JPH0477235A - Heat-shrinkable polypropylene film - Google Patents

Heat-shrinkable polypropylene film

Info

Publication number
JPH0477235A
JPH0477235A JP18979090A JP18979090A JPH0477235A JP H0477235 A JPH0477235 A JP H0477235A JP 18979090 A JP18979090 A JP 18979090A JP 18979090 A JP18979090 A JP 18979090A JP H0477235 A JPH0477235 A JP H0477235A
Authority
JP
Japan
Prior art keywords
stretching
resin
film
heat
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18979090A
Other languages
Japanese (ja)
Inventor
Masahiko Nakaishi
正彦 中石
Hiroto Azuma
洋渡 東
Katsuhiko Morimoto
克彦 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Paper Co Ltd
Original Assignee
Honshu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Paper Co Ltd filed Critical Honshu Paper Co Ltd
Priority to JP18979090A priority Critical patent/JPH0477235A/en
Publication of JPH0477235A publication Critical patent/JPH0477235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To produce highly heat-shrinkable film having longitudinal and lateral heat shrinkage factors, which are well balanced with each other, by a method wherein film, which is produced by extruding mixed resin prepared by adding specified petroleum resin to polypropylene resin, is stretched by successive biaxial stretching. CONSTITUTION:Stock film, which is produced by extruding and forming melt extrusion composition, the resin component of which consists of 100 pts. wt. of polypropylene resin and 5 - 30 pts. wt. of petroleum resin is stretched by successive biaxial stretching so as to obtain film having longitudinal and lateral heat shrinkage factors of 35% or more respectively. As the petroleum resin- based hydrocarbon, petroleum resin, hydrogenated petroleum resin, terpene resin, hydrogenated terpene resin or the like is exampled. The normal order of the successive biaxial stretching of the stock film obtained by extrution molding or of processes for stretching longitudinally and laterally is from longitudinal stretching to lateral one. The preferable longitudinal stretching is performed at about 70 - 110 deg.C. The preferable lateral stretching is performed at about 90 - 130 deg.C or is set at stretching temperature, which is higher than the longitudinal stretching temperature by about 15 - 20 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、縦、横のそれぞれに35%以上の熱収縮率を
有するバランスのとれたポリプロピレンフィルムで、し
かも、逐次二軸延伸法で得られたフィルムに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a well-balanced polypropylene film having a heat shrinkage rate of 35% or more in each of the longitudinal and transverse directions, which is obtained by a sequential biaxial stretching method. Regarding the film that was released.

[従来の技術] 熱収縮性ポリプロピレンフィルムは、例えば、カップラ
ーメン等のカップ食品や乳酸菌飲料等の飲食品を初め、
ノートや小さな巻き取り物による雑貨類等、比較的低重
量物のシュリンク包装体を得る際に広く利用されており
、従来の塩化ビニルフィルムによる包装分野の被包装体
に対しても使用され始めている。
[Prior Art] Heat-shrinkable polypropylene films can be used, for example, in cup foods such as cup ramen, food and beverages such as lactic acid bacteria drinks, etc.
It is widely used for shrink-wrapping relatively low-weight items such as notebooks and miscellaneous goods in small rolls, and is also beginning to be used for wrapping objects in the field of conventional vinyl chloride film packaging. .

シュリンク包装体の包装用フィルムとして利用されるポ
リプロピレンフィルムに要求される熱収縮率は、該フィ
ルムの厚さやシュリンク包装される被包装物によっても
異なるが、殆んどの場合には、縦、横のそれぞれに30
%以上の熱収縮率を有するバランスのとれたものが要求
されている。
The heat shrinkage rate required for polypropylene film used as a packaging film for shrink packaging varies depending on the thickness of the film and the item to be shrink-wrapped, but in most cases it is 30 each
% or more is required.

[発明が解決しようとする課題] ところで、テンクー法を利用する逐次二軸延伸法による
熱収縮性ポリプロピレンフィルムは、インフレーション
法からなる同時二軸延伸法による熱収縮性フィルムと比
較して、例えば、厚さlOμ以下の薄物を得る場合にも
延伸工程での破断の危険性がなく、また、厚さ30μ以
上の厚物を得る場合にも延伸スピードの大幅な低下を伴
うようなことがないため、極めて効率良く生産し得るい
うメツリドを有する。
[Problems to be Solved by the Invention] By the way, a heat-shrinkable polypropylene film produced by a sequential biaxial stretching method using the Tenku method has, for example, There is no risk of breakage during the stretching process even when obtaining thin objects with a thickness of 10μ or less, and there is no significant reduction in drawing speed when obtaining thick objects with a thickness of 30μ or more. , has methulide that can be produced extremely efficiently.

