JPH047678A - Picture recognizing device - Google Patents

Picture recognizing device

Info

Publication number
JPH047678A
JPH047678A JP2109573A JP10957390A JPH047678A JP H047678 A JPH047678 A JP H047678A JP 2109573 A JP2109573 A JP 2109573A JP 10957390 A JP10957390 A JP 10957390A JP H047678 A JPH047678 A JP H047678A
Authority
JP
Japan
Prior art keywords
light
light amount
threshold value
video camera
amount sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2109573A
Other languages
Japanese (ja)
Inventor
Michiya Yokota
道也 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP2109573A priority Critical patent/JPH047678A/en
Publication of JPH047678A publication Critical patent/JPH047678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)

Abstract

PURPOSE:To smoothly and stably execute the operation of picture recognition by altering a threshold in accordance with illuminance detected by light quantity sensor. CONSTITUTION:A binarization circuit 27 binarizing a picture signal from an image pickup means based on the threshold so as to obtain picture data and a control circuit 23 altering the threshold in accordance with illuminance are provided. Namely, the picture signal from a video camera 1 is binary-encoded in the binarization circuit 27 and it is accumulated in a frame memory 28. CPU 23 receives an output signal from the light quantity sensor 4 and calculates the threshold Vth for binary-encoding by data of RAM 22, and the threshold is transmitted to the binarization circuit 27 through an I/O port 25. Thus, the operation of picture recognition can smoothly be executed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば製造組立工程等において平面基板上
にIC素子等が正しく実装されたか、孔が正しく開けら
れているかの認識、あるいは物体の形状判別、孔径の工
業計測等を行うための画像認識装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, the recognition of whether IC elements etc. are correctly mounted on a flat substrate in the manufacturing and assembly process, or whether holes are correctly opened, or the recognition of whether an object is The present invention relates to an image recognition device for performing shape discrimination, industrial measurement of pore diameter, etc.

[従来の技術] 上記の認識を行うために、テレビカメラで認識対象物を
撮像し、濃度差によるフントラストを得、その画像信号
を適当なしきい値(2値化レベル)で2値符号化して、
これにより山部や孔部1色彩の異なる部分等の特徴領域
を基準面に対して抽出し、それらの特徴領域の認識を行
っている。
[Prior Art] In order to perform the above recognition, a television camera images the object to be recognized, obtains a contrast based on density difference, and then binary encodes the image signal using an appropriate threshold (binarization level). hand,
As a result, characteristic regions such as peaks and holes with different colors are extracted with respect to the reference plane, and these characteristic regions are recognized.

ところで、太陽光の強さの変化等による外光の強さの変
化、又は光源を用いて照明を行っている場合にその光源
の照射光量の時間変化等により、認識対象物からテレビ
カメラが受ける受光量が変化した場合、それに合わせて
しきい値も変えなければならないが、従来、しきい値の
調整はオペレータが手作業で、適当な微少変化量を与え
てその結果、特徴領域が正しく抽出出来るか否かを、試
行錯誤的に行って、正しいしきい値に修正していた。
By the way, due to changes in the intensity of external light due to changes in the intensity of sunlight, etc., or changes in the amount of light emitted by the light source over time when illuminating with a light source, the amount of light received by the television camera from the object to be recognized may change. When the amount of light received changes, the threshold value must be changed accordingly, but conventionally, the operator manually adjusts the threshold value by applying an appropriate small amount of change, and as a result, the feature region is correctly extracted. I used trial and error to see if I could do it or not, and adjusted the threshold to the correct value.

[解決しようとする課題] 従って、しきい値の調整に手間取り、画像認識の作業が
手間取るという課題があった。
[Problems to be Solved] Therefore, there were problems in that adjusting the threshold value was time-consuming and image recognition work was time-consuming.

そこで本発明の目的は、しきい値の調整が自動的に容易
に行われ、従って画像認識の作業をスムーズに行って行
くことが可能な画像認識装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide an image recognition apparatus in which threshold values can be automatically and easily adjusted, and image recognition operations can therefore be carried out smoothly.

[課題を解決するための手段] 上記目的を達成するために、本発明の画像認識装置は、
認識対象物からの反射光に基づいて照度を検知する光量
センサと、認識対象物を撮像し、画像信号を出力する撮
像手段と、撮像手段からの画像信号をしきい値に基づい
て2値化して画像データを得る2値化回路と、光量セン
サによって検知された照度に応じて、しきい値を蛮更せ
しめる制御凹路とを具備する。
[Means for Solving the Problem] In order to achieve the above object, the image recognition device of the present invention has the following features:
A light amount sensor that detects illuminance based on reflected light from the recognition target object, an imaging means that images the recognition target object and outputs an image signal, and binarizes the image signal from the imaging means based on a threshold value. The image forming apparatus includes a binarization circuit that obtains image data, and a control concave path that changes the threshold value depending on the illuminance detected by the light amount sensor.

