JPH0476731B2 - - Google Patents

Info

Publication number
JPH0476731B2
JPH0476731B2 JP18610689A JP18610689A JPH0476731B2 JP H0476731 B2 JPH0476731 B2 JP H0476731B2 JP 18610689 A JP18610689 A JP 18610689A JP 18610689 A JP18610689 A JP 18610689A JP H0476731 B2 JPH0476731 B2 JP H0476731B2
Authority
JP
Japan
Prior art keywords
pressure
gasket
anvils
temperature
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18610689A
Other languages
Japanese (ja)
Other versions
JPH0352638A (en
Inventor
Nobuo Yamaoka
Minoru Akaishi
Hisao Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP18610689A priority Critical patent/JPH0352638A/en
Publication of JPH0352638A publication Critical patent/JPH0352638A/en
Publication of JPH0476731B2 publication Critical patent/JPH0476731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/065Presses for the formation of diamonds or boronitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sealing Material Composition (AREA)
  • Gasket Seals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はダイヤモンド、立方晶窒化ほう素の合
成などに用いられる高温高圧発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-temperature, high-pressure generator used in the synthesis of diamond, cubic boron nitride, and the like.

(従来の技術) ダイヤモンド、立方晶窒化ほう素などの原料合
成やそれらの焼結体の焼成には、約6万気圧もの
高い圧力と、1500〜2000℃のように高い温度が安
定に確保され得る高温高圧発生装置が使われ、特
にベルト型と呼ばれるタイプの高温高圧発生装置
は広く工業化されている。
(Prior technology) In order to synthesize raw materials such as diamond and cubic boron nitride and to sinter their sintered bodies, high pressures of about 60,000 atmospheres and high temperatures of 1,500 to 2,000 degrees Celsius are stably maintained. High-temperature, high-pressure generators are used, and belt-type high-temperature, high-pressure generators in particular are widely industrialized.

このような高温高圧発生装置としては、例えば
特公昭53−34189号公報に示されているように、
アンビルの内側傾斜面の角度、ガスケツトの大き
さや素材を検討することにより、より高い圧力の
発生が可能となり、またその後の開発の結果アン
ビルやシリンダーの素材を超硬合金から鋼に変
え、これによつてその製造コストも低減させるこ
とができるようになつた。
As such a high temperature and high pressure generator, for example, as shown in Japanese Patent Publication No. 53-34189,
By considering the angle of the inner slope of the anvil and the size and material of the gasket, it became possible to generate higher pressure, and as a result of subsequent development, the material of the anvil and cylinder was changed from cemented carbide to steel. Therefore, it has become possible to reduce the manufacturing cost.

近年、特に工具材料としてダイヤモンドや、立
方晶窒化ほう素からなる焼結体が、工業的に生産
されるようになつてきているが、更に高精度長寿
命の工具や高熱伝導性を利用したヒートシンク材
の出現が望まれるようになり、そのためには焼結
助剤に用いられる金属の添加量を従来に比べて減
らした、原料配合粉末を用いることが必要となる
が、その合成には従来の条件である約6万気圧、
1500〜2000℃に比べて、より高い圧力と温度が必
要となる。
In recent years, sintered bodies made of diamond and cubic boron nitride have been increasingly produced as tool materials on an industrial scale, but tools with even higher accuracy and longer life and heat sinks that utilize high thermal conductivity have been produced. In order to achieve this, it is necessary to use a powder blend of raw materials with a reduced amount of metal used as a sintering aid compared to the conventional method. The condition is approximately 60,000 atmospheres,
Higher pressure and temperature are required compared to 1500-2000℃.

しかしながら、従来の高温高圧発生装置を用い
て例えば8万気圧、2000〜2500℃程度の高圧高温
を発生させようとすると、従来に比べて高い圧力
を出すためにアンビルやシリンダーへの負担が大
きくなり、長くて20〜30回の使用しか出来ずし
て、ときにはそれらが破壊してしまううれいがあ
つた。また、圧力発生部の変形、すなわちアンビ
ル間に設置した黒鉛発熱体の変形が大きくなり高
い温度が安定して得られないという問題もあつ
た。従つて、より高純度高物性のダイヤモンドや
立方晶窒化ほう素からなる焼結体を得るために従
来の高温高圧発生装置に比べて高い圧力と温度が
定常的に安定して出せる装置が求められている。
However, when trying to generate high pressure and high temperature of, for example, 80,000 atm and 2000 to 2500 degrees Celsius using a conventional high temperature and high pressure generator, the burden on the anvil and cylinder becomes greater due to the higher pressure than before. , I was happy that I could only use them 20 to 30 times at most, and sometimes they would be destroyed. Another problem was that the deformation of the pressure generating part, that is, the deformation of the graphite heating element installed between the anvils became large, making it impossible to stably obtain a high temperature. Therefore, in order to obtain sintered bodies made of diamond and cubic boron nitride with higher purity and higher physical properties, there is a need for a device that can consistently and stably generate higher pressure and temperature than conventional high-temperature, high-pressure generators. ing.

