because the reactivity of the diamine is low at room temperature, and even if the reaction occurs, the resulting oligomer is at most a dimer or trimer, and its viscosity is low. low,
It becomes possible to increase the concentration of varnish.

該ワニスは、加熱により、ジアミンとテトラカルボン酸
二無水物が反応し、高分子量体のポリイミドとなる。
When the varnish is heated, the diamine and the tetracarboxylic dianhydride react to form a high molecular weight polyimide.

本発明のワニスを用いることにより、優れた平坦性を有
するポリイミドフィルムを形成することができる。この
時、フッ素が分子内に存在すため、該分子の分極電子を
引きつけて強く固定するので、分子の分極率が小さくな
り、該ポリマの誘電率を低下させる。
By using the varnish of the present invention, a polyimide film having excellent flatness can be formed. At this time, since fluorine is present in the molecule, it attracts and strongly fixes the polarized electrons of the molecule, thereby decreasing the polarizability of the molecule and lowering the dielectric constant of the polymer.

前記のように、電子吸引性基の導入によって。As mentioned above, by the introduction of electron-withdrawing groups.

ジアミンとテトラカルボン酸二無水物の反応を制御する
ことができ、平坦性と低誘電率性が両立したポリイミド
を得ることができる。
The reaction between diamine and tetracarboxylic dianhydride can be controlled, and a polyimide having both flatness and low dielectric constant properties can be obtained.

[作用コ 電子吸引性基を有するテトラカルボン酸二無水物と、ジ
アミノジフェニルスルホン、ジアミノジフェニルヘキサ
フルオロプロパンを用いることにより、両者の反応が制
御され、ワニスの粘度を低く抑えることができ、これに
よって該ワニスの濃度を高めることができる。
[By using tetracarboxylic dianhydride having an electron-withdrawing group, diaminodiphenylsulfone, and diaminodiphenylhexafluoropropane, the reaction between the two can be controlled and the viscosity of the varnish can be kept low. The concentration of the varnish can be increased.

[実施例コ 第1〜3表に、本発明の実施例で用いたワニスのテトラ
カルボン酸二無水物およびジアミンを示す。また、該ワ
ニスを用いて得られたポリイミド絶縁膜の平坦化率、誘
電率、耐熱性、引張強さについて評価した結果を第4.
5表に示す。
[Example Tables 1 to 3 show the tetracarboxylic dianhydrides and diamines of the varnishes used in the examples of the present invention. In addition, the results of evaluating the flattening rate, dielectric constant, heat resistance, and tensile strength of the polyimide insulating film obtained using the varnish are shown in Section 4.
It is shown in Table 5.

なお、本実施例においては、ワニスの溶媒はN−メチル
ビロリドンを用いた。
In this example, N-methylpyrrolidone was used as the solvent for the varnish.

第 表 平坦化性能の評価は、シリコン基板上に第4図に示すパ
ターンをアルミニウムで形成したテスト用基板を用いて
行なった。ワニスをテスト基板上にスピンコード法によ
り塗布し、前記熱膨張係数測定用の試料作成と同じ条件
で硬化し、所定の膜厚の試料を作成する。なお、6スビ
ンナーの回転数は必要とする膜厚により1000〜80
00回転まで調節した。試料の平坦性は、触針式の表面
粗さ計(α−ステップ200 : tencar In
sturuments社製)を用いて測定した。なお、
第4.5表中の平坦化度Pは次式〔3〕によって定義さ
れ、記載の値はバタン上に2μmのフィルムを形成した
場合の結果である。
The planarization performance in Table 1 was evaluated using a test substrate in which the pattern shown in FIG. 4 was formed on a silicon substrate using aluminum. The varnish is applied onto a test substrate by a spin code method, and cured under the same conditions as the sample preparation for measuring the coefficient of thermal expansion to prepare a sample with a predetermined film thickness. In addition, the rotation speed of the 6-svinner is 1000 to 80 depending on the required film thickness.
Adjusted to 00 rpm. The flatness of the sample was measured using a stylus-type surface roughness meter (α-step 200: tencar In
(manufactured by STURUMENTS). In addition,
The degree of flattening P in Table 4.5 is defined by the following formula [3], and the values listed are the results when a 2 μm film is formed on the batten.