しかしながら、従来のテンター法を利用する逐次二軸延
伸法による熱収縮性ポリプロピレンフィルムは、得られ
るポリプロピレンフィルムの熱収縮率がせいぜい20〜
30%であり、しかも、縦、横のそれぞれにバランスが
とれているポリプロピレンフィルムが得られない。
However, heat-shrinkable polypropylene films produced by sequential biaxial stretching using the conventional tenter method have a heat shrinkage rate of 20 to 20% at most.
30%, and it is not possible to obtain a polypropylene film that is well-balanced both vertically and horizontally.

このため、高熱収縮性ポリプロピレンフィルムは、諸種
のデメリットを有しているインフレーション法からなる
同時二軸延伸法を利用して得られるのが一般的であった
For this reason, highly heat-shrinkable polypropylene films have generally been obtained using a simultaneous biaxial stretching method consisting of an inflation method, which has various disadvantages.

これに対して本発明は、テンター法を利用する逐次二軸
延伸法による熱収縮性ポリプロピレンフィルムで、しか
も、縦、横のそれぞれにバランスのとれた高pAII3
2縮性のポリプロピレンフィルム、すなわち、例えば、
厚さ10u以下の薄物を得る場合にも破断の危険性がな
(、また、厚さ30μ以上の厚物を得る場合にも延伸ス
ピードの大幅な低下を伴うようなことがなく、極めて高
い生産効率を維持し得るテンター法を利用する逐次二軸
延伸法によるポリプロピレンフィルムで、しかも、縦、
横のそれぞれにバランスのとれた高熱収縮性のフィルム
を提供する。
In contrast, the present invention is a heat-shrinkable polypropylene film produced by a sequential biaxial stretching method using a tenter method, and which has a high pAII3 well-balanced in each of the vertical and horizontal directions.
A bicondensing polypropylene film, i.e., e.g.
There is no risk of breakage even when producing thin products with a thickness of 10μ or less (also, there is no significant reduction in drawing speed when producing thick products with a thickness of 30μ or more, resulting in extremely high productivity). A polypropylene film created by sequential biaxial stretching using a tenter method that maintains efficiency.
Provides a well-balanced high heat shrinkable film on each side.

[課題を解決するための手段] 木簡1の発明の熱1132縮性ポリプロピレンフイルム
は、ポリプロピレン樹脂100重量部と、5〜30重量
部の石油樹脂系炭化水素とを樹脂成分とする溶融押出し
用組成物を押出し成形した原反を、逐次二軸延伸法で延
伸することによって得られたフィルムであり、しかも、
縦、横のそれぞれに35%以上の熱収縮率を有するフィ
ルムからなる。
[Means for Solving the Problems] The thermo-1132 shrinkable polypropylene film of the invention of Wooden Tablet 1 has a composition for melt extrusion containing 100 parts by weight of a polypropylene resin and 5 to 30 parts by weight of a petroleum resin hydrocarbon as resin components. A film obtained by sequentially stretching an extruded material using a biaxial stretching method, and furthermore,
It is made of a film that has a heat shrinkage rate of 35% or more in both the vertical and horizontal directions.

また、木簡2の発明の熱収縮性ポリプロピレンフィルム
は、ポリプロピレン樹脂100重量部と、5〜30重量
部の石油樹脂とを樹脂成分とする溶融押出し用組成物を
押出し成形した原反を、逐次二軸延伸法で延伸すること
によって得られたフィルムであり、しかも、縦、横のそ
れぞれに35%以上の熱収縮率を有するフィルムからな
る。
In addition, the heat-shrinkable polypropylene film of the invention of Wooden Tablet 2 is obtained by sequentially extruding a raw film obtained by extruding a composition for melt extrusion containing 100 parts by weight of polypropylene resin and 5 to 30 parts by weight of petroleum resin. This is a film obtained by stretching by an axial stretching method, and has a heat shrinkage rate of 35% or more in each of the vertical and horizontal directions.

なお、本発明におけるポリプロピレンフィルムの熱収縮
率は、120°Cのグリセリン洛中に30秒間浸漬した
とき収縮率(%)である。
The heat shrinkage rate of the polypropylene film in the present invention is the shrinkage rate (%) when immersed in glycerin at 120°C for 30 seconds.

前記構成からなる本発明の熱収縮性ポリプロピレンフィ
ルムにおいて、ポリプロピレン樹脂には、ポリプロピレ
ンホモポリマー、ボップロピレンとエチレンや他の共重
合成分とのコポリマー、あるいはこれらの混合樹脂等が
利用される。
In the heat-shrinkable polypropylene film of the present invention having the above structure, the polypropylene resin used is a polypropylene homopolymer, a copolymer of vopropylene and ethylene or other copolymer components, or a mixed resin thereof.