(発明が解決しようとする課題) 本発明の目的は、従来に比べてより高い圧力と
温度を安定して発生させることができ、それにも
拘らずはるかに長寿命の高温高圧発生装置を提供
しようとするものである。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide a high-temperature, high-pressure generator that can stably generate higher pressure and temperature than conventional ones, and that has a much longer lifespan. That is.

(課題を解決するための手段) 先細りの複合凸円錐台状をなす一対のアンビル
を、両アンビルの各錐面と対応する複合凹円錐形
の面取りが孔縁に施された中央孔をもつ中空シリ
ンダーに、その内面及び面取り孔縁にわたる耐圧
シールを介し、先細り端面同士を向い合わせにし
て、該端面間で上記中央孔の内部に形成した圧力
室に面し、相互接近可能に組合わせて成る加圧ユ
ニツトをそなえる、高温高圧装置において、 上記アンビルは、その先細り端面側で25〜35℃
の円錐半角を有し、該端面での直径dlに対する中
空シリンダーの中央孔の内径dbの比が1.1〜1.2の
範囲内であり、 上記耐圧シールは、熱的・電気的絶縁性の石質
材よりなる内側ガスケツトG1と、これに比し圧
縮変形性の大きい石質材よりなる中間ガスケツト
G2及びゴム質材の外側ガスケツトG3からなる三
重構成であつて、しかも外側ガスケツトG3の外
形dg3と、内側ガスケツトG1の内径に実質上同等
なアンビル端面における直径dlとの比が2〜3の
範囲内であること、 を特徴とする高温高圧発生装置である。
(Means for solving the problem) A pair of anvils in the shape of a tapered compound convex truncated cone are made into a hollow hole having a central hole with a compound concave conical chamfer on the hole edge corresponding to each conical surface of both anvils. The cylinder is assembled so that the tapered end faces thereof face each other through a pressure seal covering the inner surface and the edge of the chamfered hole, so that the end faces face a pressure chamber formed inside the central hole, and are accessible to each other. In high-temperature, high-pressure equipment equipped with a pressurizing unit, the anvil has a temperature of 25 to 35°C on its tapered end surface.
The pressure seal has a conical half angle of Inner gasket G 1 and intermediate gasket made of stone material with higher compressive deformability compared to the inner gasket G1.
It has a triple configuration consisting of G2 and an outer gasket G3 made of rubber material, and the ratio of the outer diameter dg3 of the outer gasket G3 to the diameter dl at the anvil end surface, which is substantially equivalent to the inner diameter of the inner gasket G1 . This is a high temperature and high pressure generator characterized by: being within the range of 2 to 3.

さて第1図に本発明による高温高圧発生装置の
要部構成としての加圧ユニツトを示し、図中、
1,1′は先細りの複合凸円錐台状をなす一対の
アンビル、2は両アンビル間でそれらの先細り端
を受け入れる中央孔3をもつ中空シリンダーであ
る。
Now, FIG. 1 shows a pressurizing unit as a main component of the high temperature and high pressure generator according to the present invention, and in the figure,
Reference numerals 1 and 1' denote a pair of anvils in the shape of a tapered compound convex truncated cone, and 2 a hollow cylinder having a central hole 3 for receiving the tapered ends of the anvils.

中空シリンダー2は、中央孔3の開口孔縁に各
アンビル1,1′の複合凸円錐台状をなす各錐面
と対応する、複合凹円錐形の面取りを施し、中央
孔3の内面及び面取り孔縁にわたつて両アンビル
1,1′との間に耐圧シール4を介在させる。
The hollow cylinder 2 has a compound concave conical chamfer on the edge of the opening of the central hole 3, which corresponds to each conical surface of the anvils 1, 1' having a compound convex truncated conical shape, and the inner surface of the central hole 3 and the chamfer. A pressure seal 4 is interposed between the anvils 1 and 1' over the edge of the hole.