また、認識対象物を照射するための光源と、光量センサ
により検知された照度が所定許容上限あるいは下限を超
えたときに光源の光量を変化せしめる光量調整手段とを
設けてもよい。
Further, a light source for illuminating the recognition target object and a light amount adjusting means for changing the light amount of the light source when the illuminance detected by the light amount sensor exceeds a predetermined allowable upper limit or lower limit may be provided.

更に、光量センサにより検知された照度が所定許容上限
あるいは下限を超えたときに撮像手段の絞り量を変化せ
しめる絞り量調整手段を設けてもよく、さらにまた上記
光量調整手段と絞り量調整手段との双方を設けてもよい
Furthermore, an aperture amount adjusting means may be provided that changes the aperture amount of the imaging means when the illuminance detected by the light amount sensor exceeds a predetermined allowable upper limit or lower limit. Both may be provided.

[実施例] 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

まず、画像認識装置の全体構成について説明する。第1
図において、ビデオカメラ1は、認工対象物2が搬送さ
れて所定の検査位置にセットされたとき、認識対象物2
上の検査領域を視野に入れることが可能な位置に配置さ
れる。ビデオカメラ1による認識対象物2の撮像環境は
、外光に対して遮光手段等を設けず、開放下で行われ、
これにより覆い等の部材が不要となり、装置を小型化す
ることができる。
First, the overall configuration of the image recognition device will be explained. 1st
In the figure, the video camera 1 detects the recognition target 2 when the recognition target 2 is transported and set at a predetermined inspection position.
It is placed in a position that allows the inspection area above to be viewed. The environment in which the recognition target object 2 is captured by the video camera 1 is in an open environment without any shielding means or the like against external light.
This eliminates the need for members such as covers, allowing the device to be made smaller.

ビデオカメラ1のフォーカシングレンズ1aの外方部に
は、ビデオカメラ1の受光軸と軸線を一致して、円形の
蛍光管からなる光源3が設置され、認識対象物2の表面
を均一に照らすことが可能となっている。光源3は光量
調整手段(図示省略)が設けてあり、光量を変化可能に
なっている。
A light source 3 made of a circular fluorescent tube is installed outside the focusing lens 1a of the video camera 1 so that its axis coincides with the light receiving axis of the video camera 1, and uniformly illuminates the surface of the recognition target 2. is possible. The light source 3 is provided with a light amount adjusting means (not shown), and the light amount can be changed.

フォーカシングレンズ1aの近傍には光量センサ4が設
置されている。光量センサ4は第2図に示すように、受
光面4aをとり囲むように円筒状遮光フード4bが所定
長さで取り付けられており、光源3からの直接光を受光
しないようになっている。光量センサ4の受光軸は、認
識対象物2の基準面位置でビデオカメラ1の受光軸と交
わるように調整されている。光量センサ4の受光軸とビ
デオカメラ1の受光軸とのなす角度θは可能な限り小さ
くすることが好ましく、またビデオカメラ1の視野と光
量センサ4が入力する反射光源面とは一致させることが
望ましい。ビデオカメラ1と同じ視野内の照度を電圧に
変換するため、光量センサ4としてはホトダイオードの
ような光電変換素子やCds (硫化カドミウム・セル
)のような光電変換素子を用いることが好ましい。
A light amount sensor 4 is installed near the focusing lens 1a. As shown in FIG. 2, the light amount sensor 4 has a cylindrical light-shielding hood 4b attached to a predetermined length so as to surround a light-receiving surface 4a, so as not to receive direct light from the light source 3. The light receiving axis of the light amount sensor 4 is adjusted so as to intersect with the light receiving axis of the video camera 1 at the reference plane position of the recognition target object 2. It is preferable that the angle θ between the light receiving axis of the light amount sensor 4 and the light receiving axis of the video camera 1 be as small as possible, and the field of view of the video camera 1 and the reflected light source surface inputted by the light amount sensor 4 should be made to coincide. desirable. In order to convert the illuminance within the same field of view as the video camera 1 into voltage, it is preferable to use a photoelectric conversion element such as a photodiode or a photoelectric conversion element such as a Cds (cadmium sulfide cell) as the light amount sensor 4.

