JPH0476651B2 - - Google Patents

Info

Publication number
JPH0476651B2
JPH0476651B2 JP59274432A JP27443284A JPH0476651B2 JP H0476651 B2 JPH0476651 B2 JP H0476651B2 JP 59274432 A JP59274432 A JP 59274432A JP 27443284 A JP27443284 A JP 27443284A JP H0476651 B2 JPH0476651 B2 JP H0476651B2
Authority
JP
Japan
Prior art keywords
gel
mixture
alginic acid
irreversible
foods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274432A
Other languages
Japanese (ja)
Other versions
JPS61158753A (en
Inventor
Kazuo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RENNO SUISAN KK
Original Assignee
RENNO SUISAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RENNO SUISAN KK filed Critical RENNO SUISAN KK
Priority to JP59274432A priority Critical patent/JPS61158753A/en
Publication of JPS61158753A publication Critical patent/JPS61158753A/en
Publication of JPH0476651B2 publication Critical patent/JPH0476651B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、非可逆性成形ゲルの製造方法及び該
ゲルと食品類とより成る、成形ゲル状食品類及び
その水戻し可能な乾燥食品類に関する。 より詳細には〜 60℃以上130℃以内に加温された、アルギン酸
とアルギン酸ナトリウムの混合物と炭酸カルシウ
ムの混合物、その混合比率は固形分重量比が、ア
ルギン酸ナトリウムを100部とした場合、アルギ
ン酸は上限50部、下限3部とする、 又、クエン酸は10部を上限とし、1部を下限と
する、 又、グリシンは200部を上限とし、20部を下限
とする、 又、炭酸カルシウムは上限100部、下限2部等
の混合された液態の混合物を成型枠を介して成形
する。 又、該混合物と食品類とを混合したものを成型
枠を介して成形する、 枠中に於いて冷却して、もはや加温しても成形
物が液態に戻らないか又は歪まない、非可逆性成
形ゲル又は成形ゲル状食品類となる、 又、該成形ゲル状食品類を乾燥することによつ
て、水戻し容易な成形乾燥食品となる、 〜製造方法に関する件である。 (ロ) 従来の技術 アルギン酸ナトリウムよりの非可逆性ゲルの製
法は、多種多様で枚挙に困難を感ずる程である
が、「水活性高分子」(中村亦夫監修)化学工業
社)に纏められている。即ち次の様なものであ
る。 「Γアルギン酸水溶性塩−主としてナトリウム塩 Γ凝固剤−硫酸カルシウム、クエン酸カ ルシウム、塩化カルシウム、 炭酸カルシウム、弱酸性物質 Γ反応遅延剤−リン酸アルカリ、クエン 酸アルカリ」 上記内容を整理すると、アルギン酸ナトリウム
の使用は、別に問題ないが、凝固剤については、
本発明者の知得するかぎりでは炭酸カルシウム、
弱酸性物質では、一般的に言つて、アルギン酸ナ
トリウムの凝固剤とはなり得ない(〔注〕以後ア
ルギン酸ナトリウムをAlg−Naと略記する。)。 例えば、炭酸カルシウムの単独使用ではAlg−
Naのゲル化しない、即ち有機酸、無機酸との反
応によつてカルシウム塩を形成して始めてAlg−
Naのゲル化に役立つ。 このことは弱酸性物質と言う表現の内容からく
る有機酸でも同じことが言える。又、硫酸カルシ
ウム、塩化カルシウムはAlg−Naに混合して使
用すると強固な部分凝固をおこして均一ゲルの製
造には使用することは出来ない。即ち凝固剤とは
なり得ない。 よつて多くの場合、硫酸カルシウム又は塩カル
シウムを水溶液としてそれに水性Alg−Naを浸
漬して凝固することは出来るが、成形範囲は著し
く限定される。 有機酸のカルシウム塩は、クエン酸カルシウム
以外は、塩化カルシウムなみで取扱いに難渋する
(酒石酸カルシウムは食添ではない。)。 そのクエン酸カルシウムも、粒度によつてAlg
−Naのゲル化部分に凝固がおこり、まちまちで、
微粉(100メツシユ以上)にすると、硫酸カルシ
ウムなみになり、これも部分凝固を起す。粒度40
〜60メツシユになるとゲル化に遅延が認められる
が、不安定である。 しかも量的に多量に使用しなければならない一
方、任意にゲル化することは困難で、且つ粒子が
粗いため一種の部分凝固に近いため、品質として
は平滑なゲルが生成しないし、ゲル化時間から量
的な処理が出来ないので、実用性があると断言す
ることは出来ない。 反応遅延剤は、リン酸アルカリ又はクエン酸ア
ルカリで、すでに理解出来る様に、凝固剤をリン
酸カルシウム又はクエン酸カルシウムにしてAlg
−Naに作用させるものである。 即ち、「水溶性高分子」に紹介されている様に、
Alg−Naを任意にゲル化出来れば、産業上著し
く大きい貢献をすると思われるが、現時点で任意
に、容易に、大量処理的にAlg−Naを均一にゲ
ル化出来る方法があると言えない状況である。 〔注〕 Alg−Naのゲル化方法として他の方法
を以下個条的に紹介する。 (a) グルコノラクトンと炭酸カルシウム法。 (b) 亜硫酸カルシウムの酸化法。 (c) 乳酸菌と炭酸カルシウム法。 (d) 乳製品法。 (e) 硫酸カルシウムと油脂との乳化法。 (ハ) 発明が解決しようとする問題点 Alg−Naを任意にゲル化出来る。 Alg−Naより任意な形の成形ゲル化物を収
得出来る。 Alg−Naの容易なゲル化方法。 Alg−Naの安価なゲル化方法。 Alg−Naの大量処理のゲル化方法。 Alg−Naの多目的利用方法。 (ニ) 問題点を解決するための手段 次に本発明の内容を順を追つて説明する。 ◎特許請求の範囲第1項関係 (a) アルギン酸とAlg−Naの混合物は、アルギ
ン酸の粉末又は水性のゲル状物と水性のAlg−
Naとの混合物又はアルギン酸を炭酸ソーダー
で中和して、一部をアルギン酸として残してお
く、又はAlg−Naに塩酸等を添加して一部を
アルギン酸とする方法等によつて調整されたも
のである。Alg−Naの使用濃度は水溶液とし
て0.2%より、5.0%の固形分換算のAlg−Naが
実用的範囲である。 アルギン酸とAlg−Naの混合比率は、炭酸
カルシウム添加と相関にあるが、生成ゲルに多
少の酸味を残す場合もあるので多めに数値を決
めているが、固形分重量比でAlg−Na 100部
に対して、アルギン酸は50部を上限とし、3部
を下限とする。もつともアルギン酸を多量に混
在させても炭酸カルシウムの使用量が一定であ
れば、生成ゲルの安定性は一定なので、アルギ
ン酸の増量は差支えないが、生産的でない。 〔注〕(1) アルギン酸粉末及びAlg−Naは市販
食品添加物用使用 (2) アルギン酸は天然物なので、分与量、酸度
がロツド各々にまちまちである。(「水溶性高
分子」中村亦夫監修、28頁下から4行目より
参照)よつてAlg−Na、又はアルギン酸に
塩酸又は炭酸ソーダーを作用させ一部をアル
ギン酸として残置させる場合は残置計算値を
稍々大きめにとつて、炭酸カルシウムによつ
て、全系の反応を調節する。 本発明の説明では、煩瑣を避けるため、アル
ギン酸粉末の添加をもつて代表説明とする。そ