以上の構成の基本は、さきに引用した特公昭53
−34189号公報に開示されたところと類似するが、
本発明においては上記アンビル1,1′が何れも
先細り端面側で25〜35℃の円錐半角θ1を有し、こ
れに隣接する側ではθ1よりも大きい30〜70°の範
囲内の円錐半角θ2を有するものとし、先細り端面
での直径dlに対する中空シリンダー2の中央孔の
内径dbの比が1.1〜1.2の範囲内とする。
The basics of the above structure are
- Similar to that disclosed in Publication No. 34189, but
In the present invention, each of the anvils 1 and 1' has a conical half angle θ 1 of 25 to 35°C on the tapered end side, and a conical half angle θ 1 of 30 to 70°, which is larger than θ 1 , on the side adjacent to this. It has a half angle θ 2 , and the ratio of the inner diameter db of the central hole of the hollow cylinder 2 to the diameter dl at the tapered end face is within the range of 1.1 to 1.2.

そして上記耐圧シールは、熱的・電気的絶縁性
の石質材よりなる内側ガスケツトG1と、これに
比し圧縮変形性の大きい石質材による中間ガスケ
ツトG2及びゴム質材を用いた外側ガスケツトG3
からなる三重構成で、外側ガスケツトG3の外径
dg3と、内側ガスケツトG1の内径に実質上同等な
アンビル端面における直径dlとの比が2〜3の範
囲とする。
The pressure-resistant seal has an inner gasket G1 made of a thermally and electrically insulating stone material, an intermediate gasket G2 made of a stone material with greater compressive deformability, and an outer gasket G3 made of a rubber material.
The outer diameter of the outer gasket G3 is triple configuration consisting of
The ratio of dg 3 to the diameter dl at the end face of the anvil, which is substantially equivalent to the inner diameter of the inner gasket G 1 , is in the range of 2 to 3.

(作用) 本発明の高温高圧発生装置は特公昭53−34189
号公報に開示された技術の改良であり、さい頭円
錐形状の一対のアンビルと、その一対のアンビル
の間にシリンダーを設置し、該アンビルの円錐傾
斜面は2段の傾斜を有する面とする点では同様で
あるが、内側傾斜面の断面角度θ1を軸線に対して
片側25〜35°とすることが必要で、外側傾斜面の
断面角度θ2についてはθ1の1.2倍以上とする。
(Function) The high temperature and high pressure generator of the present invention is
This is an improvement of the technology disclosed in the publication, in which a pair of frustoconical anvils and a cylinder are installed between the pair of anvils, and the conical inclined surface of the anvil is a surface having two steps of inclination. The points are similar, but the cross-sectional angle θ 1 of the inner inclined surface must be 25 to 35 degrees on one side with respect to the axis, and the cross-sectional angle θ 2 of the outer inclined surface should be at least 1.2 times θ 1 . .

ここで内側傾斜面の断面角度θ1すなわちアンビ
ル先細り端面側の円錐半角が35°をこえると先細
り端面側の錐面にかかる荷重が過大となり、充分
な圧力発生効率が得られなくなる。また、逆に
25°未満であると、先細り端での応力支持効果が
減り、特に8万気圧以上の高い圧力をかけた場
合、アンビル先端が破損したり亀裂が発生したり
する。
Here, if the cross-sectional angle θ 1 of the inner inclined surface, that is, the half angle of the cone on the tapered end face side of the anvil exceeds 35°, the load applied to the conical face on the tapered end face side becomes excessive, and sufficient pressure generation efficiency cannot be obtained. Also, conversely
If it is less than 25°, the stress supporting effect at the tapered end will be reduced, and especially if a high pressure of 80,000 atmospheres or more is applied, the anvil tip may be damaged or cracks may occur.

更に内側傾斜面と外側傾斜面とは曲面でつなぐ
ことが好ましい。大きな曲率半径を有する曲面で
つなぐことにより、内側傾斜面と外側傾斜面の接
続部における高圧発生時の応力集中を緩和する効
果が生じ、アンビルの寿命が増大する。
Furthermore, it is preferable that the inner inclined surface and the outer inclined surface are connected by a curved surface. By connecting with a curved surface having a large radius of curvature, there is an effect of alleviating stress concentration when high pressure is generated at the connection portion between the inner inclined surface and the outer inclined surface, and the life of the anvil is increased.

ここで圧力発生効率とは、アンビル1,1′の
上下からかける荷重のうちどの程度の荷重が圧力
室にかかつて圧力室に圧力が発生しているかを表
すもので、通常プレス機がかける全荷重に対する
圧力室に作用する荷重で評価する。
Here, the pressure generation efficiency refers to how much of the load applied from above and below the anvils 1 and 1' is applied to the pressure chamber, and how much pressure is generated in the pressure chamber. Evaluate by the load acting on the pressure chamber relative to the load.