ポリプロピレン樹脂中に添加、混合される石油樹脂系炭
化水素は、例えば、石油樹脂水添石油樹脂、テルペン樹
脂、水添テルペン樹脂等であり、特に石油樹脂を利用す
る場合には、該石油樹脂の分子量が1000付近で、軟
化点が100〜140℃の樹脂を利用できるので、ポリ
プロピレン樹脂と添加樹脂として利用される石油樹脂と
の間の混和性が良好であるため、侵れた延伸適性を有し
、特に、延伸工程での耐破断性において優れた特性を具
備する混合樹脂となる。
The petroleum resin hydrocarbons added and mixed into the polypropylene resin include, for example, hydrogenated petroleum resin, terpene resin, hydrogenated terpene resin, etc. In particular, when petroleum resin is used, Since a resin with a molecular weight of around 1000 and a softening point of 100 to 140°C can be used, the miscibility between the polypropylene resin and the petroleum resin used as an additive resin is good, so it has poor stretching suitability. In particular, the mixed resin has excellent properties in terms of breakage resistance during the stretching process.

本発明の熱収縮性ポリプロピレンフィルムにおいて、原
反を得る際の混合樹脂がポリプロピレン樹脂100重量
部に対して石油樹脂系炭化水素の添加量が5重量部未満
になると、石油樹脂系炭化水素の添加の作用が十分でな
く、テンター法を利用する逐次二軸延伸法によって縦、
横のそれぞれに35%以上の熱収縮率を有するポリプロ
ピレンフィルムを得るのが困難になる。
In the heat-shrinkable polypropylene film of the present invention, if the amount of petroleum resin hydrocarbon added is less than 5 parts by weight with respect to 100 parts by weight of polypropylene resin in the mixed resin when obtaining the original film, the addition of petroleum resin hydrocarbon The effect of
It becomes difficult to obtain a polypropylene film having a heat shrinkage of 35% or more on each side.

また、ポリプロピレン樹脂100重量部に対して石油樹
脂系炭化水素の添加量が30重量部を超えると、得られ
るポリプロピレンフィルムの諸物性が不十分になる。
Furthermore, if the amount of petroleum resin hydrocarbon added exceeds 30 parts by weight with respect to 100 parts by weight of the polypropylene resin, the physical properties of the resulting polypropylene film will become insufficient.

原反を得る際に利用される忍耐押出し用組成物中には、
さらに、通常の2軸延伸ポリフロピレンフイルムを得る
場合と同様に、ポリプロピレンフィルムとしての諸特性
が損なわれるようなことの無い範囲内で、例えば、酸化
防止剤、スリップ剤、アンチブロッキング剤、帯電防止
剤、紫外線吸収剤等を、必要に応じて適宜添加し得るこ
とは勿論である。
In the patient extrusion composition used to obtain the raw fabric,
Furthermore, as in the case of obtaining a normal biaxially oriented polypropylene film, additives such as antioxidants, slip agents, anti-blocking agents, antistatic agents, and Of course, agents, ultraviolet absorbers, etc. can be added as appropriate.

一軸延伸に付される原反を得る際の混合樹脂の押し出し
成形は、樹脂の劣化を防止するためにできるだけ低温で
行なうことが望ましいが、160 ’C未満の低温度に
なると、ポリプロピレンと石油樹脂系炭化水素との混練
りが不十分になり易く、また、押出し成形時の負荷が高
くなるので、160″C未濯の押出し成形は好ましくな
い。
It is desirable to perform extrusion molding of the mixed resin at as low a temperature as possible to prevent deterioration of the resin when obtaining the original fabric to be subjected to uniaxial stretching. Extrusion molding without rinsing at 160"C is not preferred because kneading with the hydrocarbon system tends to be insufficient and the load during extrusion molding becomes high.

押出し成形によって得られた原反を逐次軸延伸法で縦、
横に延伸する工程は、縦−横の順序で行なうのが普通で
ある。
The original fabric obtained by extrusion molding is longitudinally stretched using a sequential axial stretching method.
The transverse stretching step is usually carried out in the order of longitudinal and transverse stretching.

縦方向の延伸工程において、延伸温度が低すぎると延伸
斑が発生し、また、高くなりすぎると、シートがロール
に粘着する現象が発生し、ロール汚れや溶融破断に繋る
。このため、縦方向の延伸は70〜110℃で行なうの
が好適である。
In the longitudinal stretching step, if the stretching temperature is too low, stretching unevenness will occur, and if the stretching temperature is too high, the sheet will stick to the rolls, leading to roll stains and melt breakage. For this reason, it is preferable to carry out stretching in the longitudinal direction at a temperature of 70 to 110°C.

縦方向の延伸倍率は、できれば高いことが望ましいが、
7倍を超えると横縞が発生し易く、しかも、続く横方向
の延伸時に破断の危険を伴うため、4〜6倍の延伸倍率
を利用するのが好ましい。
It is desirable that the stretching ratio in the longitudinal direction is as high as possible,
If the stretching ratio exceeds 7 times, horizontal stripes are likely to occur and there is a risk of breakage during subsequent stretching in the lateral direction, so it is preferable to use a stretching ratio of 4 to 6 times.