の場合、アルギン酸粉末の使用量は、残置計算
値の約1.1倍〜2.0倍になる。 (b) 炭酸カルシウムのAlg−Naに対する混合比
率は、アルギン酸添加との相関にあるが、Alg
−Na 100部に対し炭酸カルシウム100部を上限
とし2部を下限とする。炭酸カルシウムを多量
使用しても、アルギン酸の使用量が一定であれ
ば、生成ゲルの安定性は一定なので炭酸カルシ
ウムの増量は差支え無いが、必要以上の増量は
無意味である。 (c) アルギン酸とAlg−Naと炭酸カルシウムと
の混合は、少なくとも60℃以上に於いて行なわ
なければならい。 Alg−Naの濃度が0.2%を標準とするときは
60℃以上が目安になるが、Alg−Na濃度1.0%
を超えると80℃以上が標準となる。 Alg−Naの実用的使用濃度は0.5%〜3.0%が
好ましい範囲である。以上から、加温Alg−
Na水溶液にアルギン酸を添加、充分撹拌、混
合後、炭酸カルシウムを少量の水を混ぜて添加
する操作が本発明では普通に行われる。 本発明の最大の特質は、上記混合系に於いて
60℃以上に於いては、液態を保ちゲル化しない
ことである。 なぜこの様な単純なことが発見されなかつた
か不思義である。 次にそれを1〜2の証拠を添えて提示する。 Γ使用 Alg−Na 濃度 2%水溶液 アルギン酸は粉末添加、炭酸カルシウムは
少量の水と混合添加。 0℃〜40℃ 〜80℃〜 Alg−Na2%水溶液 500g 500g アルギン酸 1g 1g 炭酸カルシウム 2g 2g 凝固開始 〜60秒後〜 − 凝固終了 〜15分間後〜 − 3時間後も液態の状態変化なし冷却後5分間後凝
固 〔注〕 凝固開始及び終了は、炭酸カルシウム添
加後よりの時間。凝固終了は凝固耐圧の5時間
後との比較で80%以内に入れば終了とする。 〜15℃〜 〜90℃〜 Alg−Na2%水溶液 500g 500g アルギン酸 1.5g 1.5g 炭酸カルシウム 1g 1g 凝固開始 〜20秒〜 − 凝固終了 〜90秒〜 − 3時間後も液態の状態にに変化なし冷却後5分間
後凝固 即ち、Alg−Naのゲル化を任意な形に成形
するに必要な為の任意にゲル化するということ
が温度によつて決定的に左右されるということ
が証明される。 即ち、−「水溶性高分子」中村亦夫監修−37頁
下より11行目に、「(ii)冷水により簡単にゼリー
ができ、寒天、ゼラチン等のように加熱を必要
としない。」という概念が盲点となつて本発明
の内容の発見を著しく後らせた原因とも考えら
れる。 (d) 加温中のアルギン酸とAlg−Naと炭酸カル
シウムの混合物の液態を型枠に充填後、液態保
持の温度より低く保存すると、非可逆性成形ゲ
ルになる。 又、本発明に於いて、加温された水性Alg−
Naとクエン酸と炭酸カルシウムの添加した混
合物に於ける、加温条件は、少なくとも60℃以
上に於いて行わなければならない。 Alg−Naの濃度0.2%を標準とすることは60
℃以上が目安になるが、Alg−Naの濃度1.0%
を超えると80℃以上が標準となる。 Alg−Naの実用的使用濃度は0.5%〜3.0%が
好ましい範囲である(〔注〕MポリマーとGポ
リマーの比率にもよるが平均的使用濃度)。 以上から、加温Alg−Na水溶にクエン酸と
炭酸カルシウムを別に添加する操作が本発明で
は普通に行われている。 本発明の最大の特質は、上記混合系に於いて
60℃以上に於いては液態を保ちゲル化しないこ
とである。 次にそれを1〜2の証拠を添えて提示する。 Γ使用 Alg−Na 濃度 2%水溶液 クエン酸は水溶液添加、炭酸カルシウムは
少量の水と混合添加。 0℃〜40℃ 〜80℃〜 Alg−Na2%水溶液 500g 500g クエン酸(5%水溶液) 11c.c. 11c.c. 炭酸カルシウム 0.5g 0.5g 凝固開始 〜60秒 − 凝固終了 〜4分間後 − 〔注〕 凝固開始及び終了は、炭酸カルシウム添
加後よりの時間。凝固終了は凝固耐圧の5時間
後との比較で80%以内に入れば終了とする。 即ち、Alg−Naのゲル化を任意な形に成形す
るに必要な為の任意にゲル化するということが温
度によつて決定的に左右されるということが証明
される。これも特許請求の範囲第1項関係で述べ
た盲点が本発明の内容の発見を後らせた原因と考
えられる。 加温中のAlg−Naとクエン酸と炭酸カルシウ
ムの混合した等の混合物の液態を少なくとも一面
が円系面又は角系面又は球系面を形成する型枠に
該混合物を充填後液態保持の温度より低く保存す
ると非可逆性成形ゲルとなる。 又、本発明に於いて加温された水性Alg−Na
とグリシンと炭酸カルシウムの添加した混合物に
於ける加温条件は、アルギン酸及びクエン酸の場
合と多少異なる。 即ち、後者の加温は、反応遅延剤的効果である
のに比べ、前者のグリシンの場合、加温中は当然
液態ではあるが、冷却時のゲル化の時間は、始め
から冷時の反応に比べ数倍早くなる。 Γ本発明の一例
(a) Field of Industrial Application The present invention relates to a method for producing an irreversible shaped gel, shaped gel-like foods made of the gel and foods, and dried foods that can be rehydrated. More specifically, a mixture of alginic acid, sodium alginate and calcium carbonate heated to 60°C or higher and 130°C or higher, the mixing ratio of which is a solid content weight ratio of 100 parts of sodium alginate. The upper limit is 50 parts and the lower limit is 3 parts. Also, for citric acid, the upper limit is 10 parts and the lower limit is 1 part. For glycine, the upper limit is 200 parts and the lower limit is 20 parts. Also, for calcium carbonate, the upper limit is 200 parts and the lower limit is 20 parts. A mixed liquid mixture with an upper limit of 100 parts and a lower limit of 2 parts is molded through a molding frame. In addition, the mixture of the mixture and foods is molded through a molding frame, and the molded product is cooled in the frame and does not return to a liquid state or become distorted even if heated, which is irreversible. The present invention relates to a manufacturing method in which a shaped gel or a shaped gel-like food is obtained, and by drying the shaped gel-like food, a shaped dried food that can be easily reconstituted with water is obtained. (b) Conventional technology The methods for