中空シリンダー2の形状は耐圧シールを介して
アンビル1,1′と相対する部分はアンビルの2
段の円錐傾斜面と同じ角度で逆円錐形をなし、圧
力室と接する中心部分はほぼ垂直で、シリンダー
中央開口径とアンビル先端径、すなわち圧力室の
外径との比db/dlが1.1〜1.2とする。この比の値
が1.2を越えるとアンビル1,1′と中空シリンダ
ー2の間の隙間が広くなりすぎて高温高圧発生時
にガスケツトの流動が生じやすくなり、圧力室の
変形、すなわちアンビル間に設置される黒鉛発熱
体の変形が大きくなるため高温が安定して得られ
難い。逆に該比を1.1未満にすると、圧力発生室
とシリンダーが近すぎるため、シリンダー面に高
温高圧がかかりやすくなり、シリンダーの破壊の
危険性が高くなる。
The shape of the hollow cylinder 2 is such that the part facing the anvils 1 and 1' through the pressure seal is the 2nd part of the anvil.
It has an inverted conical shape at the same angle as the conical inclined surface of the step, the central part in contact with the pressure chamber is almost vertical, and the ratio db/dl of the cylinder center opening diameter to the anvil tip diameter, that is, the outer diameter of the pressure chamber, is 1.1 ~ Set it to 1.2. If the value of this ratio exceeds 1.2, the gap between the anvils 1, 1' and the hollow cylinder 2 will become too wide, making it easy for the gasket to flow when high temperature and high pressure are generated, resulting in deformation of the pressure chamber, that is, the gap between the anvils 1 and 1' and the hollow cylinder 2 will be too large. Since the deformation of the graphite heating element increases, it is difficult to obtain a stable high temperature. On the other hand, if the ratio is less than 1.1, the pressure generating chamber and the cylinder are too close, and high temperature and high pressure are likely to be applied to the cylinder surface, increasing the risk of cylinder destruction.

ここに黒鉛発熱体は図示しないが圧力室内の温
度を設定するのに役立ち、その構成は種々の方式
が用いられるけれども、一例を示すと、黒鉛円筒
の両端に銅やモリブデンなどによる通電板を当
て、さらにジルコニアのような絶縁コアをはめ合
わせた鋼製になるが如き通電リングを介してアン
ビル1,1′の端面に突合わせ、黒鉛円筒の内部
に合成原料又は焼結原料を充てん材たとえば食
塩、ジルコニア含有食塩、窒化ほう素などととも
に封じ込めてなるものとする。
Although the graphite heating element is not shown here, it is useful for setting the temperature inside the pressure chamber, and various methods are used for its construction, but one example is a graphite cylinder with current-carrying plates made of copper, molybdenum, etc. placed at both ends. Furthermore, the end faces of the anvils 1 and 1' are abutted through a conductive ring such as one made of steel fitted with an insulating core such as zirconia, and a synthetic raw material or a sintering raw material is filled into the inside of the graphite cylinder with a filling material such as salt. , zirconia-containing salt, boron nitride, etc.

次に中空シリンダー2とアンビル1,1′との
間に挿入する耐圧シール4は、内側を熱的・電気
的絶縁性の石質ガスケツト、中間を内側よりも圧
縮変形性の大なる石質ガスケツト、及び外側をゴ
ム質ガスケツトからなる3重構成である。従来の
ような1種類ないし2種類どまりの熱的・電気的
絶縁性のガスケツトを用いた場合に比べて、特に
圧力を上げたり下げたりする際に圧力室内の高い
圧力を周囲のガスケツトが支えきれず、圧力室内
部から充てん材が急激に外部に噴出するようなト
ラブルを防止する効果が大となる。
Next, the pressure seal 4 inserted between the hollow cylinder 2 and the anvils 1 and 1' has a thermally and electrically insulating stone gasket on the inside and a stone gasket with greater compressive deformability than the inside in the middle. , and a rubber gasket on the outside. Compared to the conventional case where only one or two types of thermally and electrically insulating gaskets are used, the surrounding gaskets cannot support the high pressure inside the pressure chamber, especially when increasing or decreasing the pressure. First, it is highly effective in preventing troubles such as sudden ejection of filler from inside the pressure chamber to the outside.