ビデオカメラ1および光量センサ4の出力信号は装置本
体6に送られる。装置本体6は、後述する制御回路が内
蔵され、ビデオカメラ1.光量センサ4の制御、しきい
値の設定、ビデオカメラ1からの画像信号の2値符号化
、およびそれに基づく認識対象物2の良否判定等を行う
。装置本体6には2値化画像等を表示するためのCRT
6aが設けられている。また装置本体6の内部には、光
量センサ4の出力電圧Sが所定の上限Smax。
Output signals from the video camera 1 and the light amount sensor 4 are sent to the main body 6 of the device. The device main body 6 has a built-in control circuit, which will be described later, and is connected to the video camera 1. It controls the light amount sensor 4, sets a threshold value, performs binary encoding of the image signal from the video camera 1, and determines whether the recognition target 2 is good or bad based on the binary encoding. The device body 6 includes a CRT for displaying binary images, etc.
6a is provided. Also, inside the device main body 6, the output voltage S of the light amount sensor 4 is set at a predetermined upper limit Smax.

下限Sm1nを超えたときに警報音を発するための警報
音発生器が設けである(図示省略)。更に装置本体6に
は、監視条件等を設定するための教示用キーバッドから
なる入力装置6b、検査結果等の通知用に用いられる外
部通信回線6Cが設けられている。
An alarm sound generator is provided for emitting an alarm sound when the lower limit Sm1n is exceeded (not shown). Furthermore, the apparatus main body 6 is provided with an input device 6b consisting of a teaching keypad for setting monitoring conditions and the like, and an external communication line 6C used for notification of test results and the like.

次に第3図により、装置本体6に内蔵されている制御回
路について説明する。
Next, referring to FIG. 3, the control circuit built into the main body 6 of the apparatus will be explained.

ROM21にはCPU (中央制御部)23を動作させ
るためのプログラムが記憶されている。
A program for operating a CPU (central control unit) 23 is stored in the ROM 21 .

RAM22には、ゲインαのテーブルデータが蓄えられ
ており、このゲインαのテーブルデータとは、光量セン
サ4の暗時レベル電圧SOをテーブルデータの最初の項
目とし、以後dSだけ出力電圧が上がるごとにSl、S
2.S3.  ・・・・Si、・・・とし、各Slにお
ける最適しきい値vthlヘノ変換係数(ゲイ:/) 
al  (=Vthi /Sりのデータである。
The RAM 22 stores table data of a gain α, in which the dark level voltage SO of the light amount sensor 4 is set as the first item in the table data, and thereafter every time the output voltage increases by dS. Sl, S
2. S3. ...Si, ..., and the optimal threshold value vthl heno conversion coefficient for each Sl (gay:/)
al (=Vthi/S) data.

また、RAM22には調整限界値として光量センサ4の
出力電圧の上限Smax、下限Sm1nが記憶しである
。ITV(工業用カメラ)等に用いられる半導体受光素
子(CCDエリアセンサ等)はダイナミックレンジ(測
定許容範囲)が狭いため、光量センサ4の出力電圧Sが
Sma x及びSm1nの間を外れたときは、光源3の
光量を調整してビデオカメラ1の測定可能な照度にし、
これにより、正しい測定をビデオカメラ1に行わせるた
めである。
Further, the RAM 22 stores an upper limit Smax and a lower limit Sm1n of the output voltage of the light amount sensor 4 as adjustment limit values. Semiconductor light-receiving elements (CCD area sensors, etc.) used in ITVs (industrial cameras), etc. have a narrow dynamic range (measurement tolerance range), so when the output voltage S of the light sensor 4 falls outside of the range between Smax and Sm1n, , adjust the light intensity of the light source 3 to make it measurable illuminance for the video camera 1,
This is to allow the video camera 1 to perform correct measurements.

この他、RAM22には正常認識対象物をビデオカメラ
1で撮像して2値符号化した画素信号。
In addition, the RAM 22 stores pixel signals obtained by capturing an image of a normal recognition target object with the video camera 1 and binary-encoding it.

認識対号物2の良否判定を行う際の許容値等が記憶され
ている。キーバッド6bより入力された許容値等の監視
条件は、i / oポート25を介してRAM22に記
憶される。
Tolerance values and the like when determining the quality of the recognition object 2 are stored. Monitoring conditions such as allowable values inputted from the keypad 6b are stored in the RAM 22 via the I/O port 25.

光量センサ4からの出力電圧Sは、所定時間間隔毎にA
/D変換31.i10ポート25を経てCPU23へ送
られ、この値SもRAM22の中に蓄えられる。
The output voltage S from the light amount sensor 4 is changed to A at every predetermined time interval.
/D conversion 31. It is sent to the CPU 23 via the i10 port 25, and this value S is also stored in the RAM 22.

ビデオカメラ1からの画像信号は2値化回路27におい
て2値符号化され、フレームメモリ28に蓄えられる。
The image signal from the video camera 1 is binary coded in the binarization circuit 27 and stored in the frame memory 28.