横方向の延伸工程での加熱温度が低い場合には、得られ
るフィルムの熱収縮率は高くなるが、延伸時の破断の危
険が大きくなり、また、延伸温度が高すぎると、目的と
する高熱収縮性が得られなくなる。
If the heating temperature in the transverse stretching process is low, the heat shrinkage rate of the resulting film will be high, but the risk of breakage during stretching will increase, and if the stretching temperature is too high, the desired high heat Contractibility cannot be obtained.

このため、横方向の延伸は、通常、90〜130℃で行
なうのが好適であり、縦方向の延伸温度より15〜20
°C程度高い延伸温度に設定するのが好ましい。
For this reason, it is usually preferable to carry out the stretching in the transverse direction at a temperature of 90 to 130°C, which is 15 to 20°C higher than the stretching temperature in the longitudinal direction.
It is preferable to set the stretching temperature to a temperature as high as .degree.C.

なお、横方向の延伸工程での加熱最適温度は、押出し樹
脂中における石油樹脂系炭化水素の含有量に応じて決定
され、石油樹脂系炭化水素の含有量が小さい場合には、
加納温度を高く設定することが必要である。
The optimum heating temperature in the lateral stretching process is determined depending on the content of petroleum resin hydrocarbons in the extruded resin, and if the content of petroleum resin hydrocarbons is small,
It is necessary to set the Kano temperature high.

さらに、横方向の延伸倍率は、縦方向の延伸倍率より高
く設定することが好ましく、通常、縦方向の延伸倍率の
11〜15倍程度の倍率に設定するのが好適である。
Furthermore, the stretching ratio in the horizontal direction is preferably set higher than the stretching ratio in the longitudinal direction, and is usually preferably set to about 11 to 15 times the stretching ratio in the longitudinal direction.

[作 用] 本発明の熱収縮性ポリプロピレンフィルムは、ポリプロ
ピレン樹脂100重量部に対して5〜30重量部の石油
樹脂系炭化水素が添加されている混合樹脂の押出しフィ
ルムを原反とじで利用し、これを、逐次二軸延伸法によ
る延伸に付すことによって得られるもので、縦、横のそ
れぞれにおいて35%以上の熱収縮率を有する。
[Function] The heat-shrinkable polypropylene film of the present invention is made by using an extruded film of a mixed resin in which 5 to 30 parts by weight of petroleum resin hydrocarbon is added to 100 parts by weight of polypropylene resin for original binding. , which is obtained by subjecting this to stretching by a sequential biaxial stretching method, and has a heat shrinkage rate of 35% or more in each of the longitudinal and transverse directions.

前記構成による本発明の熱収縮性ポリプロピレンフィル
ムは、略168°Cの融点を有するポリプロピレン樹脂
100重量部に対して、融点の低い石油樹脂系炭化水素
を5〜30重量部の割合で添加した混合樹脂を押出し成
形して得られた原反な利用するものであるため、ポリプ
ロピレン樹脂による原反を延伸する場合と比較して遥か
に低温度での二軸延伸が行なえようになる。
The heat-shrinkable polypropylene film of the present invention having the above structure is a mixture of 100 parts by weight of a polypropylene resin having a melting point of approximately 168°C and a petroleum resin hydrocarbon having a low melting point added at a ratio of 5 to 30 parts by weight. Since the original fabric obtained by extrusion molding the resin is used, biaxial stretching can be performed at a much lower temperature than when stretching an original fabric made of polypropylene resin.

このため、前記原反による延伸に際しては、例えば、厚
さ10L1以下の薄物を得る場合にも破断の危険性がな
く、また、厚さ30μ以上の厚物な得る場合にも延伸ス
ピードの大幅な低下を伴うようなことのない逐次二軸延
伸方法による延伸が行なえるもので、しかも、縦、横の
それぞれに35%以上の熱収縮性を有するバランスのと
れた高熱収縮性のポリプロピレンフィルムとなる。
For this reason, when stretching the original fabric, there is no risk of breakage even when obtaining a thin object with a thickness of 10L1 or less, and there is no risk of breakage even when obtaining a thick object with a thickness of 30μ or more. It can be stretched by a sequential biaxial stretching method without any deterioration, and it becomes a well-balanced, highly heat-shrinkable polypropylene film that has heat-shrinkability of 35% or more in each of the vertical and horizontal directions. .

[実施例コ 以下、本発明の熱収縮性ポリプロピレンフィルムの具体
的な構成を、製造実施例をもって説明する6 実施例1 ポリプロピレン樹脂100重量部と石油樹脂5重量部と
の混合樹脂を溶融、混練した後、200℃のTグイを利
用して押出し成形し、厚さ1500μの押出しフィルム
からなる原反■を得た。
[Example 6] Hereinafter, the specific structure of the heat-shrinkable polypropylene film of the present invention will be explained using manufacturing examples.6 Example 1 A mixed resin of 100 parts by weight of polypropylene resin and 5 parts by weight of petroleum resin was melted and kneaded. After that, extrusion molding was performed using a T-guidry at 200° C. to obtain a raw material (①) consisting of an extruded film with a thickness of 1500 μm.