すなわち外側ガスケツトG3の外径と内側ガス
ケツトG1の内径との比dg3/dlを2以上3未満と
するのであり、この比を3より大きくすると、第
2図の破線に示すように、圧力発生効率が低下し
必要とされる高圧力の発生が困難となる。また、
この比が2未満では圧力発生にともないガスケツ
トが大きく変形してガスケツト部材が外周部から
半径方向に向けて流出しやすくなり、その結果、
圧力室内の試料や黒鉛発熱体の変形が生じて高温
が安定して得られ難い。さらにはアンビル、シリ
ンダー部への応力支持効果が充分でなくなり、そ
れらの破壊、破損の危険性も高くなる。
That is, the ratio dg 3 /dl between the outer diameter of the outer gasket G 3 and the inner diameter of the inner gasket G 1 is set to 2 or more and less than 3. If this ratio is made larger than 3, as shown by the broken line in FIG. Pressure generation efficiency decreases, making it difficult to generate the required high pressure. Also,
If this ratio is less than 2, the gasket will deform greatly as pressure is generated, and the gasket member will tend to flow out from the outer periphery in the radial direction.
Deformation of the sample and graphite heating element in the pressure chamber occurs, making it difficult to obtain a stable high temperature. Furthermore, the effect of supporting stress on the anvil and cylinder portions becomes insufficient, and the risk of their destruction and damage increases.

それぞれのガスケツト4の好ましい構成比とし
ては、内側ガスケツトG1で第1図のdg1/dlが1.2
から1.8までの範囲であり、中間ガスケツトG2
第1図のdg2/dlが1.9から2.8の範囲であり、そし
て外側ガスケツトG3のdg3/dlが2から3までの
範囲である。
The preferred composition ratio of each gasket 4 is that dg 1 /dl in FIG. 1 is 1.2 for the inner gasket G 1.
to 1.8, the middle gasket G 2 has a dg 2 /dl in FIG. 1 ranging from 1.9 to 2.8, and the outer gasket G 3 has a dg 3 /dl ranging from 2 to 3.

内側ガスケツトに用いる石質ガスケツトの具体
例としてはパイロフイライト(pyrophyllite;
Al2Si4O10(OH)2)原石を所望形状に切り出した
物、中間ガスケツトの具体例としてはパイロフイ
ライト粉末に所定量の有機質バインダーを添加し
成形乾燥した物、外側ガスケツトの具体例として
はニトリルゴムなどがある。
A specific example of a stone gasket used for the inner gasket is pyrophyllite.
Al 2 Si 4 O 10 (OH) 2 ) A product cut from raw stone into a desired shape, a specific example of an intermediate gasket is a product obtained by adding a predetermined amount of organic binder to pyrofluorite powder and forming and drying it, and a specific example of an outer gasket. Examples include nitrile rubber.

以下、図面を説明しながら本発明の高温高圧発
生装置をさらに詳しく説明する。第3図は高温高
圧発生装置の全体を示し、5,5′はアンビル1,
1′の締めリング、6,6′は安全リングであり、
7,8は中空シリンダ2の締めリング、9は安全
リング、そして10は圧力室、11,11′は上、
下の加圧盤である。
Hereinafter, the high temperature and high pressure generator of the present invention will be explained in more detail with reference to the drawings. Figure 3 shows the entire high-temperature and high-pressure generator, where 5 and 5' are anvils 1,
1' is a tightening ring, 6 and 6' are safety rings,
7 and 8 are the tightening rings of the hollow cylinder 2, 9 is the safety ring, 10 is the pressure chamber, 11 and 11' are the upper parts,
This is the pressure plate below.

(実施例) 以下、実施例および比較例をあげて本発明を詳
しく説明する。
(Example) Hereinafter, the present invention will be explained in detail by giving Examples and Comparative Examples.

実施例 1 第1図に示すようにアンビル1,1′の形状を
θ1=30°、θ2=60°に、シリンダー2とアンビル1,
1′間の関係db/dl を1.15に選択した。内側ガ
スケツトG1の内径dlと外側ガスケツトG3の外径
dg3との比dg3/dl=2.5とし、dg1/dlを1.5、
dg2/dlを2.4とし、内側ガスケツトG1にパイロフ
イライト原石の切り出し品、中間ガスケツトG2
にパイロフイライト粉末を成形して固めたもの、
外側ガスケツトG3にニトリルゴムを用いた。
Example 1 As shown in FIG .
The relationship db/dl between 1′ was chosen to be 1.15. Inner diameter dl of inner gasket G 1 and outer diameter of outer gasket G 3
The ratio with dg 3 is dg 3 /dl = 2.5, and dg 1 /dl is 1.5,
dg 2 / dl is 2.4, inner gasket G 1 is cut from pyrofluorite rough, middle gasket G 2
Pyrofluorite powder is molded and solidified,
Nitrile rubber was used for the outer gasket G3 .