ΔH P=1−                     
 〔3〕式中のΔH,Hの定義は、第5図中に示す。
ΔHP=1−
[3] The definitions of ΔH and H in the formula are shown in FIG.

耐熱性は、100分の加熱によって3重量%の減量が観
測されるときの温度をもって示した。
Heat resistance was expressed as the temperature at which a weight loss of 3% by weight was observed after 100 minutes of heating.

引張強さは、熱膨張係数の測定試料と同じ方法で作成し
た試料を用い、熱機械試験機を用い室温で測定した。
The tensile strength was measured at room temperature using a thermomechanical testing machine using a sample prepared in the same manner as the sample for measuring the coefficient of thermal expansion.

ビーリング強度は、幅10mmX長さ20mmの矩形状
試料を切り出し、長さ方向の中心位置に対応する基板の
裏面よりスクライプ溝を入れ、幅方向にポリイミド膜が
破断しないようにシリコン基板を切断した。これをプレ
ッシャ・クツカー試験(PCT : 120’C,2a
tmの水蒸気中に放置)で所定時間放置後、一方を鉄製
円柱台に、他方を燐青銅板(厚さ0.1  mm)にそ
れぞれ接着剤で固定し、万能引張試験機を用いて引張速
度 0.5mm/分で測定した。
The beer strength was measured by cutting a rectangular sample with a width of 10 mm and a length of 20 mm, making a scribe groove from the back side of the substrate corresponding to the center position in the length direction, and cutting the silicon substrate so as not to break the polyimide film in the width direction. . This was performed using the pressure Kutzker test (PCT: 120'C, 2a
tm water vapor) for a predetermined period of time, one side was fixed to a steel cylindrical base and the other to a phosphor bronze plate (thickness 0.1 mm) with adhesive, and the tensile speed was measured using a universal tensile tester. Measurement was made at 0.5 mm/min.

本発明の実施例によれば従来の2倍以上の平坦化特性が
得られると同時に、誘電率 2.8以下のポリイミド膜
が得られる。
According to the embodiments of the present invention, it is possible to obtain a planarization characteristic that is more than twice that of the conventional method, and at the same time, a polyimide film having a dielectric constant of 2.8 or less can be obtained.

次ぎに、本発明のワニスを電子装置に用いる場合につい
て、具体例を挙げて説明する。
Next, the case where the varnish of the present invention is used in an electronic device will be described using a specific example.

第1図は、LSIの多層配線部の断面を示す。FIG. 1 shows a cross section of a multilayer wiring section of an LSI.

シリコンウェハlの熱酸化11112上には、アルミニ
ウム(Ajり配線3が形成されており、該Aで配線3の
層間絶縁層4としては平坦性、低銹電率ポリイミドの絶
縁薄膜が形成されている。該絶縁薄膜を、本発明のワニ
スを用いスピンコード方式で形成するとAA配線の段差
を緩和して平坦化できるので、高信頼性の配線構造を得
ることができる。
On the thermally oxidized silicon wafer 11112, an aluminum wiring 3 is formed, and as an interlayer insulating layer 4 of the wiring 3, an insulating thin film of flat and low corrosion rate polyimide is formed. If the insulating thin film is formed using the varnish of the present invention by a spin code method, the steps of the AA wiring can be reduced and flattened, so that a highly reliable wiring structure can be obtained.

第2図は、薄膜磁気ヘッドの断面を示す。FIG. 2 shows a cross section of the thin film magnetic head.