2値符号化するためのしきい値Vthは、CPU23が
光量センサ4からの出力信号を受けてRAM22のデー
タにより計算し、i10ポート25を経て2値化回路2
7へ伝えられる。
The threshold value Vth for binary encoding is calculated by the CPU 23 based on the data in the RAM 22 upon receiving the output signal from the light amount sensor 4, and is sent to the binarization circuit 2 via the i10 port 25.
This will be communicated to 7.

なお2値符号化信号はビデオミキシング29でビデオカ
メラ1からの画像信号とミキシングされてCRTBa上
に表示可能となっている。
Note that the binary encoded signal is mixed with the image signal from the video camera 1 in a video mixing 29 so that it can be displayed on the CRTBa.

CPU23はしきい値の計算の他、ROM21の指令お
よびRAM22のデータに基づき、認識対象物2の良否
判定の計算等を行う。
In addition to calculating the threshold value, the CPU 23 performs calculations for determining the quality of the recognition object 2 based on instructions in the ROM 21 and data in the RAM 22 .

またCPU23は光量センサ4の出力電圧Sが所定上限
Smax、下限Sm1nの間を外れたときに警報音発生
信号を発し、その信号はi / oボート25を経て警
報音発生器33へ伝わる。
Further, the CPU 23 issues an alarm sound generation signal when the output voltage S of the light amount sensor 4 deviates from the predetermined upper limit Smax and lower limit Sm1n, and the signal is transmitted to the alarm sound generator 33 via the I/O boat 25.

認識対象物2良否判定の結果等は、通信ボート30を介
して通信回線6cにより外部へ伝えられる。
The results of the quality determination of the recognition target object 2 are transmitted to the outside via the communication boat 30 and the communication line 6c.

次に第5図を用いて、本装置の動作について説明する。Next, the operation of this device will be explained using FIG. 5.

まず、正常認識対象物をビデオカメラ1の視野内にセッ
トし、光源3を調整して照度を暗から明に変化させ、暗
時レベルSOを起点として、光量センサ4の出力電圧S
をdS毎に変化させ、その信号をi / oボート25
を経てRAM22の中に蓄えていく。そして、CRT6
aにより各Slにおける2値化画像を写しだし、それに
より各Siにおける最適しきい値v thiをオペレー
タが与えてRAM22の中に変換表を作っていく。これ
により各値S+における変換係数αi −Vthl /
Slがテーブルデータとして求まる(102,104)
。次にビデオカメラ1にはダイナミックレンジがあり、
ビデオカメラ1の受光量が所定値より大きい場合、及び
小さい場合は認識対象物2の画像をコントラストの差と
して表現されないため、認識対象物2の画像をコントラ
ストの差として表現できる範囲の出力電圧Sの上限Sm
ax、及び下限Sm1nを求める(103)。そしてテ
ーブルデータαi及びSmax、Sm1nをRAM22
の中に記憶する。
First, a normal recognition target is set within the field of view of the video camera 1, the light source 3 is adjusted to change the illuminance from dark to bright, and the output voltage S of the light amount sensor 4 is set from the dark level SO as a starting point.
is changed every dS, and the signal is sent to the i/o boat 25
It is then stored in the RAM 22. And CRT6
A is used to project a binarized image at each Sl, and an operator gives the optimum threshold value v thi at each Si to create a conversion table in the RAM 22. As a result, the conversion coefficient αi −Vthl /
Sl is found as table data (102, 104)
. Next, video camera 1 has a dynamic range.
If the amount of light received by the video camera 1 is larger or smaller than a predetermined value, the image of the recognition object 2 will not be expressed as a difference in contrast, so the output voltage S will fall within the range in which the image of the recognition object 2 can be expressed as a difference in contrast. Upper limit Sm
ax and the lower limit Sm1n are determined (103). Then table data αi, Smax, and Sm1n are stored in the RAM22.
memorize it in

次に、検査する認識対象物2がビデオカメラ1の視野内
に搬送されると(このときの時間を1−tpとする)、
ビデオカメラ1の撮像が可能な適当な照度が得られるよ
うに光源3の光量を調節する。すると、第4図(b)に
示すように、光量センサ4はこの時(t = tp )
における、反射光源面からの光を受光して電圧Spを出
力し、その信号はi / oボート25を経てCPU2
3へ送られる。CPU23はこの値がテーブルデータの
Sの値の中間の値の時は、Spより小さい値でかつSp
に最も近い値を光量センサ4により得られたSpの値と
見なして、このSpの値におけるαpをRAMの中から
読み出してVthp =ap −Spを計算し、この値
をi / oポート25を経て2値化回路27へ送って
、しきい値V thpが設定される。
Next, when the recognition object 2 to be inspected is transported within the field of view of the video camera 1 (this time is assumed to be 1-tp),
The amount of light from the light source 3 is adjusted so as to obtain an appropriate illuminance that allows the video camera 1 to take an image. Then, as shown in FIG. 4(b), the light amount sensor 4 detects at this time (t = tp)
, receives light from the reflected light source surface and outputs a voltage Sp, and the signal is sent to the CPU 2 via the I/O boat 25.
Sent to 3. When this value is an intermediate value between the values of S in the table data, the CPU 23 selects a value smaller than Sp and
The value closest to is regarded as the Sp value obtained by the light amount sensor 4, αp at this Sp value is read out from the RAM, Vthp = ap − Sp is calculated, and this value is sent to the I/O port 25. The signal is then sent to the binarization circuit 27, where a threshold value V thp is set.