producing irreversible gels from sodium alginate are so diverse that it is difficult to enumerate them, but they are summarized in ``Water-Activated Polymers'' (supervised by Nobuo Nakamura, published by Kagaku Kogyo Co., Ltd.). ing. That is, it is as follows. "Gamma alginic acid water-soluble salts - mainly sodium salts Gamma coagulants - calcium sulfate, calcium citrate, calcium chloride, calcium carbonate, weakly acidic substances Gamma reaction retarders - alkali phosphates, alkali citrates" There is no problem with using sodium alginate, but as for the coagulant,
As far as the inventor knows, calcium carbonate,
Generally speaking, weakly acidic substances cannot act as coagulants for sodium alginate ([Note] Hereinafter, sodium alginate will be abbreviated as Alg-Na). For example, when calcium carbonate is used alone, Alg−
Alg-
Helps gel Na. The same can be said of organic acids, which are referred to as weakly acidic substances. Furthermore, when calcium sulfate and calcium chloride are mixed with Alg-Na, they cause strong partial coagulation and cannot be used to produce a uniform gel. In other words, it cannot act as a coagulant. Therefore, in many cases, calcium sulfate or calcium salt can be made into an aqueous solution and aqueous Alg-Na can be immersed in it to solidify it, but the range of molding is extremely limited. Calcium salts of organic acids, other than calcium citrate, are as difficult to handle as calcium chloride (calcium tartrate is not a food additive). The calcium citrate also has Alg depending on the particle size.
- Coagulation occurs in the gelled part of Na, and
When made into a fine powder (more than 100 mesh), it becomes like calcium sulfate, which also causes partial coagulation. particle size 40
At ~60 meshes, a delay in gelation is observed, but it is unstable. Moreover, while it has to be used in large quantities, it is difficult to gel it arbitrarily, and because the particles are coarse, it is close to a kind of partial coagulation, so in terms of quality, it does not produce a smooth gel, and the gelation time is short. Since quantitative processing is not possible, it is not possible to declare that it is practical. The reaction retarder is an alkali phosphate or an alkali citrate, and as can be seen, the coagulant is calcium phosphate or calcium citrate and Alg
-It acts on Na. In other words, as introduced in "Water-soluble polymers",
If Alg-Na could be gelled arbitrarily, it would make a significant contribution to industry, but at present it cannot be said that there is a method that can uniformly gel Alg-Na arbitrarily, easily, and in large quantities. It is. [Note] Other methods for gelling Alg-Na are introduced individually below. (a) Gluconolactone and calcium carbonate method. (b) Calcium sulfite oxidation method. (c) Lactic acid bacteria and calcium carbonate method. (d) Dairy Products Act. (e) Emulsification method of calcium sulfate and oil. (c) Problems to be solved by the invention Alg-Na can be arbitrarily gelled. Any shaped gelled product can be obtained from Alg-Na. Easy gelation method of Alg-Na. An inexpensive method for gelling Alg-Na. Gelation method for large-scale processing of Alg-Na. Multi-purpose usage method of Alg-Na. (d) Means for solving the problems Next, the contents of the present invention will be explained step by step. ◎Relationship (a) in claim 1: The mixture of alginic acid and Alg-Na is a mixture of alginic acid powder or aqueous gel and aqueous Alg-Na.