また、加圧前のアンビル間の距離ldに対して外
側ガスケツトG3の加圧方向における厚みlgを、
lg/ld=0.24とした。
Also, the thickness lg of the outer gasket G3 in the pressurizing direction is given by the distance ld between the anvils before pressurization.
lg/ld=0.24.

この装置で圧力をかけながらビスマス金属の相
転移による電気抵抗変化を測定して、圧力発生効
率を評価したところ、第2図の実線に示す通り容
易にビスマス転移点の7.7GPaを発生することが
出来た。また、圧力測定後の取り出した試料にお
いては横へのはみ出しが少なく均一に押されてい
た。
When we evaluated the pressure generation efficiency by measuring the electrical resistance change due to the phase transition of bismuth metal while applying pressure with this device, we found that it could easily generate 7.7GPa, the bismuth transition point, as shown by the solid line in Figure 2. done. In addition, the sample taken out after the pressure measurement was pressed uniformly with little lateral protrusion.

一方、白金ロジウム熱電対を圧力室10に入れ
て高温高圧を発生し温度測定を行つたところ、入
力電力と熱電対温度の関係から外挿した2500℃で
も加熱電流の低下に伴う温度の低下は認められ
ず、安定した高温が得られた。
On the other hand, when we placed a platinum-rhodium thermocouple in the pressure chamber 10 to generate high temperature and pressure and measured the temperature, we found that even at 2500°C, which was extrapolated from the relationship between input power and thermocouple temperature, the temperature did not decrease as the heating current decreased. This was not observed and a stable high temperature was obtained.

8万気圧、2000℃以上の高温高圧発生を200回
以上行つた時点でもアンビル1,1′及び中空シ
リンダー2の破損や亀裂の発生は認められていな
い。
No damage or cracks were observed in the anvils 1 and 1' and the hollow cylinder 2 even after the high temperature and high pressure generation of 80,000 atm and 2000°C or more was performed more than 200 times.

比較例 1 実施例1と同様のアンビル1,1′と中空シリ
ンダー2にdg3/dl=3.1のガスケツトを設置し、
圧力発生実験を行つた。その結果、第2図の破線
に示すように実施例1と比較して約75パーセント
の圧力発生しか認められず、ビスマスの7.7GPa
相転移点は検出されなかつた。
Comparative Example 1 A gasket with dg 3 /dl = 3.1 was installed on the same anvils 1 and 1' as in Example 1 and the hollow cylinder 2,
A pressure generation experiment was conducted. As a result, as shown by the broken line in Figure 2, only about 75% of the pressure was generated compared to Example 1, which was 7.7GPa for bismuth.
No phase transition point was detected.

比較例 2 実施例1と同様のアンビル1,1′と中空シリ
ンダー2にdg3/dl=1.9のガスケツトを設置し、
その結果、ガスケツトの流れ出しが大きく、反応
室の変形が顕著になり安定した高温高圧実験が不
可能であつた。
Comparative Example 2 A gasket with dg 3 /dl = 1.9 was installed on the anvils 1, 1' and hollow cylinder 2 similar to those in Example 1,
As a result, the gasket flowed out significantly and the reaction chamber was significantly deformed, making stable high-temperature, high-pressure experiments impossible.

比較例 3 実施例1と同様のアンビル1,1′と中空シリ
ンダー2にdg3/dl=2.3のガスケツトを設置し、
圧力発生実験を行つたが、ただしこの場合、ガス
ケツトは内、外2重で、内側ガスケツトにパイロ
フイライト製ガスケツト、外側ガスケツトにニト
リルゴムを用い、dg1/dlを2.1とした。その結
果、圧力は実施例1とほぼ同等の発生効率が得ら
れたが、高温発生後の除圧時にガスケツトが高圧
の圧力室10を支えきれず瞬時に外に噴出するブ
ローアウト現象が認められ、安定した高温高圧実
験が不可能であつた。
Comparative Example 3 A gasket with dg 3 /dl = 2.3 was installed on the same anvils 1 and 1' as in Example 1 and the hollow cylinder 2,
A pressure generation experiment was conducted, but in this case, the gasket was double-layered, an inner and outer gasket, a pyrofilite gasket was used for the inner gasket, a nitrile rubber was used for the outer gasket, and dg 1 /dl was set to 2.1. As a result, the pressure generation efficiency was almost the same as in Example 1, but a blowout phenomenon was observed in which the gasket could not support the high-pressure pressure chamber 10 and instantly blew out when the pressure was removed after a high temperature was generated. However, stable high-temperature, high-pressure experiments were not possible.