また、この値SpをRAM22に記憶する。Further, this value Sp is stored in the RAM 22.

そして第4図(a)に示すように、最適のしきい値V 
thpにより2値化回路27で2値打号化され、その2
値打号化信号はフレームメモリ28に蓄えられ、CPU
23は、正常21in符号画像としてRAM22内に記
憶されているデータと画素ごとに比較し、符号の異なっ
ている画素数(差画素数)を計算して、その値が所定許
容値より小さい場合は良、大きい場合は不良の判定を行
い、その結果を通信ポート30を経て、通信回線6cへ
送る。
Then, as shown in FIG. 4(a), the optimal threshold value V
thp is converted into binary code by the binarization circuit 27, and the second
The value encoding signal is stored in the frame memory 28 and the CPU
23 compares each pixel with the data stored in the RAM 22 as a normal 21-inch coded image, calculates the number of pixels with different codes (difference pixel number), and if the value is smaller than a predetermined tolerance value, If it is good or large, it is judged as bad, and the result is sent to the communication line 6c via the communication port 30.

次に、第4図(b)に示すように所定時間経過してt=
tqとなった時、光量センサ4の出力電圧SqがCPU
23へ伝えられる。CPU23はRAM22に蓄えられ
ているSpを用いてl5q−Sp Iを計算し、この値
がdSより小さいとき(107)は、2ifi化回路2
7へ信号を送らず、従って2値化回路27はt−tp時
のV thpで2値化処理を行う(110)。
Next, as shown in FIG. 4(b), after a predetermined period of time has elapsed, t=
tq, the output voltage Sq of the light amount sensor 4 is
This will be communicated to 23. The CPU 23 calculates l5q-Sp I using Sp stored in the RAM 22, and when this value is smaller than dS (107), the 2ifi conversion circuit 2
Therefore, the binarization circuit 27 performs binarization processing at V thp at t-tp (110).

l Sq −6p l >dSのときはSm1n≦S≦
Smaxであるか否かを判別しく10g)、Sm1n≦
S≦5maxであるときは、1−(Sq−5p)/dS
を求める。なおiに小数点以下の数が生じた場合は小数
点以下の数は切り捨てるものとし、またSqの値を求め
たiにおけるS即ちSlとする。RAM22から、その
iにおけるα1を求め、そのαlよりV thq−α1
 ・Sqを計算して、この値を2値化回路27へ送る。
When l Sq -6p l >dS, Sm1n≦S≦
To determine whether Smax or not, 10g), Sm1n≦
When S≦5max, 1-(Sq-5p)/dS
seek. Note that if a number below the decimal point occurs in i, the number below the decimal point is rounded down, and the value of Sq is set as S in the calculated i, that is, Sl. Find α1 at that i from the RAM 22, and from that αl, V thq−α1
- Calculate Sq and send this value to the binarization circuit 27.

またこのときのSをspとしてRAM22に訂正記憶す
る(109)。これにより2値化回路27はこの■th
qで2値打号化を行い、このときは第4図(a)に示す
ようにビデオカメラ1の画像信号のレベルも変化してい
るが、しきい値v thqにより2値化回路27で2値
打号化されるために最適のしきい値で2値化され、その
21符号化信号がフレームメモリ28に蓄えられ、上記
と同様に認識対象物2の良否判定が行われる(110)
Further, S at this time is corrected and stored in the RAM 22 as sp (109). As a result, the binarization circuit 27
Binarization is performed with q, and at this time, as shown in FIG. 4(a), the level of the image signal of the video camera 1 is also changing, but the threshold value v In order to be coded, it is binarized using an optimal threshold value, and the 21 encoded signals are stored in the frame memory 28, and the quality of the recognition object 2 is judged in the same way as above (110).
.

次にS<Sm1n又はSmax<Sのときは所定の警報
音等が発せられる。するとオペレータは出力電圧Sより
光源3の必要電圧を計算して、光源3を調整してSm1
n≦S5Sma xとなるようにする(111. 11
2)。そしてこのSによりiが求められてV thlが
計算され(109)、このしきい値により2値化処理が
なされる。
Next, when S<Sm1n or Smax<S, a predetermined alarm sound or the like is emitted. Then, the operator calculates the required voltage of the light source 3 from the output voltage S and adjusts the light source 3 to obtain Sm1.
Make sure that n≦S5Smax (111. 11
2). Then, i is determined using this S, and V thl is calculated (109), and binarization processing is performed using this threshold value.