A mixture with Na or prepared by neutralizing alginic acid with sodium carbonate and leaving a portion as alginic acid, or by adding hydrochloric acid etc. to Alg-Na and converting a portion into alginic acid. It is. The practical concentration of Alg-Na used is 0.2% as an aqueous solution to 5.0% solid content Alg-Na. The mixing ratio of alginic acid and Alg-Na is correlated with the addition of calcium carbonate, but since it may leave some sour taste in the resulting gel, we set a higher value, but the solid content weight ratio is 100 parts Alg-Na. On the other hand, the upper limit for alginic acid is 50 parts and the lower limit is 3 parts. Of course, even if a large amount of alginic acid is mixed, if the amount of calcium carbonate used is constant, the stability of the resulting gel will be constant, so increasing the amount of alginic acid is fine, but it is not productive. [Notes] (1) Alginic acid powder and Alg-Na are used as commercially available food additives. (2) Since alginic acid is a natural product, the dosage and acidity vary depending on the rod. (See "Water-Soluble Polymers" supervised by Yoshio Nakamura, from the 4th line from the bottom on page 28) Therefore, if hydrochloric acid or sodium carbonate is applied to Alg-Na or alginic acid and a portion is left as alginic acid, the calculated residual value is The reaction of the whole system is controlled by making it slightly larger and using calcium carbonate. In the description of the present invention, in order to avoid complications, the addition of alginic acid powder will be described as a representative description. In that case, the amount of alginate powder to be used will be approximately 1.1 to 2.0 times the residual calculated value. (b) The mixing ratio of calcium carbonate to Alg-Na is correlated with the addition of alginic acid;
-The upper limit is 100 parts of calcium carbonate and the lower limit is 2 parts per 100 parts of Na. Even if a large amount of calcium carbonate is used, as long as the amount of alginic acid used is constant, the stability of the resulting gel is constant, so there is no problem in increasing the amount of calcium carbonate, but it is pointless to increase the amount more than necessary. (c) The mixing of alginic acid, Alg-Na, and calcium carbonate must be carried out at a temperature of at least 60°C or higher. When the standard concentration of Alg-Na is 0.2%
The standard temperature is 60℃ or higher, but the Alg-Na concentration is 1.0%.
The standard temperature is 80℃ or higher. The preferred practical concentration of Alg-Na is 0.5% to 3.0%. From the above, heating Alg−
In the present invention, the operation of adding alginic acid to an aqueous Na solution, stirring and mixing thoroughly, and then adding calcium carbonate mixed with a small amount of water is commonly performed in the present invention. The greatest feature of the present invention is in the above mixed system.
At temperatures above 60°C, it must remain liquid and not gel. It is a wonder why such a simple thing was never discovered. Next, present it with one or two pieces of evidence. Γ Used Alg-Na concentration 2% aqueous solution Alginic acid was added as a powder, and calcium carbonate was added mixed with a small amount of water. 0°C ~ 40°C ~ 80°C ~ Alg-Na2% aqueous solution 500g 500g Alginic acid 1g 1g Calcium carbonate 2g 2g Start of solidification ~60 seconds later~ - End of solidification ~15 minutes later~ - No change in liquid state after 3 hours after cooling Coagulation after 5 minutes [Note] Coagulation starts and ends after adding calcium carbonate. The coagulation is completed when the coagulation pressure is within 80% of the coagulation resistance after 5 hours. ~15℃~ ~90℃~ Alg-Na2% aqueous solution 500g 500g Alginic acid 1.5g 1.5g Calcium carbonate 1g 1g Start of coagulation ~20 seconds~ - Finish of solidification ~90 seconds~ - Cooling without change to liquid state after 3 hours After 5 minutes of post-solidification, it is proven that the desired gelation of Alg-Na, which is necessary for shaping it into an arbitrary shape, is decisively influenced by the temperature. That is, in the 11th line from the bottom of page 37 of ``Water-Soluble Polymers'' supervised by Nobuo Nakamura, it says, ``(ii) Jelly can be easily made with cold water and does not require heating unlike agar, gelatin, etc.'' It is also thought that the concept became a blind spot and was the reason why the discovery of the content of the present invention was significantly delayed. (d) After filling a mold with a liquid mixture of alginic acid, Alg-Na, and calcium carbonate during heating, it becomes an irreversible molded gel when stored at a temperature lower than the temperature required to maintain the liquid state. In addition, in the present invention, heated aqueous Alg-
The heating conditions for the mixture containing Na, citric acid, and calcium carbonate must be at least 60°C or higher. The standard concentration of Alg-Na is 0.2%.
The standard temperature is ℃ or higher, but the concentration of Alg-Na is 1.0%.
The standard temperature is 80℃ or higher. Practical use concentration of Alg-Na is preferably in the range of 0.5% to 3.0% ([note] average use concentration depending on the ratio of M polymer and G polymer). From the above, it is common practice in the present invention to separately add citric acid and calcium carbonate to a heated Alg-Na aqueous solution. The greatest feature of the present invention is in the above mixed system.