下部アルミナ5の上には下部磁性体6およびギャップア
ルミナ7が形成されている。第一導体コイル8および第
二導体コイル10はポリイミド層間絶縁膜9に絶縁され
ている。そして最外層には上部磁性体11が設けられて
いる。層間絶縁膜9をスピンコード法で形成することに
より、導体コイル8,10により形成される層間絶縁膜
9の段差は緩和される。
A lower magnetic body 6 and a gap alumina 7 are formed on the lower alumina 5 . The first conductor coil 8 and the second conductor coil 10 are insulated by a polyimide interlayer insulating film 9. An upper magnetic body 11 is provided in the outermost layer. By forming the interlayer insulating film 9 by the spin code method, the step difference in the interlayer insulating film 9 formed by the conductor coils 8 and 10 is alleviated.

従来は、厚塗りした後、エッチバッグを行なって必要な
膜厚に加工し平坦化していたが、本発明のワニスを使用
することにより、膜厚精度が向上すると共に、エッチバ
ック量が従来の約半分にすることができ、製造工程を短
縮できる。
Conventionally, after coating thickly, an etch bag was performed to process the film to the required thickness and flatten it, but by using the varnish of the present invention, the film thickness accuracy has been improved and the amount of etchback has been reduced compared to the conventional varnish. The manufacturing process can be reduced by approximately half.

第3図は、マルチチップモジュールの断面を示す。シリ
コンウェハ1の熱酸化膜2上には銅配線14が形成され
、その上にポリイミドの層間絶縁膜9が形成されている
。銅配線14にはPb/Sn電極16およびBLM17
が設けられている。
FIG. 3 shows a cross section of the multichip module. A copper interconnect 14 is formed on the thermal oxide film 2 of the silicon wafer 1, and an interlayer insulating film 9 of polyimide is formed thereon. The copper wiring 14 has a Pb/Sn electrode 16 and a BLM 17.
is provided.

本発明のワニスを用いて前記層間絶縁膜9を形成するこ
とにより、銅配線14の段差を大巾に緩和し平坦化する
ことができるので、高信頼性の配線構造を得ることがで
きる。
By forming the interlayer insulating film 9 using the varnish of the present invention, the step difference in the copper wiring 14 can be greatly reduced and flattened, so that a highly reliable wiring structure can be obtained.

[発明の効果] 本発明によれば、平坦性と低誘電性を共に達成した耐熱
性の絶縁膜を提供することができ、該絶縁膜を用いるこ
とによって高信頼性の電子装置を提供することができる
[Effects of the Invention] According to the present invention, a heat-resistant insulating film that achieves both flatness and low dielectricity can be provided, and by using the insulating film, a highly reliable electronic device can be provided. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLSI多層配線の断面図、第2図は薄膜磁気ヘ
ッドの断面図、第3図はマルチチップモジュールの断面
図、第4図は評価パターンの概略図、第5図は作成試料
の断面図である。 トシリコンウェハ、2・・熱酸化膜、3・・アルミニウ
ム配線、4・・・絶縁薄膜、5・・・下部アルミナ、6
・・下部磁性体、7・・・ギャップアルミナ、8・・第
導体コイル、9・・・層間絶縁膜、10・・第二導体コ
イル、11・・・上部磁性体、14・・・銅配線、16
=・P b / S n電極、17’−B L M(B
all LimitingMetall 1zatio
n)。
Figure 1 is a cross-sectional view of an LSI multilayer wiring, Figure 2 is a cross-sectional view of a thin film magnetic head, Figure 3 is a cross-sectional view of a multi-chip module, Figure 4 is a schematic diagram of an evaluation pattern, and Figure 5 is a diagram of a prepared sample. FIG. 2. Thermal oxide film, 3. Aluminum wiring, 4. Insulating thin film, 5. Lower alumina, 6.
...Lower magnetic material, 7.Gap alumina, 8..Conductor coil, 9..Interlayer insulating film, 10..Second conductor coil, 11..Upper magnetic material, 14..Copper wiring. , 16
=・P b / S n electrode, 17'-B L M (B
all LimitingMetall 1zatio
n).