以後、上記と同様に所定時間間隔ごとに光量センサ4よ
り出力電圧Sが送られて、しきい値の制御が行われ、そ
のしきい値により2値化処理が行われ、認識対象物2の
良否判定が行われる。
Thereafter, similarly to the above, the output voltage S is sent from the light amount sensor 4 at predetermined time intervals, the threshold value is controlled, and the binarization process is performed based on the threshold value, and the recognition target object 2 is A pass/fail judgment is made.

以上の動作により、最適のしきい値が自動的に設定され
、このしきい値に基づいて認識対象物2の画像認識およ
び良否判定が行なわれる。
Through the above operations, an optimal threshold value is automatically set, and image recognition and quality determination of the recognition target object 2 are performed based on this threshold value.

なお、上記実施例では検査工程に入ると、オペレータが
まず光源3の光量を調節して与え、以後光量センサ4が
自動的にその光量を計測して、CPU23が最適のしき
い値を計算するとしたが、オペレータがまず最適なしき
い値を与えて、かつそのときの光量センサ4の出力電圧
をテーブルデータαの表より引き出してその値をSpと
してキーバッド6bを用いてRAM22に記憶させてお
き、以後装置に自動的にしきい値の制御を行わせるよう
にしてもよい。
In the above embodiment, when entering the inspection process, the operator first adjusts and applies the light intensity of the light source 3, after which the light intensity sensor 4 automatically measures the light intensity, and the CPU 23 calculates the optimal threshold value. However, the operator first gives an optimal threshold value, extracts the output voltage of the light amount sensor 4 at that time from the table data α, and stores the value as Sp in the RAM 22 using the keypad 6b. Thereafter, the device may automatically control the threshold value.

また上記実施例ではテーブルデータαにより光量センサ
4の出力電圧Sから適正なしきい値Vthを求めたが、
光量センサ4の受光量の変化、即ち光量センサ4の出力
電圧Sの変化△Sに対するしきい値の適正な変化量△V
thを実験により求めて、その間の変換係数βを計算し
、このβを用いてCPU23ではしきい値の変化量△V
th−β・△Sを計算し、ΔVthを元のしきい値Vt
hに加えさせてしきい値を修正するようにしてもよい。
Furthermore, in the above embodiment, the appropriate threshold value Vth was determined from the output voltage S of the light amount sensor 4 using the table data α.
Appropriate amount of change △V in the threshold value with respect to the change in the amount of light received by the light amount sensor 4, that is, the change △S in the output voltage S of the light amount sensor 4
th is experimentally determined, a conversion coefficient β between them is calculated, and using this β, the CPU 23 calculates the threshold change amount ΔV.
th-β・ΔS is calculated, and ΔVth is the original threshold value Vt
h may be added to modify the threshold value.

これによりノイズの影響を排除することができる。なお
、光量センサ4の出力電圧と適正なしきい値が比例的に
変化すれば、βは1つの値のみになり、この値をRAM
22に記憶させればよい。
This makes it possible to eliminate the influence of noise. Note that if the output voltage of the light sensor 4 and the appropriate threshold value change proportionally, β will have only one value, and this value will be stored in the RAM.
22.

また上記実施例では3< Sm i n又はSmaxく
Sのときは照明3を調整するとしたが、ビデオカメラ1
の絞り量調整手段を設けておき、これにより絞り量を変
化させて、ビデオカメラ1の受光量がダイナミックレン
ジ内の所定範囲に収まるようにしてもよい。なお、この
場合は光量センサ4の受光量とビデオカメラ1の受光量
との関係が変化するために、種々の絞り量におけるテー
ブルデータαを求めておき、絞り量を変化させたときは
、その絞り量におけるテーブルデータαによりしきい値
Vthを求めるようにする。なお、光量調整手段と絞り
ffi調整手段の双方を設けておき、これらの双方を操
作するようにしてもよい。光量調整手段、絞り量調整手
段による調整は画像認識装置に自動的に行わせるように
してもよい。
Furthermore, in the above embodiment, the lighting 3 is adjusted when 3<Smin or Smax S, but the video camera 1
It is also possible to provide an aperture amount adjusting means to change the aperture amount so that the amount of light received by the video camera 1 falls within a predetermined range within the dynamic range. Note that in this case, since the relationship between the amount of light received by the light sensor 4 and the amount of light received by the video camera 1 changes, table data α for various aperture amounts is obtained, and when the aperture amount is changed, the table data α is The threshold value Vth is determined based on the table data α regarding the aperture amount. Note that both the light amount adjustment means and the aperture ffi adjustment means may be provided and both of these may be operated. The image recognition device may automatically perform the adjustments by the light amount adjusting means and the aperture amount adjusting means.