It must remain liquid and not gel at temperatures above 60°C. Next, present it with one or two pieces of evidence. Γ Used Alg-Na concentration 2% aqueous solution Citric acid was added as an aqueous solution, and calcium carbonate was added mixed with a small amount of water. 0℃〜40℃〜80℃〜 Alg-Na2% aqueous solution 500g 500g Citric acid (5% aqueous solution) 11c.c. 11c.c. Calcium carbonate 0.5g 0.5g Start of coagulation ~60 seconds − End of coagulation ~4 minutes later − [Note] The start and end of coagulation is the time after addition of calcium carbonate. The coagulation is completed when the coagulation pressure is within 80% of the coagulation resistance after 5 hours. In other words, it is proven that the gelation of Alg-Na to the desired degree necessary for forming it into an arbitrary shape is decisively influenced by temperature. This is also considered to be the reason why the blind spot mentioned in relation to claim 1 delayed the discovery of the content of the present invention. After filling the liquid state of a mixture such as a mixture of Alg-Na, citric acid, and calcium carbonate during heating into a mold in which at least one side forms a circular surface, a square surface, or a spherical surface, the mixture is maintained in a liquid state. When stored below this temperature, it becomes an irreversible shaped gel. In addition, in the present invention, heated aqueous Alg-Na
The heating conditions for the mixture with added glycine and calcium carbonate are somewhat different from those for alginic acid and citric acid. In other words, the latter heating is a reaction retardant effect, whereas the former glycine is naturally in a liquid state during heating, but the gelation time during cooling is due to the reaction during cooling from the beginning. It is several times faster than . ΓAn example of the present invention

【表】 グリシンの使用量は多い方が凝固を早めるが、
経済性、食味からAlg−Na量に対し1.5倍量が上
限として好ましい範囲である。 又、下限は凝固の目的にもるが0.2倍量が実用
性の範囲にある。 使用炭酸カルシウム量は、等量が上限である。 又、グリシンを他のアルギン酸又はクエン酸と
併用すると、アルギン酸の場合は反応を早め、ク
エン酸の場合は反応を遅くする効果がある。その
使用量の決定は、反応の遅速をそれぞれの条件に
応じて考慮することが好ましい。 他の条件は、アルギン酸、クエン酸で述べた内
容に準ずる。 ◎特許請求の範囲第2項関係 特許請求の範囲第1項関係で述べた、非可逆性
成形ゲルを製造する過程の、Alg−Naとアルギ
ン酸又はクエン酸又はグリシン等の単独又は混合
物とを混合して、それに炭酸カルシウムを混合し
て加温されて液態の状態のもの(以後単にゲル化
用液態混合物を略称する。)と食品類とを混合し
て混合物としたものを成形型枠に充填し冷却して
成形ゲル状食品類を製造する。食品類は次の様な
ものである。穀類、いも類、甘味類、油脂類、種
実類、豆類、急介類、畜肉類、卵類、乳類、野菜
類、果実類、きのこ類、藻類、嗜好飲料類、調味
料、香辛料、調理加工食品等である。 ゲル化用液態混合物と食品類との混合比率は、
食品との混合成形物の強度、纏り具合、食品の品
種、品質によつて、該液態混合物の濃度、使用比
率が異なる。 食品類に使用する該液態混合物のAlg−Na換
算濃度は平均的に2%前後が扱い易い。混合比率
は、食品は千差万別なので、好ましくは、目的、
必要食感を勘案して予め小実験によつて比率を定
めることである。 本発明の一例を以下に紹介する。 (Alg−Na換算2%のゲル化用液態混合物を使
用) ゲル化用液態混合物 食品類使用量 g数 500g 日本酒 500c.c. 500g ブドー酒 500c.c. 500g 焼酎 500c.c. 100g にんじん(生おろし) 200g 50g 鶏卵 100g 200g マツシ 1ポテト(含水加工物) 500g 100g 砂糖 100g 80g さんま(フイーレ) 100g 300g りんご(生おろし) 500g 500g 市販醤油 500c.c. 〜以上であるが、目的に応じて、即ち加工条件
等によつて大幅に変化するので、先述した如く必
要に応じ任意に混合比率を替えることが好まし
い。 ゲル化用液態混合物と食品類との混合方法は、
混合すればどの様な方法でも良く、手操作でも機
械操作でも差支えない。 混合操作中も、60℃以上の温度を保持しなけれ
ばならない。 混合後、該混合物を成形型枠、即ち目的に応じ
用意された型枠に充填し、先の保持温度以下に下
げるとしばらくして成形ゲル状食品が生成する。 以上から、任意の食品類を成形ゲル状食品とし
て任意の形に成形することが出来る、食品類の製
造方法である。 ◎特許請求の範囲第3項関係 特許請求の範囲第2項関係によつて生成する成
形ゲル状食品(以後、単に「成形ゲル状食品」と
略称する。)を乾燥して、その乾燥物を水浸漬す
ると殆ど原形近く復帰する成形乾燥ゲル食品類を
収得する。 乾燥方法は簡単で、凍結乾燥、加熱乾燥、熱風
乾燥等自由で制限ない。 成形乾燥ゲル食品類の水浸漬による復帰性は食
品の種類によつて異なるが、以下本発明の例を参
考に紹介する。 〔注〕 乾燥に於いては、縦横200(mm)×200(mm)
の面の収縮は押さえて厚みを減少させる方法を
とつた。よつて、その復帰性は厚みと重量の復
帰比率をもつて決める。 成形ゲル状食品 乾燥ゲル食品 水浸漬復帰率 (厚mm) (厚mm) % にんじん 5 0.5 93% (生おろし) 豚肉(挽肉)5 1.5 78% 澱 粉 1.0 83% トマト 5 0.3 94% (ジユース) さんま 5 1.0 84% (挽肉) 以上の如く纏めることが出来る。このことは食
品の乾燥物の用途開発が著しく拡がることを意味
している。 (ホ) 発明の効果 本発明の方法を以上の通り詳細に説明したが、
本発明の特許請求の範囲第1項より第5項迄の特
徴を要約すると次の通りである。 (1) 本発明の方法はアルギン酸ナトリウムを任意
な時間帯で非可逆性ゲルを生成出来る。 (2) 本発明の方法はアルギン酸ナトリウムから任
意な形の成形ゲル、即ち、目的に応じて成形さ
れた非可逆性成形ゲルを収得出来る。 (3) 本発明の方法は、温度操作だけの容易な非可
逆性成形ゲル製造方法である。 (4) 本発明の方法は、温度操作という安価な非可
逆性成形ゲルの製造方法である。 (5) 本発明の方法は、温度操作だけの大量生産方
式の非可逆性成形ゲルの製造方法である。 (6) 本発明の方法は、(1)(2)(3)(4)(5)の特徴を利用し
て冷凍食品、冷蔵食品、乾燥食品の多種多様な
多目的性を食品製造方法に導入出来る。 石油製品に追われているアルギン酸系は、豊富
な海洋資源でありながら、ゲル化技術が著しく立
ち遅れていることによつて、その有効性を知りな
がら、その先細りは必然的だとも言われているこ
とが本発明等によつて少なくとも一部のアルギン
酸系の利用に道が拓け、且つ資源の有効性を著し
く高揚すると考える。 (ヘ) 実施例 本発明の内容詳細を次の実施例をもつて行うも
のとする。 〔注〕(1) 実施例は特許請求の範囲の順にもとづ
いて行う。 (2) 実施例に使用する原材料は次の規格のもの
を使用した。 アルギン酸 市販食添用 アルギン酸ナトリウム 市販食添用 炭酸カルシウム 市販食添用 クエン酸 市販食添用 グリシン 市販食添用 食品類 市販及びその調理加工 (3) 乾燥 Γ乾燥器 2KW 通風 Γ家庭用 1/4HP冷凍器−20℃ (4) 使用型枠 Γ少なくとも一部は円系面を造り出す枠円型 Γ少なくとも一部は角系面を造り出す枠角型 Γ少なくとも一部は球系面を造り出す枠 (5) 実施例に於ける用語説明 (a) 特許請求の範囲第1項 Γ冷却時間 室温によつて効果は異なるが、15℃〜20℃
を標準としたもの。 Γ湯浴効果 非可逆性成形ゲル又は成形ゲル状食品を70
℃以上の熱水に30分間浸漬して、融解又は歪
を生じなかつたものを「良」とする。又、ゲ
ル化作用液態混合物のなつたときを「混合直
後流し込み」とし、それを加温条件によつて
保温される時間を「30分後」、「60分後」、
「180分後」とし、その冷却物を混浴させる。 (b) 特許請求の範囲第6項及び第3項 Γ非可逆性ゲル構成の説明は、特許請求の範囲
第1項実施例番号をもつて、その構成内容の
説明とし、温時に液態のものを単に「ゲル化
用液態混合物」と略記、冷時に非可逆性ゲル
又は非可逆性成形ゲルを単に「ゲル」及び
「成形ゲル」と称呼する。 Γ水戻し効果 成形ゲル状食品の乾燥は、平面の収縮を押
さえ、厚みの収縮にするため、該食品平面を
拡げる様に行う。水戻し試験は該乾燥物を10
℃〜25℃前後の水に浸漬して、30分間に於け
る含水による戻り率を見る。即ち、乾燥前の
該食品の厚みを分母とし、乾燥後の水戻しに
よる厚みを分子として、それをパーセントと
