JPH0477561A - Preparation of phthalocyanine thin film - Google Patents

Preparation of phthalocyanine thin film

Info

Publication number
JPH0477561A
JPH0477561A JP2187183A JP18718390A JPH0477561A JP H0477561 A JPH0477561 A JP H0477561A JP 2187183 A JP2187183 A JP 2187183A JP 18718390 A JP18718390 A JP 18718390A JP H0477561 A JPH0477561 A JP H0477561A
Authority
JP
Japan
Prior art keywords
phthalocyanine
film
thin film
polymer
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2187183A
Other languages
Japanese (ja)
Inventor
Katsuyuki Naito
勝之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2187183A priority Critical patent/JPH0477561A/en
Publication of JPH0477561A publication Critical patent/JPH0477561A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To prepare an uniform phthalocyanine thin film stable on a substrate and suitable for semi-conductor thin films, etc., in good reproducibility by developing on the surface of water the solution of a polymeric compound having a specific polymerization degree and containing the polymer chain chemically bonded to phthalocyanine nuclei. CONSTITUTION:The solution of a polymeric compound is developed on the surface of water to prepare the objective phthalocyanine thin film, the polymeric compound being prepared by chemically bonding phthalocyanine nuclei to a polymeric chain (e.g. acrylic polymer) which has a polymerization degree of >=5, preferably 10-100, and which can form a single molecular film on the surface of water.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は各種素子に用いられるフタロシアニン薄膜の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a phthalocyanine thin film used in various devices.

(従来の技術) 近年、ラングミュア−プロジェット膜(LB膜)に代表
される有機物の超薄膜を用いた各種電子デバイスの研究
が盛んに行なわれている。それらは例えば、特開昭52
−35587号、特開昭55−17505号、特開昭5
7−198143号、特開昭60−239739号、特
開昭81−37891号等に示されている。また、本発
明者らは、特開昭62−65477号、特開昭62−2
29971号等において、ドナー性分子やアクセプター
性分子を含む有機薄膜素子及びその製造方法について開
示した。
(Prior Art) In recent years, research has been actively conducted on various electronic devices using ultra-thin organic films such as Langmuir-Prodgett films (LB films). For example, they are
-35587, JP-A-55-17505, JP-A-5
7-198143, JP-A-60-239739, JP-A-81-37891, and the like. In addition, the present inventors have also disclosed JP-A No. 62-65477, JP-A No. 62-2
No. 29971 and other publications disclose organic thin film elements containing donor molecules and acceptor molecules and methods for manufacturing the same.

これらの素子には色素分子を含有するLB膜が用いられ
ている。それらの色素分子の中でもフタロシアニン誘導
体は、その光学、電気的性質や安定性から特に重要であ
り、例えばニス、イーカーらアイイーイーイー ブロシ
ーヂング、130巻、Pt、1.262ページ、198
3年(S、Bakeret al、、IEEE Pro
c、、130.Pt、1.262(1983)、特開昭
62−124534号、特開昭63−244671を号
、特開平1−291246号において化学センサーやエ
レクトロクロミズム素子、半導体薄膜、光記録薄膜とし
て用いる旨記載されている。
These devices use LB films containing dye molecules. Among these dye molecules, phthalocyanine derivatives are particularly important due to their optical, electrical properties, and stability; for example, Niss, Eaker, et al.
3 years (S, Bakeret al,, IEEE Pro
c,,130. Pt, 1.262 (1983), JP-A-62-124534, JP-A-63-244671, and JP-A-1-291246 describe the use as chemical sensors, electrochromic elements, semiconductor thin films, and optical recording thin films. has been done.

しかしながらこれまでのLB膜に用いられたフタロシア
ニン誘導体は低分子化合物であり、フタロシアニン骨格
の大きな会合力のために水面上ですら三次元的な結晶化
が起こりゃすく、水面上の膜は不安定であった。そのた
め膜形成の再現性に乏しく、また均一な薄膜を得ること
は困難であった。さらに、基板上においてもその結晶状
態が変化しやすく、素子特性が不安定といった問題があ
った。
However, the phthalocyanine derivatives used in conventional LB films are low-molecular compounds, and due to the large associative force of the phthalocyanine skeleton, three-dimensional crystallization is unlikely to occur even on the water surface, making the film on the water surface unstable. Met. Therefore, the reproducibility of film formation was poor, and it was difficult to obtain a uniform thin film. Furthermore, there is a problem in that the crystalline state tends to change even on the substrate, resulting in unstable device characteristics.