更に上記実施例では光量センサ4の受光軸とビデオカメ
ラ1の受光軸とが異なったが、ビデオカメラ1内のレン
ズホルダへビームスプリッタを取り付けてセンサ用の光
量を分割したり、また光学ファインダの接眼レンズの代
りに光量センサを取り付ければ、光量センサ4の受光軸
とビデオカメラ1の受光軸とを同一にすることができ、
ビデオカメラ1の受光量と光量センサ4の受光量とを完
全に比例させることができる。なお、この場合は、絞り
量を変化させると、同時に光量センサの受光量も変化す
るため、上記種々の絞り量におけるテーブルデータαを
求めておく必要がない。
Furthermore, in the above embodiment, the light receiving axis of the light sensor 4 and the light receiving axis of the video camera 1 were different, but a beam splitter was attached to the lens holder in the video camera 1 to split the light amount for the sensor, and the light receiving axis of the optical finder was By attaching a light sensor in place of the eyepiece, the light receiving axis of the light sensor 4 and the light receiving axis of the video camera 1 can be made the same.
The amount of light received by the video camera 1 and the amount of light received by the light amount sensor 4 can be made completely proportional. In this case, when the aperture amount is changed, the amount of light received by the light amount sensor also changes at the same time, so it is not necessary to obtain the table data α for the various aperture amounts.

[効果] 本発明によれば、光量センサによって検知された照度に
応じてしきい値を変更するため、撮像手段の受光量が変
動した場合においても、実時間にしきい値の追従、修正
が精度よく為され、従って画像認識の作業をスムーズに
かつ安定して行うことが可能である。
[Effect] According to the present invention, since the threshold value is changed according to the illuminance detected by the light sensor, even if the amount of light received by the imaging means fluctuates, the threshold value can be tracked and corrected in real time with high accuracy. Therefore, it is possible to perform image recognition work smoothly and stably.

また、認識対象物を照射するための光源および光源光量
調整手段を設けて、光量センサの出力が所定許容上限あ
るいは下限を超えたときに、光源光量を変化し、及び/
又は撮像手段の絞り量を絞り量調整手段により調整する
ことにより、撮像手段の受光量が大きく変化した場合に
おいても撮像手段の受光量を適正な値に変更することが
可能となる。
Further, a light source for illuminating the recognition target object and a light source light amount adjustment means are provided, and when the output of the light amount sensor exceeds a predetermined allowable upper limit or lower limit, the light source light amount is changed, and/or
Alternatively, by adjusting the aperture amount of the imaging device using the aperture amount adjustment device, it is possible to change the amount of light received by the imaging device to an appropriate value even when the amount of light received by the imaging device changes significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は画像認
識装置で認識対象物を撮像している様子を示す外観斜視
図、第2図は光量センサの斜視図、第3図はシステムブ
ロック図、第4図(a)は一走査線上におけるカメラ走
査線出力の時間変化を示すグラフ、同図(b)は同図(
a)の場合のセンサ出力の変化を示すグラフ、第5図は
システムフロー図である。 1・・φビデオカメラ、 2・・・認識対象物、 3・・・光源、 4・・φ光量センサ、 23・φCPU。 27・・2値化回路。 以  上
The drawings show one embodiment of the present invention, in which Fig. 1 is an external perspective view showing how an image recognition device is capturing an image of a recognition target, Fig. 2 is a perspective view of a light amount sensor, and Fig. 3 is a perspective view of a recognition target object. System block diagram, Fig. 4(a) is a graph showing the time change of camera scanning line output on one scanning line, Fig. 4(b) is a graph showing the time change of camera scanning line output on one scanning line,
A graph showing changes in sensor output in case a), and FIG. 5 is a system flow diagram. 1...φ video camera, 2...Recognition target, 3...Light source, 4...φ light amount sensor, 23.φCPU. 27...Binarization circuit. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)認識対象物からの反射光に基づいて照度を検知す
る光量センサと、 上記認識対象物を撮像し、画像信号を出力する撮像手段
と、 上記撮像手段からの画像信号をしきい値に基づいて2値
化して画像データを得る2値化回路と、上記光量センサ
によって検知された照度に応じて、上記しきい値を変更
せしめる制御回路と、を具備することを特徴とする画像
認識装置。
(1) A light amount sensor that detects illuminance based on the reflected light from the recognition target object, an imaging means that images the recognition target object and outputs an image signal, and a threshold value for the image signal from the imaging means. an image recognition device comprising: a binarization circuit that binarizes the image data based on the image data; and a control circuit that changes the threshold value in accordance with the illuminance detected by the light amount sensor. .
(2)上記認識対象物を照射するための光源と、上記光
量センサにより検知された照度が所定許容上限あるいは
下限を超えたときに上記光源の光量を変化せしめる光量
調整手段と、 を設けてあることを特徴とする請求項1記載の画像認識
装置。
(2) A light source for illuminating the recognition target, and a light amount adjusting means for changing the light amount of the light source when the illuminance detected by the light amount sensor exceeds a predetermined allowable upper limit or lower limit. The image recognition device according to claim 1, characterized in that:
(3)上記光量センサにより検知された照度が所定許容
上限あるいは下限を超えたときに上記撮像手段の絞り量
を変化せしめる絞り量調整手段を設けてあることを特徴
とする請求項1または2記載の画像認識装置。
(3) An aperture amount adjusting means for changing the aperture amount of the imaging means when the illuminance detected by the light amount sensor exceeds a predetermined permissible upper limit or lower limit is provided. image recognition device.
JP2109573A 1990-04-25 1990-04-25 Picture recognizing device Pending JPH047678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109573A JPH047678A (en) 1990-04-25 1990-04-25 Picture recognizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109573A JPH047678A (en) 1990-04-25 1990-04-25 Picture recognizing device