次いて、前述の原反■に対して、延伸温度80°C1延
伸倍率6倍の縦方向の延伸を行なった後、続いて、延伸
温度130℃、延伸倍率8倍の横方向の延伸を行ない、
本発明のl実施例品である熱収縮性ポリプロピレンフィ
ルム(A)を得た。
Next, the above-mentioned original film (2) was stretched in the longitudinal direction at a stretching temperature of 80°C and a stretching ratio of 6 times, and then laterally stretched at a stretching temperature of 130°C and a stretching ratio of 8 times. ,
A heat-shrinkable polypropylene film (A), which is an example product of the present invention, was obtained.

実施例2 ポリプロピレン樹脂100重量部と石油樹脂10重量部
との混合樹脂を溶融、混練した後、200°CのTグイ
を利用して押出し成形し、厚さ1500μの押出しフィ
ルムからなる原反■を得た。
Example 2 A mixed resin of 100 parts by weight of polypropylene resin and 10 parts by weight of petroleum resin was melted and kneaded, and then extruded using a T-guid at 200°C to form a raw film made of extruded film with a thickness of 1500 μm. I got it.

次いで、前述の原反■に対して、延伸温度80 ’C、
延伸倍率6倍の縦方向の延伸を行なった後、続いて、延
伸温度120℃、延伸倍率8倍の横方向の延伸を行ない
、本発明の1実施例品である熱収縮性ポリプロピレンフ
ィルム(B)を得た。
Next, the above-mentioned original fabric (■) was stretched at a stretching temperature of 80'C,
After stretching in the longitudinal direction at a stretching ratio of 6 times, subsequent stretching in the transverse direction at a stretching temperature of 120° C. and a stretching ratio of 8 times was performed to obtain a heat-shrinkable polypropylene film (B), which is an example product of the present invention. ) was obtained.

実施例3 前述の実施例2で得られた原反■に対して、延伸温度8
0℃、延伸倍率6倍の縦方向の延伸を行なった後、続い
て、延伸温度130℃、延伸倍率8倍の横方向の延伸を
行ない、本発明の1実施例品である熱収縮性ポリプロピ
レンフィルム(C)を得た。
Example 3 The original fabric ■ obtained in Example 2 above was stretched at a stretching temperature of 8
After stretching in the longitudinal direction at 0° C. and a stretching ratio of 6 times, subsequent stretching in the transverse direction at a stretching temperature of 130° C. and a stretching ratio of 8 times was performed to obtain heat-shrinkable polypropylene, which is an example product of the present invention. A film (C) was obtained.

実施例4 ポリプロピレン樹脂100重量部と石油樹脂15重量部
との混合樹脂を溶融、混練した後、200°CのTダイ
を利用して押出し成形し、厚さ1500μの押出しフィ
ルムからなる原反■を得た。
Example 4 After melting and kneading a mixed resin of 100 parts by weight of polypropylene resin and 15 parts by weight of petroleum resin, extrusion molding was performed using a T-die at 200°C to obtain a raw film consisting of an extruded film with a thickness of 1500 μm. I got it.

次いで、前述の原反■に対して、延伸温度80″C1延
伸倍率6倍の縦方向の延伸を行なった後、続いて、延伸
温度120°C1延伸倍率8倍の横方向の延伸を行ない
、本発明の1実施例品である熱収縮性ポリプロピレンフ
ィルム(D)を得た。
Next, the above-mentioned original film (2) was stretched in the longitudinal direction at a stretching temperature of 80° C1 at a stretch ratio of 6 times, and subsequently stretched in the transverse direction at a stretching temperature of 120° C. and a stretch ratio of 8 times. A heat-shrinkable polypropylene film (D), which is an example product of the present invention, was obtained.

実施例5 前述の実施例4で得られた原反■に対して、延伸温度8
0°C1延伸倍率6倍の縦方向の延伸を行なった後、続
いて、延伸温度130°C5延伸倍率8倍の横方向の延
伸を行ない、本発明の1実施例品である熱収縮性ポリプ
ロピレンフィルム(E)を得た。
Example 5 The original fabric ■ obtained in Example 4 above was stretched at a stretching temperature of 8.
After stretching in the longitudinal direction at 0°C1 at a stretching ratio of 6 times, subsequent stretching in the transverse direction at a stretching temperature of 130°C5 at a stretching ratio of 8 times was performed to obtain heat-shrinkable polypropylene, which is an example product of the present invention. A film (E) was obtained.

以上の実施例1〜5における熱収縮性ポリプロピレンフ
ィルム(A)〜(E)の熱収縮率(%)を第1表に示す
Table 1 shows the heat shrinkage percentages (%) of the heat-shrinkable polypropylene films (A) to (E) in Examples 1 to 5 above.