比較例 4 第1図に示すアンビル1,1′部の形状をθ1
20°、θ2=72°に、中空シリンダー2とアンビル1,
1′間の関係、db/dlを1.25に選択しdg3/dl=5.5
のガスケツトを用いて高温高圧を発生させた。
Comparative Example 4 The shape of the anvils 1 and 1' shown in Fig. 1 is θ 1 =
20°, θ 2 = 72°, hollow cylinder 2 and anvil 1,
The relationship between 1′, db/dl is selected as 1.25, and dg 3 /dl=5.5
High temperature and high pressure were generated using a gasket.

8万気圧発生後、2000℃を越える温度を発生さ
せようとすると、加熱電流が顕著に下がり温度の
低下現象が認められた。また、22回目でアンビル
1,1′の先端に破損が生じた。
After generating 80,000 atm, when attempting to generate a temperature exceeding 2000°C, the heating current decreased significantly and a temperature drop phenomenon was observed. Also, on the 22nd test, the tips of anvils 1 and 1' were damaged.

比較例 5 第1図に示すアンビル1,1′部の形状をθ1
40°、θ2=80°に中空シリンダー2とアンビル1,
1′間の関係db/dlを1.15に選択し、dg3/dl=2.5
のガスケツトを用いて高温高圧を発生させた。
Comparative Example 5 The shape of the anvils 1 and 1' shown in Fig. 1 is θ 1 =
Hollow cylinder 2 and anvil 1 at 40°, θ 2 = 80°,
1′ relationship db/dl is selected as 1.15, dg 3 /dl=2.5
High temperature and high pressure were generated using a gasket.

その結果、第2図に示す通り圧力発生効率が低
く高圧力が得られなかつた。
As a result, as shown in FIG. 2, the pressure generation efficiency was low and high pressure could not be obtained.

比較例 6 第1図に示すアンビル1,1′部の形状をθ1
30°、θ2=60°に、シリンダーとアンビル間の関係
db/dlを1.06に選択し、dg3/dl=2.5のガスケツ
トを用いて高温高圧を発生させた。
Comparative Example 6 The shape of the anvils 1 and 1' shown in Fig. 1 is θ 1 =
30°, θ 2 = 60°, the relationship between cylinder and anvil
db/dl was selected to be 1.06, and a gasket with dg 3 /dl = 2.5 was used to generate high temperature and high pressure.

8万気圧、2000℃以上の高温高圧を5回発生後
シリンダー中央部に亀裂が発生し破壊した。
After being exposed to high temperatures and pressures of 80,000 atmospheres and over 2,000 degrees Celsius five times, a crack appeared in the center of the cylinder and the cylinder was destroyed.

(発明の効果) 本発明により、高温高圧発生装置のアンビル、
シリンダーの寿命が飛躍的に増大し、なおかつ8
万気圧の高い圧力を定常的に発生させることがで
き、2000〜2500℃の高温が安定して得られる。
(Effect of the invention) According to the present invention, the anvil of the high temperature and high pressure generator,
The life of the cylinder has been dramatically increased, and
A high pressure of 10,000 atmospheres can be generated steadily, and a high temperature of 2,000 to 2,500 degrees Celsius can be stably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温高圧発生装置の中心部であるアン
ビル、シリンダー、ガスケツト、そして圧力室よ
りなる加工ユニツトを示す断面図、第2図はプレ
ス荷重に対する圧力室での発生圧力を示すグラフ
であり、第3図は高温高圧発生装置の全体構成の
断面図である。 1,1′……アンビル、2……中空シリンダー、
3……中空孔、4……耐圧シール、10……圧力
室。
Fig. 1 is a sectional view showing a processing unit consisting of an anvil, cylinder, gasket, and pressure chamber, which is the central part of the high-temperature and high-pressure generator, and Fig. 2 is a graph showing the pressure generated in the pressure chamber against the press load. FIG. 3 is a sectional view of the overall configuration of the high temperature and high pressure generator. 1, 1'...anvil, 2...hollow cylinder,
3...Hollow hole, 4...Pressure seal, 10...Pressure chamber.