Publications (1)

Publication Number Publication Date
JPH047678A true JPH047678A (en) 1992-01-13

Family

ID=14513681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109573A Pending JPH047678A (en) 1990-04-25 1990-04-25 Picture recognizing device

Country Status (1)

Country Link
JP (1) JPH047678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356166A (en) * 2001-05-31 2002-12-10 Mitsubishi Electric Corp Cylindrical article breakage detection device
JP2005092877A (en) * 2003-09-19 2005-04-07 Sensormatic Electronics Corp Object recognition system including adaptive light source
JP2006157265A (en) * 2004-11-26 2006-06-15 Olympus Corp Information presentation system, information presentation terminal, and server
WO2010064352A1 (en) * 2008-12-03 2010-06-10 株式会社日立国際電気 Line width measuring method
WO2010095328A1 (en) * 2009-02-20 2010-08-26 株式会社日立国際電気 Line width measuring apparatus and light quantity adjusting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356166A (en) * 2001-05-31 2002-12-10 Mitsubishi Electric Corp Cylindrical article breakage detection device
JP2005092877A (en) * 2003-09-19 2005-04-07 Sensormatic Electronics Corp Object recognition system including adaptive light source
JP2006157265A (en) * 2004-11-26 2006-06-15 Olympus Corp Information presentation system, information presentation terminal, and server
WO2010064352A1 (en) * 2008-12-03 2010-06-10 株式会社日立国際電気 Line width measuring method
JP2010133794A (en) * 2008-12-03 2010-06-17 Hitachi Kokusai Electric Inc Method for measuring line width
WO2010095328A1 (en) * 2009-02-20 2010-08-26 株式会社日立国際電気 Line width measuring apparatus and light quantity adjusting method

Similar Documents

Publication Publication Date Title
US8482660B2 (en) Method and apparatus for detecting camera sensor intensity saturation
US20030043290A1 (en) AF control apparatus and AF control method
KR100939079B1 (en) System for mesurement of the snowfall and method for mesurement of the snowfall
US8334908B2 (en) Method and apparatus for high dynamic range image measurement
US10712146B2 (en) Distance measuring system and method using thereof
JPH047678A (en) Picture recognizing device
KR100601312B1 (en) Apparatus for correlating of exposure automatically of a digital still camera and method for performing the same
KR101039423B1 (en) Method and camera device for camera gain control and shutter speed control by measuring skin brightness
US4603960A (en) Method for and apparatus for determining an optimum gradation parameter for developing aerial photographs
KR100765251B1 (en) Method for adjusting white valance value and digital imaging device using the same
JPH0410175A (en) Picture recognizing device
TWI818715B (en) A method for visual inspection of curved objects
JP2601168Y2 (en) Image processing device
JP4202871B2 (en) Imaging device
US20220327325A1 (en) Object presence detection using raw images
JPS61213613A (en) Shape measuring instrument
Kao et al. An automatic calibration system for digital still cameras
KR100529883B1 (en) Apparatus of inspection for image and inspecting method for the same
JPH04208843A (en) Device and method for inspecting shape of resist film
JP3383708B2 (en) Defect detection device
JPH10200796A (en) Member for picture element sensitivity spot correction and camera using the same
JPH0438444A (en) Image measuring device
JP4645078B2 (en) Luminance signal amplification amount adjustment apparatus and luminance signal amplification amount adjustment method for imaging apparatus
KR100205172B1 (en) Apparatus for monitoring the number of sheets transfered
JPH0217990B2 (en)