した数値。 Γオーブン 120℃ガスオーブンに30分間放置し、成形
ゲル状食品が融解しない場合成形性安定とす
る。 Γ湯 浴 70℃熱水中に成形ゲル状食品を浸漬して形
性を維持した場合崩壊せずとする。 Γ実施例(1)、(2)、(14)、(15)、(28)、(29)、(
45)、
(46)、(62)を文章例とし、作等が類似して
いる実施例(3)〜(13)、(16)〜(27)、(30)〜
(44)、(47)〜(61)、(63)〜(80)迄を表
として纏める。 実施例 1 アルギン酸ナトリウム20gを1000c.c.の水に溶か
し、それを湯浴で80℃以上に加温、品温が平均80
℃以上になつた所にアルギン酸2gを水20c.c.中に
浮遊させたものを添加充分混和後、炭酸カルシウ
ム4gを水20c.c.に浮遊させたものを添加、3成分
混合物を充分撹拌しながら80℃以上に保温する。
80℃以上に保温された3成分混合物を次の時間差
によつて各々の型枠に流し込み、室温で3時間冷
却する。 保温時間 型枠 湯浴効果 混合直後流し込み 角型 良 30分後〃 〃 〃 60分後〃 〃 〃 180分後〃 〃 〃 実施例 2 アルギン酸ナトリウム20gを1000c.c.の水に溶か
し、それを湯浴で80℃以上に加温、品温が平均80
℃以上になつた所にアルギン酸3gを水40c.c.中に
浮遊させたものを添加充分混和後、炭酸カルシウ
ム2gを水10c.c.に浮遊させたものを添加、3成分
混合物を充分撹拌しながら80℃以上に保温する。
80℃以上に保温された3成分混合物を次の時間差
によつて各々の型枠に流し込み、室温で3時間冷
却する。 保温時間 型枠 湯浴効果 混合直後流し込み 円型 良 30分後〃 〃 〃 60分後〃 〃 〃 180分後〃 〃 〃
[Table] The higher the amount of glycine used, the faster the coagulation, but
In terms of economy and taste, a preferable upper limit is 1.5 times the amount of Alg-Na. The lower limit depends on the purpose of coagulation, but 0.2 times the amount is within the practical range. The upper limit of the amount of calcium carbonate used is the same amount. Furthermore, when glycine is used in combination with other alginic acid or citric acid, it has the effect of accelerating the reaction in the case of alginic acid and slowing down the reaction in the case of citric acid. When determining the amount to be used, it is preferable to consider the slowness of the reaction depending on each condition. Other conditions were the same as those described for alginic acid and citric acid. ◎Related to Claim 2: Mixing Alg-Na with alginic acid, citric acid, glycine, etc., alone or in combination, in the process of producing an irreversible molded gel, as described in Claim 1. The mixture is then mixed with calcium carbonate and heated to a liquid state (hereinafter simply referred to as gelling liquid mixture) and food to form a mixture, which is then filled into a mold. The product is then cooled to produce shaped gel-like foods. Foods are as follows. Cereals, potatoes, sweets, fats and oils, seeds and seeds, beans, vegetables, meat, eggs, milk, vegetables, fruits, mushrooms, algae, beverages, seasonings, spices, cooking Processed foods, etc. The mixing ratio of the liquid mixture for gelation and foods is as follows:
The concentration and usage ratio of the liquid mixture vary depending on the strength, degree of cohesion, type and quality of the food product. The average Alg-Na equivalent concentration of the liquid mixture used for food products is easily manageable at around 2%. Since foods vary widely, the mixing ratio should preferably be based on the purpose,
The ratio should be determined in advance through a small experiment, taking into account the required texture. An example of the present invention will be introduced below. (Using a liquid mixture for gelling with a concentration of 2% in terms of Alg-Na) Liquid mixture for gelling Amount of foods used Number of grams 500g Sake 500c.c. 500g Boudoux 500c.c. 500g Shochu 500c.c. (grated) 200g 50g Chicken egg 100g 200g Matsushi 1 potato (processed with water) 500g 100g Sugar 100g 80g Pacific saury (fillet) 100g 300g Apple (raw grated) 500g 500g Commercially available soy sauce 500c.c. That is, since it varies greatly depending on processing conditions and the like, it is preferable to arbitrarily change the mixing ratio as necessary, as described above. The method of mixing the liquid mixture for gelation and foods is as follows:
Any method may be used as long as the mixture is mixed, and there is no problem with manual or mechanical operation. The temperature must be maintained above 60°C during the mixing operation. After mixing, the mixture is filled into a mold, that is, a mold prepared according to the purpose, and when the temperature is lowered to below the previously held temperature, a molded gel-like food product is formed after a while. From the above, this is a method for producing foods that can mold any foods into any shape as a molded gel food. ◎Relation to Claim 3: Drying the shaped gel-like food produced according to the relationship in Claim 2 (hereinafter simply referred to as "shaped gel-like food"), and producing the dried product. To obtain molded dry gel foods that almost return to their original shape when immersed in water. The drying method is simple and there are no restrictions, such as freeze drying, heat drying, hot air drying, etc. The recovery properties of molded dry gel foods when immersed in water vary depending on the type of food, but will be introduced below with reference to examples of the present invention. [Note] For drying, the height and width are 200 (mm) x 200 (mm).