Claims (1)

【特許請求の範囲】 1、式〔1〕で示されるテトラカルボン酸二無水物と ▲数式、化学式、表等があります▼……〔1〕 (但し、Arは ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、 R、R′、R″はフッ素化アルキル基、フッ素化アルコ
キシ基、フッ素基から選ばれ、lは1〜2の整数、mは
1〜3の整数、nは1〜4の整数である。) 式〔2〕で示されるジアミン ▲数式、化学式、表等があります▼……〔2〕 (但し、Xは▲数式、化学式、表等があります▼、−S
O_2−、 R、R′はフッ素化アルキル基、フッ素化アルコキシ基
、フッ素基から選ばれ、nは1〜4の整数である。) が、両者を溶解する溶媒中に実質的に等モル配合されて
おり、該溶液の粘度が0.1ポイズ以下であることを特
徴とする低粘度ワニス。 2、前記式〔1〕で示されるテトラカルボン酸二無水物
と前記式〔2〕で示されるジアミンの等モルオリゴマを
溶解した溶液の粘度が0.1ポイズ以下であることを特
徴とする低粘度ワニス。 3、前記式〔1〕で示されるテトラカルボン酸二無水物
と前記式〔2〕で示されるジアミンとの等モル硬化物が
、式〔3〕で示される平坦率Pが0.7以上の塗膜を形
成し得る溶液であることを特徴とする請求項第1項また
は第2項記載の低粘度ワニス。ΔH P=1−ΔH/H……〔3〕 〔但し、Hは被塗膜形成体表面の凹凸度、ΔHは該塗膜
表面の凹凸度を示す。〕 4、前記式〔1〕で示されるテトラカルボン酸二無水物
と前記式〔2〕で示されるジアミンが、両者を溶解する
溶媒中に実質的に等モル配合されており、該溶液の粘度
が0.1ポイズ以下である低粘度ワニスを、電子装置の
絶縁層形成部に塗布し、加熱することによつて乾燥、硬
化することを特徴とする電子装置の製法。 5、前記絶縁層が、シリコンウェハと配線との間、およ
び/または配線と配線との間に形成し、乾燥後250℃
以上で硬化することを特徴とする請求項第4項記載の電
子装置の製法。
[Claims] 1. Tetracarboxylic dianhydride represented by the formula [1] and ▲ has a mathematical formula, chemical formula, table, etc. ▼... [1] (However, Ar has ▲ a mathematical formula, a chemical formula, a table, etc.) There are ▼, ▲mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, R, R', R'' are selected from fluorinated alkyl groups, fluorinated alkoxy groups, and fluorine groups, l is an integer of 1 to 2, m is an integer of 1 to 3, and n is an integer of 1 to 4. ) Diamine represented by formula [2] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ... [2] (However, X is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, -S
O_2-, R, and R' are selected from a fluorinated alkyl group, a fluorinated alkoxy group, and a fluorine group, and n is an integer of 1 to 4. ) are blended in substantially equimolar amounts in a solvent that dissolves both, and the viscosity of the solution is 0.1 poise or less. 2. Low viscosity, characterized in that the viscosity of a solution obtained by dissolving equimolar oligomers of the tetracarboxylic dianhydride represented by the above formula [1] and the diamine represented by the above formula [2] is 0.1 poise or less varnish. 3. The equimolar cured product of the tetracarboxylic dianhydride represented by the above formula [1] and the diamine represented by the above formula [2] has a flatness ratio P shown by the formula [3] of 0.7 or more. The low-viscosity varnish according to claim 1 or 2, which is a solution capable of forming a coating film. ΔH P=1−ΔH/H… [3] [However, H indicates the degree of unevenness of the surface of the coated film forming body, and ΔH indicates the degree of unevenness of the surface of the coating film. ] 4. The tetracarboxylic dianhydride represented by the above formula [1] and the diamine represented by the above formula [2] are blended in substantially equimolar amounts in a solvent that dissolves both, and the viscosity of the solution is 1. A method for manufacturing an electronic device, comprising applying a low viscosity varnish having a varnish of 0.1 poise or less to an insulating layer forming part of the electronic device, and drying and curing by heating. 5. The insulating layer is formed between the silicon wafer and the wiring and/or between the wirings, and after drying, the insulation layer is heated at 250°C.
5. The method for manufacturing an electronic device according to claim 4, wherein the electronic device is cured at a temperature higher than 100%.
JP18638290A 1990-07-13 1990-07-13 Low-viscosity varnish and production of electronic device using the same Pending JPH0477584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18638290A JPH0477584A (en) 1990-07-13 1990-07-13 Low-viscosity varnish and production of electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18638290A JPH0477584A (en) 1990-07-13 1990-07-13 Low-viscosity varnish and production of electronic device using the same