また、上記のLB法の他にもフタロシアニン誘導体の薄
膜は真空蒸着や塗布によっても得られているが、LB法
に比べ膜厚の制御や均一性が劣っていた。
In addition to the above-mentioned LB method, thin films of phthalocyanine derivatives have also been obtained by vacuum evaporation or coating, but the control and uniformity of the film thickness was inferior to that of the LB method.

(発明が解決しようとする課題) 本発明は上記問題点を解決するためになされたものであ
り、均一で再現性よく、また基板上でも一安定なフタロ
シアニン薄膜の製造方法を提供することを目的とする [発明の構成] (課題を解決するための手段と作用) 本発明のフタロシアニン薄膜の製造方法は、それ自身単
独で水面上で単分子膜を形成可能な重合度5以上の高分
子鎖にフタロシアニン骨格が化学結合している高分子化
合物を溶解した溶液を、水面上に展開することを特徴と
する。
(Problems to be Solved by the Invention) The present invention has been made to solve the above problems, and its purpose is to provide a method for producing a phthalocyanine thin film that is uniform, has good reproducibility, and is stable even on a substrate. [Structure of the Invention] (Means and Effects for Solving the Problems) The method for producing a phthalocyanine thin film of the present invention uses a polymer chain having a degree of polymerization of 5 or more that can form a monomolecular film by itself on a water surface. It is characterized by spreading a solution containing a polymer compound having a chemically bonded phthalocyanine skeleton on the water surface.

本発明の製造方法ではそれ自身単独で単分子膜が形成可
能な高分子鎖にフタロシアニン骨格が結合している高分
子化合物の溶液を用いている。高分子鎖は水面上で広が
りやすく、これよりフタロシアニン間の会合を抑制する
。そのため、水面上の膜は安定となり、再現性よく得ら
れる。本発明で用いられる高分子鎖としてはそれ自身単
独で水面上で単分子膜を形成できるものであればどのよ
うな構造でもよい。単独重合体、共重合体、ブロック重
合体等のどれでもよいか、単分子膜形成能、フタロシア
ニン骨格の分散性からアクリル系高分子鎖が好ましい。
The production method of the present invention uses a solution of a polymer compound in which a phthalocyanine skeleton is bonded to a polymer chain that can form a monomolecular film by itself. The polymer chains tend to spread on the water surface, which inhibits the association between phthalocyanines. Therefore, the film on the water surface becomes stable and can be obtained with good reproducibility. The polymer chain used in the present invention may have any structure as long as it can form a monomolecular film on the water surface by itself. Any of homopolymers, copolymers, block polymers, etc. may be used, but acrylic polymer chains are preferred from the viewpoint of monomolecular film forming ability and dispersibility of the phthalocyanine skeleton.

また、フタロ・シアニン骨格の会合を抑制するためにも
フタロシアニン骨格は複数の高分子鎖の末端に結合して
いることが好ましい。
Furthermore, in order to suppress the association of phthalocyanine skeletons, it is preferable that the phthalocyanine skeletons are bonded to the ends of a plurality of polymer chains.

本発明の高分子鎖の重合度は5以上であり、安定な水面
上膜が得られるものであればいくらであってもよい。用
いる高分子鎖の種類や、好ましいフタロシアニン濃度に
より重合度は異なるが、一般には10から100が好ま
しい。
The degree of polymerization of the polymer chain of the present invention is 5 or more, and any degree may be used as long as a stable film on the water surface can be obtained. The degree of polymerization varies depending on the type of polymer chain used and the preferred phthalocyanine concentration, but is generally preferably from 10 to 100.

本製造方法により水面上で安定な単分子膜が形成されれ
ば、通常の垂直法または、水平付着法にて、固体基板上
に累積できる。また、基板上においてもフタロシアニン
骨格はポリマーマトリックス中に安定に結合、分散して
いるため安定である。
If a monomolecular film that is stable on the water surface is formed by this manufacturing method, it can be deposited on a solid substrate by a normal vertical or horizontal deposition method. Moreover, the phthalocyanine skeleton is stably bonded and dispersed in the polymer matrix, so that it is stable even on the substrate.