A method was adopted to reduce the thickness by suppressing the shrinkage of the surface. Therefore, the return property is determined by the return ratio of thickness and weight. Molded gel food Dry gel food Water immersion recovery rate (thickness mm) (thickness mm) % Carrot 5 0.5 93% (Raw grated) Pork (ground meat) 5 1.5 78% Starch 1.0 83% Tomato 5 0.3 94% (Youth) Sanma 5 1.0 84% (minced meat) It can be summarized as above. This means that the development of applications for dried food products will expand significantly. (e) Effects of the invention The method of the present invention has been explained in detail as above,
The features of claims 1 to 5 of the present invention are summarized as follows. (1) The method of the present invention can produce an irreversible gel using sodium alginate at any time. (2) The method of the present invention can obtain a shaped gel of any shape from sodium alginate, that is, an irreversible shaped gel shaped according to the purpose. (3) The method of the present invention is an easy method for producing an irreversible molded gel that only requires temperature manipulation. (4) The method of the present invention is an inexpensive method for producing an irreversible molded gel using temperature manipulation. (5) The method of the present invention is a method for producing an irreversible molded gel using a mass production method using only temperature control. (6) The method of the present invention utilizes the features of (1), (2), (3), (4), and (5) to introduce a wide variety of versatility of frozen foods, chilled foods, and dried foods into food manufacturing methods. I can do it. Alginic acid, which is being pursued by petroleum products, is an abundant marine resource, but gelling technology is lagging far behind, so it is said that its use will inevitably decline despite its effectiveness. Therefore, it is believed that the present invention and the like will pave the way for the utilization of at least some alginic acid-based materials, and will significantly increase the effectiveness of resources. (f) Examples The details of the present invention will be explained with the following examples. [Note] (1) Examples are performed based on the order of claims. (2) The raw materials used in the examples were of the following specifications. Alginic acid For commercially available food additives Sodium alginate For commercially available food additives Calcium carbonate For commercially available food additives Citric acid For commercially available food additives Glycine For commercially available food additives Food products Commercially available and their cooking processing (3) Drying Γ dryer 2KW Ventilation Γ Home use 1/4 HP Refrigerator -20℃ (4) Formwork used ΓCircular frame that creates at least a circular surface ΓSquare frame that creates at least a part of a square surface ΓFrame that creates at least a spherical surface (5 ) Explanation of terms in Examples (a) Claim 1 Γ Cooling time The effect varies depending on the room temperature, but 15°C to 20°C
is the standard. Γ Hot water bath effect Irreversible molded gel or molded gel-like food 70
Items that do not melt or distort after being immersed in hot water at a temperature of ℃ or higher for 30 minutes are considered "good." In addition, the time when the gelatinizing liquid mixture is melted is defined as "pouring immediately after mixing", and the time for keeping it warm depending on the heating conditions is "30 minutes later", "60 minutes later",
After 180 minutes, mix the cooled material in the bath. (b) Claims 6 and 3 The explanation of the Γirreversible gel composition is an explanation of the content of the composition using the example number in Claim 1, and it is a liquid state when heated. is simply referred to as "liquid mixture for gelling", and irreversible gels or irreversibly shaped gels when cold are simply referred to as "gels" and "shaped gels". ΓWater Reconstitution Effect Drying of a shaped gel-like food is carried out in such a way as to spread out the flat surface of the food in order to prevent shrinkage of the flat surface and to reduce the thickness. Water reconstitution test
Immerse it in water at around 25°C to 25°C and check the return rate due to water content in 30 minutes. That is, the thickness of the food before drying is the denominator, the thickness of the food after drying is the numerator, and the value is expressed as a percentage. Γ Oven: If the molded gel-like food does not melt after leaving it in a 120℃ gas oven for 30 minutes, it is considered to be stable in moldability. Gamma hot water bath If a shaped gel food is immersed in 70°C hot water and maintains its shape, it will not disintegrate. ΓExample (1), (2), (14), (15), (28), (29), (
45),
Using (46) and (62) as examples of sentences, examples (3) to (13), (16) to (27), and (30) to
(44), (47) to (61), and (63) to (80) are summarized as a table. Example 1 Dissolve 20g of sodium alginate in 1000c.c. of water and heat it to 80℃ or higher in a hot water bath until the average temperature of the product is 80℃.