Claims (1)

【特許請求の範囲】 1 先細りの複合凸円錐台状をなす一対のアンビ
ルを、両アンビルの各錐面と対応する複合凹円錐
形の面取りが孔縁に施された中央孔をもつ中空シ
リンダーに、その内面及び面取り孔縁にわたる耐
圧シールを介し、先細り端面同士を向い合わせに
して、該端面間で上記中央孔の内部に形成した圧
力室に面し、相互接近可能に組合わせて成る加圧
ユニツトをそなえる、高温高圧装置において、 上記アンビルは、その先細り端面側で25〜35℃
の円錐半角を有し、該端面での直径dlに対する中
空シリンダーの中央孔の内径dbの比が1.1〜1.2の
範囲内であり、 上記耐圧シールは、熱的・電気的絶縁性の石質
材よりなる内側ガスケツトG1と、これに比し圧
縮変形性の大きい石質材よりなる中間ガスケツト
G2及びゴム質材の外側ガスケツトG3からなる三
重構成であつて、しかも外側ガスケツトG3の外
径dg3と、内側ガスケツトG1の内径に実質上同等
なアンビル端面における直径dlとの比が2〜3の
範囲内であること、 を特徴とする高温高圧発生装置。
[Claims] 1. A pair of anvils in the shape of a tapered compound convex truncated cone are formed into a hollow cylinder having a central hole whose hole edge is chamfered in a compound concave cone shape corresponding to each conical surface of both anvils. , through a pressure-resistant seal covering the inner surface and the chamfered hole edge, the tapered end surfaces face each other, and the end surfaces face the pressure chamber formed inside the central hole, and are assembled so as to be mutually accessible. In high-temperature, high-pressure equipment equipped with a
The pressure seal has a conical half angle of Inner gasket G 1 and intermediate gasket made of stone material with higher compressive deformability compared to the inner gasket G1.
A triple configuration consisting of G2 and an outer gasket G3 made of rubber material, and the ratio of the outer diameter dg3 of the outer gasket G3 to the diameter dl at the anvil end surface which is substantially equivalent to the inner diameter of the inner gasket G1 . is within the range of 2 to 3. A high temperature and high pressure generator characterized by:
JP18610689A 1989-07-20 1989-07-20 High-temperature and high-pressure generator Granted JPH0352638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18610689A JPH0352638A (en) 1989-07-20 1989-07-20 High-temperature and high-pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18610689A JPH0352638A (en) 1989-07-20 1989-07-20 High-temperature and high-pressure generator

Publications (2)

Publication Number Publication Date
JPH0352638A JPH0352638A (en) 1991-03-06
JPH0476731B2 true JPH0476731B2 (en) 1992-12-04

Family

ID=16182468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18610689A Granted JPH0352638A (en) 1989-07-20 1989-07-20 High-temperature and high-pressure generator

Country Status (1)

Country Link
JP (1) JPH0352638A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225918B2 (en) 1998-03-30 2001-11-05 日本電気株式会社 Mobile terminal device

Also Published As

Publication number Publication date
JPH0352638A (en) 1991-03-06

Similar Documents

Publication Publication Date Title
AU611511B2 (en) Diamond and cubic boron nitride abrasive compacts
US7128547B2 (en) High pressure split die and associated methods
EP0680781B1 (en) Supported polycrystalline compacts and method of manufacture
US4260397A (en) Method for preparing diamond compacts containing single crystal diamond
EP1507442B1 (en) Method of manufacturing electrical resistance heating element
US3914078A (en) Ultra-high pressure system with variable lateral anvil support
US4248606A (en) Supported diamond
US3647331A (en) Ultrahigh pressure-temperature apparatus
US8890020B2 (en) Expanded graphite foil heater tube assembly
WO2012161742A1 (en) Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
JPH0476731B2 (en)
US9827611B2 (en) Diamond composite cutting tool assembled with tungsten carbide
Gonzalez et al. Electrical transport measurements in a gasketed diamond anvil cell up to 18 GPa
US4385881A (en) Ultrahigh pressure apparatus
CN111545132B (en) Ultrahigh pressure synthesis cavity
CN113267683B (en) In-situ measurement method for metal resistivity at high temperature and high pressure
US3088169A (en) High pressure, high temperature apparatus
US4097208A (en) Ultrahigh pressure apparatus for diamond synthesis
JPH06102803B2 (en) Method of manufacturing functionally graded material
KR930004991B1 (en) Method of manufacturing a drawing die
WO2001036080A1 (en) High-pressure tool
JP2002207023A (en) Ceramic applied electronic apparatus used at high temperature
Matsugi et al. Thermal Analysis of Spark Sintering with Molds in Different Shapes and Different Powders
JPS6171831A (en) Ultra-high pressure generation apparatus
Nichols The design and loading characteristics of a high pressure unit for the range 20-70 kb

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20071204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20081204

LAPS Cancellation because of no payment of annual fees