なお、熱収縮率(%)は、120°Cのグリセリン浴中
に30秒間浸漬したときの数値である。
Note that the heat shrinkage rate (%) is a value obtained when immersed in a glycerin bath at 120°C for 30 seconds.

第 表 比較例1 前述の実施例1て得られた原反■に対して、延伸温度8
0℃、延伸倍率6倍の縦方向の延伸を行なった後、続い
て、延伸温度120’C,延伸倍率8倍の横方向の延伸
を行なったところ、横方向の延伸工程で破断が発生し、
目的とする熱収縮性ポリプロピレンフィルムは得られな
かった。
Comparative Example 1 in Table 1 For the original fabric ■ obtained in Example 1 above, the stretching temperature was 8
After stretching in the longitudinal direction at 0°C and a stretch ratio of 6 times, subsequent stretching in the transverse direction was performed at a stretching temperature of 120'C and a stretch ratio of 8 times, breakage occurred during the transverse stretching process. ,
The desired heat-shrinkable polypropylene film could not be obtained.

比較例2 前述の実施例1で得られた原反■に対して、延伸温度8
0℃、延伸倍率6倍の縦方向の延伸を行なった後、続い
て、延伸温度140℃、延伸倍率8倍の横方向の延伸を
行ない、比較のための熱収縮性ポリプロピレンフィルム
(a)を得た。
Comparative Example 2 The original fabric ■ obtained in Example 1 above was stretched at a stretching temperature of 8.
After stretching in the longitudinal direction at 0°C and a stretching ratio of 6 times, subsequent stretching in the transverse direction was carried out at a stretching temperature of 140°C and a stretching ratio of 8 times to obtain a heat-shrinkable polypropylene film (a) for comparison. Obtained.

比較例3 前述の実施例2で得られた原反■に対して、延伸温度8
0°C9延伸倍率6倍の縦方向の延伸を行なった後、続
いて、延伸温度140℃、延伸倍率8倍の横方向の延伸
を行ない、比較のための熱収縮性ポリプロピレンフィル
ム(b)を得た。
Comparative Example 3 The original fabric ■ obtained in Example 2 was stretched at a stretching temperature of 8.
After stretching in the longitudinal direction at 0° C.9 at a stretching ratio of 6 times, subsequent stretching in the transverse direction at a stretching temperature of 140° C. and a stretching ratio of 8 times was performed to obtain a heat-shrinkable polypropylene film (b) for comparison. Obtained.

比較例4 前述の実施例4で得られた原反■に対して、延伸温度8
0°C1延伸倍率6倍の縦方向の延伸を行なった後、続
いて、延伸温度140°C1延伸倍率8倍の横方向の延
伸を行ない、比較のための熱収縮性ポリプロピレンフィ
ルム(c)を得た。
Comparative Example 4 The original fabric ■ obtained in Example 4 above was stretched at a stretching temperature of 8.
After stretching in the longitudinal direction at 0°C and a stretching ratio of 6 times, subsequent stretching was carried out in the transverse direction at a stretching temperature of 140°C and a stretching ratio of 8 times to obtain a heat-shrinkable polypropylene film (c) for comparison. Obtained.

比較例5 ポリプロピレン樹脂を溶融、混練した後、200℃のT
グイを利用して押出し成形し、厚さ1500μの押出し
フィルムからなる原反■を得た。
Comparative Example 5 After melting and kneading polypropylene resin, T
Extrusion molding was carried out using a gouer to obtain an original fabric (2) consisting of an extruded film with a thickness of 1500 μm.

次いで、前述の原反■に対して、延伸温度80℃、延伸
倍率6倍の縦方向の延伸を行なった後、続いて、延伸温
度120°C1延伸倍率8倍の横方向の延伸を行なった
ところ、横方向の延伸工程で破断が発生し、目的とする
熱収縮性ポリプロピレンフィルムは得られなかった。
Next, the above-mentioned original fabric (2) was stretched in the longitudinal direction at a stretching temperature of 80°C and a stretching ratio of 6 times, and then stretched in the transverse direction at a stretching temperature of 120°C and a stretching ratio of 8 times. However, breakage occurred during the transverse stretching step, and the desired heat-shrinkable polypropylene film could not be obtained.

比較例6 前述の比較例5で得られた原反■に対して、延伸温度8
0℃ 延伸倍率6倍の縦方向の延伸を行なった後、続い
て、延伸温度130°C7延伸倍率8倍の横方向の延伸
を行なったところ、横方向の延伸工程で破断が発生し、
目的とする熱収縮性ポリプロピレンフィルムは得られな
かった。
Comparative Example 6 The original fabric ■ obtained in Comparative Example 5 above was stretched at a stretching temperature of 8.
After stretching in the longitudinal direction at a stretching ratio of 6 times at 0°C, subsequent stretching was performed in the horizontal direction at a stretching temperature of 130°C and a stretching ratio of 8 times, breakage occurred during the stretching process in the horizontal direction.
The desired heat-shrinkable polypropylene film could not be obtained.