(実施例) 実施例1 テトラジアゾフタロシアニンを重合開始剤として得られ
たポリエチルメタクリレート(重合度10)をクロロホ
ルムに溶かして濃度0.1g/lの展開溶液を作った。
(Examples) Example 1 Polyethyl methacrylate (degree of polymerization 10) obtained using tetradiazophthalocyanine as a polymerization initiator was dissolved in chloroform to prepare a developing solution with a concentration of 0.1 g/l.

この溶液を水温15℃の水面上に滴下して単分子膜を展
開した。次に、表面圧が13dyn/cmとなるまで水
面上の単分子膜を圧縮した後、表面圧を13dyn/c
IIlに保ちながら、シランカップリング剤で疎水化し
たシリコン基板上に垂直法で単分子膜を10層累積した
This solution was dropped onto the water surface at a water temperature of 15° C. to develop a monomolecular film. Next, after compressing the monomolecular film on the water surface until the surface pressure becomes 13 dyn/cm, the surface pressure is reduced to 13 dyn/c.
Ten monomolecular films were stacked vertically on a silicon substrate that had been made hydrophobic with a silane coupling agent while maintaining the temperature at IIl.

得られた累積膜を光学顕微鏡および走査型電子顕微鏡で
観察し、均一なLB膜が得られたことを確認した。エリ
プソメタ−の測定から膜厚は130八であった。この膜
を50℃、温度100%のところで1月放置したが膜厚
や均一性に変化はなかった。
The obtained cumulative film was observed using an optical microscope and a scanning electron microscope, and it was confirmed that a uniform LB film was obtained. The film thickness was 130 mm as measured by an ellipsometer. This film was left at 50° C. and 100% temperature for one month, but there was no change in film thickness or uniformity.

実施例2 へ高分子鎖がエチルメタクリレートとメチルメタクリレ
ートの共重合体であり、重合度が15であることを除い
ては実施例1と同様の方法で10層の累積膜を得た。得
られた累積膜を光学顕微鏡および走査型電子顕微鏡で観
察し、均一なLB膜が得られたことを確認した。エリプ
ソメタ−の測定から膜厚は110Aであった。この膜を
50℃、湿度100%のところで1月放置したが膜厚や
均一性に変化はなかった。
Example 2 A 10-layer cumulative film was obtained in the same manner as in Example 1, except that the polymer chain was a copolymer of ethyl methacrylate and methyl methacrylate and the degree of polymerization was 15. The obtained cumulative film was observed using an optical microscope and a scanning electron microscope, and it was confirmed that a uniform LB film was obtained. The film thickness was 110A as measured by an ellipsometer. This film was left at 50°C and 100% humidity for one month, but there was no change in film thickness or uniformity.

実施例3 高分子鎖がポリブチルフマレートであり、重合度が12
であることを除いては実施例1と同様の方法で10層の
累積膜を得た。得られた累積膜を光学顕微鏡および走査
型電子顕微鏡で観察し、均一なLB膜が得られたことを
確認した。エリプソメタ−の測定から膜厚は120人で
あった。この膜を50℃、湿度100%のところで1月
放置したが膜厚や均一性に変化はなかった。
Example 3 The polymer chain is polybutyl fumarate and the degree of polymerization is 12
A 10-layer cumulative film was obtained in the same manner as in Example 1, except that. The obtained cumulative film was observed using an optical microscope and a scanning electron microscope, and it was confirmed that a uniform LB film was obtained. The film thickness was determined to be 120 by measurement using an ellipsometer. This film was left at 50°C and 100% humidity for one month, but there was no change in film thickness or uniformity.

実施例4 高分子鎖がスチレンとメチルアクリレートの共重合体で
あり、重合度15であることを除いては実施例1と同様
の方法で10層の累積膜を得た。
Example 4 A 10-layer cumulative film was obtained in the same manner as in Example 1, except that the polymer chain was a copolymer of styrene and methyl acrylate and the degree of polymerization was 15.

得られた累積膜を光学顕微鏡および走査型電子顕微鏡で
観察し、均一なLB膜が得られたことを確認した。エリ
プソメタ−の測定から膜厚は200人であった。この膜
を50℃、温度100%のところで1月放置したが膜厚
や均一性に変化はなかった。
The obtained cumulative film was observed using an optical microscope and a scanning electron microscope, and it was confirmed that a uniform LB film was obtained. The film thickness was determined to be 200 by measurement using an ellipsometer. This film was left at 50° C. and 100% temperature for one month, but there was no change in film thickness or uniformity.