Publications (1)

Publication Number Publication Date
JPH0477584A true JPH0477584A (en) 1992-03-11

Family

ID=16187415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18638290A Pending JPH0477584A (en) 1990-07-13 1990-07-13 Low-viscosity varnish and production of electronic device using the same

Country Status (1)

Country Link
JP (1) JPH0477584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147923A (en) * 2004-11-22 2006-06-08 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147923A (en) * 2004-11-22 2006-06-08 Toshiba Corp Semiconductor device and its manufacturing method
US7999382B2 (en) 2004-11-22 2011-08-16 Kabushiki Kaisha Toshiba Semiconductor device and fabrication method for the same

Similar Documents

Publication Publication Date Title
KR101928598B1 (en) Polyimide film and process for preparing same
US5304626A (en) Polyimide copolymers containing 3,3&#39;,4,4&#39;-tetracarboxybiphenyl dianhydride (BPDA) moieties
US5089593A (en) Polyimide containing 4,4&#39;-bis(4-amino-2-trifluoromethylphenoxy)-biphenyl moieties
CN109897378B (en) Polyimide composite film containing functionalized carbon quantum dots and preparation method thereof
EP0610425B1 (en) Process for preparing a polyimide film with a preselected value for cte
CN111454452B (en) Polyamic acid, polyimide film and flexible circuit board material
US4686147A (en) Magnetic head and method of producing the same
KR100362544B1 (en) Polyimide Varnish
US5133989A (en) Process for producing metal-polyimide composite article
JPH0477587A (en) Low-viscosity varnish and production of electronic device using the same
JPH02269743A (en) Shaped article of intermediate- molecular-weight polyimide
US5268193A (en) Low dielectric constant, low moisture uptake polyimides and copolyimides for interlevel dielectrics and substrate coatings
JPH0477583A (en) Low-viscosity varnish and production of electronic device using the same
JPH04283234A (en) Lowly viscous varnish containing blocked isocyanate and tetracarboxylic acid dianhydride and preparation of electronic device by using same
CN114072451A (en) Polyamic acid composition, method for preparing polyamic acid composition, and polyimide comprising polyamic acid composition
JPH0477584A (en) Low-viscosity varnish and production of electronic device using the same
JPS62253621A (en) Polyimide resin
US5206091A (en) Low dielectric constant, low moisture uptake polyimides and copolyimides for interlevel dielectrics and substrate coatings
JPH0477586A (en) Low-viscosity varnish and production of electronic device using the same
JPS63264632A (en) Low-thermal expansion resin
JPS63239998A (en) Manufacture of wiring material
JPH0477585A (en) Low-viscosity varnish and production of electronic device using the same
JPS63221629A (en) Electronic device
JPS63234589A (en) Multilayer interconnection board
JPH02269740A (en) Intermediate-molecular-weight polyimide covering