比較例7 前述の比較例5で得られた原反■に対して、延伸温度8
0°C9延伸倍率6倍の縦方向の延伸を行なった後、続
いて、延伸温度140℃、延伸倍率8倍の横方向の延伸
を行ない、比較のため熱収縮性ポリプロピレンフィルム
(d)を得た。
Comparative Example 7 The original fabric ■ obtained in Comparative Example 5 above was stretched at a stretching temperature of 8.
After stretching in the longitudinal direction at 0° C.9 with a stretching ratio of 6 times, the film was subsequently stretched in the transverse direction at a stretching temperature of 140° C. and a stretching ratio of 8 times to obtain a heat-shrinkable polypropylene film (d) for comparison. Ta.

以上の比較例2〜4および7における熱収縮性ポリプロ
ピレンフィルム(a)〜(d)の熱収縮率(%)を第2
表に示す。
The heat shrinkage rates (%) of the heat-shrinkable polypropylene films (a) to (d) in Comparative Examples 2 to 4 and 7 above were determined by the second
Shown in the table.

なお、熱収縮率(%)は、120°Cのグリセリン南中
に30秒間浸漬したときの数値である。
Note that the heat shrinkage rate (%) is a value obtained when immersed in glycerin solution at 120°C for 30 seconds.

第 表 実施例6 ポリプロピレン樹脂100重量部とテルペン樹脂10重
量部との混合樹脂を溶融、混練した後、200°CのT
ダイを利用して押出し成形し、厚さ1500μの原反■
を得た。
Table Example 6 After melting and kneading a mixed resin of 100 parts by weight of polypropylene resin and 10 parts by weight of terpene resin,
Extrusion molded using a die to create a 1500μ thick raw fabric■
I got it.

次いで、前述の原反■に対して、延伸温度80°C5延
伸倍率6倍の縦方向の延伸を行なった後、続いて、延伸
温度130℃、延伸倍率8倍の横方向の延伸を行ない、
本発明の1実施例品である熱収縮性ポリプロピレンフィ
ルム(F)を得た。
Next, the above-mentioned original film (2) was stretched in the longitudinal direction at a stretching temperature of 80° C. and at a stretching ratio of 6 times, and then stretched in the transverse direction at a stretching temperature of 130° C. and a stretching ratio of 8 times.
A heat-shrinkable polypropylene film (F), which is an example product of the present invention, was obtained.

得られた熱収縮性ポリプロピレンフィルム(F)の熱収
縮率、すなわち、フィルム(F)を120℃のグリセリ
ン洛中に30秒間浸漬したときの熱収縮率は、縦40%
、横43%である。
The heat shrinkage rate of the obtained heat-shrinkable polypropylene film (F), that is, the heat shrinkage rate when the film (F) was immersed in glycerin at 120°C for 30 seconds was 40% in the longitudinal direction.
, horizontally 43%.

[効 果] 本発明の熱収縮性ポリプロピレンフィルムは、逐次二軸
延伸法で延伸することによって得られたフィルムで、し
かも、縦、横のそれぞれに35%以上の熱収縮率を有す
るものであり、高熱収縮性を縦、横においてバランスし
て有するものである。
[Effect] The heat-shrinkable polypropylene film of the present invention is a film obtained by stretching by a sequential biaxial stretching method, and has a heat shrinkage rate of 35% or more in each of the vertical and horizontal directions. , which has high heat shrinkability in a well-balanced manner both vertically and horizontally.

したがって、従来のインフレーション法によって得られ
ている熱収縮性フィルムを利用するシュリンク包装体の
包装分野にそのまま適用し得るものであり、しかも、テ
ンクー法を利用する逐次二軸延伸法によって延伸された
ものであるから、例えば、厚さ10μ以下の薄物を得る
場合にも延伸工程での破断の危険性がなく、また、厚さ
30μ以上の厚物を得る場合にも延伸スピードの大幅な
低下を伴うようなことがないため、極めて効率良く生産
される。
Therefore, it can be directly applied to the packaging field of shrink packages that utilize heat-shrinkable films obtained by the conventional inflation method, and moreover, it can be applied to the packaging field of shrink packages that utilize heat-shrinkable films obtained by the conventional inflation method. Therefore, for example, there is no risk of breakage during the stretching process even when obtaining a thin product with a thickness of 10 μm or less, and there is a significant decrease in the drawing speed when obtaining a thick product with a thickness of 30 μm or more. Since this does not occur, production is extremely efficient.