[発明の効果] 以上詳述したように本発明の製造方法を用いれば、均一
で安定なフタロシアニン薄膜を簡便に提供得ることがで
きる。
[Effects of the Invention] As detailed above, by using the production method of the present invention, a uniform and stable phthalocyanine thin film can be easily provided.

Claims (3)

【特許請求の範囲】[Claims] (1)水面上で単分子膜が形成可能な重合度5以上の高
分子鎖にフタロシアニン骨格を化学結合させてなる高分
子化合物を溶解した溶液を、水面上に展開することを特
徴とするフタロシアニン薄膜の製造方法。
(1) Phthalocyanine, which is characterized in that a solution containing a polymer compound in which a phthalocyanine skeleton is chemically bonded to a polymer chain with a degree of polymerization of 5 or more capable of forming a monomolecular film on the water surface is spread on the water surface. Method for manufacturing thin films.
(2)高分子鎖がアクリル系高分子であることを特徴と
する請求項(1)記載のフタロシアニン薄膜の製造方法
(2) The method for producing a phthalocyanine thin film according to claim (1), wherein the polymer chain is an acrylic polymer.
(3)フタロシアニン骨格が一つもしくは複数の高分子
主鎖の末端に結合していることを特徴とする一請求項(
1)もしくは(2)記載のフタロシアニン薄膜の製造方
法。
(3) A claim characterized in that a phthalocyanine skeleton is bonded to the terminal of one or more polymer main chains (
The method for producing a phthalocyanine thin film according to 1) or (2).
JP2187183A 1990-07-17 1990-07-17 Preparation of phthalocyanine thin film Pending JPH0477561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187183A JPH0477561A (en) 1990-07-17 1990-07-17 Preparation of phthalocyanine thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187183A JPH0477561A (en) 1990-07-17 1990-07-17 Preparation of phthalocyanine thin film

Publications (1)

Publication Number Publication Date
JPH0477561A true JPH0477561A (en) 1992-03-11

Family

ID=16201563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187183A Pending JPH0477561A (en) 1990-07-17 1990-07-17 Preparation of phthalocyanine thin film

Country Status (1)

Country Link
JP (1) JPH0477561A (en)

Similar Documents

Publication Publication Date Title
Calistri-Yeh et al. Thermal stability of self-assembled monolayers from alkylchlorosilanes
CN108291984B (en) Color-converting photonic crystal structure and color-converting photonic crystal sensor using same
CN102757520A (en) Random copolymer for forming neutral surface and methods of manufacturing and using the same
KR101769093B1 (en) Colorimetric photonic crystal structure and colorimetric photonic crystal sensor using the same
US4828917A (en) Layer of metallomacrocyclic polymer on substrate
KR100519244B1 (en) A method for the processing of ultra-thin polymeric films
CA1272059A (en) Negative photoresist systems
KR101803549B1 (en) Colorimetric photonic crystal structure and colorimetric photonic crystal sensor using the same
TWI810256B (en) Conductive film and manufacturing method thereof, conductive body, forming method of resist pattern, and laminated body
JPS58111029A (en) Manufacture of built-up film of diacetylene compound
Lee et al. On‐Surface RAFT Polymerization using Oxygen to form Triblock Copolymer Brushes
JP2504770B2 (en) Multilayer unit and method for manufacturing the same
JPH0477561A (en) Preparation of phthalocyanine thin film
KR102476652B1 (en) Method of manufacturing photonic crystal sensor
KR20220162807A (en) Electrically conductive composition, electrically conductive film, and laminate
US20210261765A1 (en) Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2005103125A1 (en) Ultrathin polymer film using cucurbituril derivative and method of forming the same
JP7415382B2 (en) conductive composition
JPH04179956A (en) Resist composition for forming pattern and fine pattern forming method
TW201904662A (en) Anti-protein adsorbent, anti-protein adsorption film and medical equipment using same
JP3781853B2 (en) Charge transfer complex polymer alternating cumulative ultrathin film and method for producing the same
JPH021860A (en) Radiation sensitive positive type resist high in resolution
JP2021077479A (en) Conductive compound and conductive composition
Tanaka Conformational Characteristics of Radiation-Modified Polysilanes in Their Self-Assemblies
Tanaka Conformational Characteristics of Radiation-Modified