Claims (1)

【特許請求の範囲】 1、ポリプロピレン樹脂100重量部に対して5〜30
重量部の石油樹脂系炭化水素が添加されている混合樹脂
の押出しフィルムを、逐次二軸延伸法で延伸することに
より得られたフィルムで、しかも、縦、横のそれぞれに
35%以上の熱収縮率を有することを特徴とする熱収縮
性ポリプロピレンフィルム。 2、ポリプロピレン樹脂100重量部に対して5〜30
重量部の石油樹脂が添加されている混合樹脂の押出しフ
ィルムを、逐次二軸延伸法で延伸することにより得られ
たフィルムで、しかも、縦、横のそれぞれに35%以上
の熱収縮率を有することを特徴とする熱収縮性ポリプロ
ピレンフィルム。
[Claims] 1. 5 to 30 parts by weight per 100 parts by weight of polypropylene resin
A film obtained by sequentially stretching an extruded film of a mixed resin to which parts by weight of petroleum resin hydrocarbons have been added using a biaxial stretching method, and which has a heat shrinkage of 35% or more in each of the vertical and horizontal directions. A heat-shrinkable polypropylene film characterized by having a 2. 5 to 30 parts by weight per 100 parts by weight of polypropylene resin
A film obtained by sequentially stretching an extruded film of a mixed resin to which part by weight of petroleum resin is added using a biaxial stretching method, and which has a heat shrinkage rate of 35% or more in each of the vertical and horizontal directions. A heat-shrinkable polypropylene film characterized by:
JP18979090A 1990-07-18 1990-07-18 Heat-shrinkable polypropylene film Pending JPH0477235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18979090A JPH0477235A (en) 1990-07-18 1990-07-18 Heat-shrinkable polypropylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18979090A JPH0477235A (en) 1990-07-18 1990-07-18 Heat-shrinkable polypropylene film

Publications (1)

Publication Number Publication Date
JPH0477235A true JPH0477235A (en) 1992-03-11

Family

ID=16247251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18979090A Pending JPH0477235A (en) 1990-07-18 1990-07-18 Heat-shrinkable polypropylene film

Country Status (1)

Country Link
JP (1) JPH0477235A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482771A (en) * 1992-09-18 1996-01-09 W. R. Grace & Co.-Conn. Moisutre barrier film
US5543223A (en) * 1992-09-18 1996-08-06 W. R. Grace & Co.-Conn. Moisture barrier film
US6524720B1 (en) 1992-09-18 2003-02-25 Cryovac, Inc. Moisture barrier film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999646A (en) * 1973-01-26 1974-09-20
JPS5550064A (en) * 1978-10-02 1980-04-11 Exxon Research Engineering Co Aromatic amide plasticizer for ionic polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999646A (en) * 1973-01-26 1974-09-20
JPS5550064A (en) * 1978-10-02 1980-04-11 Exxon Research Engineering Co Aromatic amide plasticizer for ionic polymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482771A (en) * 1992-09-18 1996-01-09 W. R. Grace & Co.-Conn. Moisutre barrier film
US5543223A (en) * 1992-09-18 1996-08-06 W. R. Grace & Co.-Conn. Moisture barrier film
US5910374A (en) * 1992-09-18 1999-06-08 Cryovac, Inc. Moisture barrier film
US6524720B1 (en) 1992-09-18 2003-02-25 Cryovac, Inc. Moisture barrier film
US6579621B1 (en) 1992-09-18 2003-06-17 Cryovac, Inc. Moisture barrier film

Similar Documents

Publication Publication Date Title
US5091237A (en) Transparent shrink film based on polypropylene, process for its manufacture, and its use for shrink labels
US3380868A (en) Method for producing and orienting polypropylene films
JPH10503976A (en) Uniaxially shrinkable biaxially oriented polyolefin film and method for producing the same
SK195392A3 (en) Foam pressing shrinkable by heat
JPS6147234A (en) Manufacturing method of heat shrinkable polypropylene film
EP2065185A1 (en) Adhesive wrap film
JP2023153798A (en) Polypropylene-based resin multilayer film
JP4970872B2 (en) Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material
JPH0477235A (en) Heat-shrinkable polypropylene film
JP7040681B1 (en) Biaxially oriented polypropylene film
CN114096416B (en) Biaxially oriented polypropylene resin film and package using same
JP3569989B2 (en) Method for producing biaxially oriented polyamide film
JP2003145695A (en) Method for manufacturing polyethylenic heat-shrinkable film
JPH0462531B2 (en)
JPS599030A (en) Foamed film heat-shrinking in longitudinal direction
JP3505898B2 (en) Manufacturing method of sequential biaxially stretched polyamide film
JP2000336221A (en) Polypropylenic resin composition and heat-shrinkable film
JP7276567B2 (en) biaxially oriented polypropylene film
JP3049802B2 (en) Heat-shrinkable polyester film
JPS6141732B2 (en)
JPS6241096B2 (en)
JPH0341347B2 (en)
JPH10249980A (en) Heat-shrinkable film and its production
JP2001114910A (en) Heat shrinkable polypropylene film
JPH08151454A (en) Thermally shrinkable polypropylene film