When the temperature is above ℃, add 2 g of alginic acid suspended in 20 c.c. of water. After thorough mixing, add 4 g of calcium carbonate suspended in 20 c.c. of water. Stir the three-component mixture thoroughly. While doing so, keep the temperature above 80℃.
The three-component mixture kept at 80° C. or higher is poured into each mold at the following time intervals and cooled at room temperature for 3 hours. Heat retention time Formwork Hot water bath effect Pour immediately after mixing Square shape Good After 30 minutes 〃 〃 After 60 minutes 〃 〃 After 180 minutes〃 〃 〃 Example 2 Dissolve 20g of sodium alginate in 1000c.c. of water and pour it into hot water. Heated to 80℃ or higher in a bath, with an average temperature of 80℃
When the temperature is above ℃, add 3 g of alginic acid suspended in 40 c.c. of water. After thorough mixing, add 2 g of calcium carbonate suspended in 10 c.c. of water. Stir the three-component mixture thoroughly. While doing so, keep the temperature above 80℃.
The three-component mixture kept at 80° C. or higher is poured into each mold at the following time intervals and cooled at room temperature for 3 hours. Heat retention time Formwork Hot water bath effect Pour immediately after mixing Round shape Good After 30 minutes 〃 〃 After 60 minutes〃 〃 〃 After 180 minutes〃 〃 〃

【表】【table】

【表】 実施例 14 アルギン酸ナトリウム20gを1000c.c.の水に溶か
し、それを湯浴で80℃以上に加温、品温が平均80
℃以上になつた所にグリシン30gと炭酸カルシウ
ム20gを水に浮遊させたものを添加、充分撹拌し
ながら80g以上に保温する。80℃以上に保温され
た2成分混合物を次の時間差によつて各々の型枠
に流し込み、室温で3時間冷却する。 保温時間 型枠 湯浴効果 混合直後流し込み 円型 良 30分後〃 〃 〃 60分後〃 〃 〃 実施例 15 アルギン酸ナトリウム20gを1000c.c.の水に溶か
し、それを湯浴で80℃以上に加温、品温が平均80
℃以上になつた所にクエン酸2gを10c.c.の水に溶
かしたものを添加、混合後、炭酸カルシウム4g
を水10c.c.に浮遊させたものを添加、3成分混合物
を充分撹拌しながら80℃以上に保温する。80℃以
上に保温された3成分混合物を次の時間差によつ
て各々の型枠に流し込み、室温で3時間冷却す
る。 保温時間 型枠 湯浴効果 混合直後流し込み 球型 良 30分後〃 〃 〃 60分後〃 〃 〃
[Table] Example 14 Dissolve 20g of sodium alginate in 1000c.c. of water and heat it to 80℃ or higher in a hot water bath.The average temperature of the product is 80℃.
Add 30g of glycine and 20g of calcium carbonate suspended in water to the temperature above ℃, and keep warm at 80g or above while stirring thoroughly. The two-component mixture kept at a temperature of 80° C. or higher is poured into each mold at the following time intervals and cooled at room temperature for 3 hours. Insulation time Formwork Hot water bath effect Pour immediately after mixing Round shape Good After 30 minutes 〃 〃 After 60 minutes 〃 〃 Example 15 Dissolve 20g of sodium alginate in 1000c.c. of water and heat it to 80℃ or higher in a hot water bath. Heating, product temperature average 80
Add 2 g of citric acid dissolved in 10 c.c. of water to the area where the temperature is above ℃. After mixing, add 4 g of calcium carbonate.
was suspended in 10 c.c. of water, and the 3-component mixture was kept at a temperature of 80°C or higher while stirring thoroughly. The three-component mixture kept at 80° C. or higher is poured into each mold at the following time intervals and cooled at room temperature for 3 hours. Heat retention time Formwork Hot water bath effect Pour immediately after mixing Spherical shape Good After 30 minutes 〃 〃 〃 After 60 minutes 〃 〃

【表】【table】

【表】 実施例 28 80℃以上に保温されている実施例1のゲル素材
500gに加熱調理され80℃以上に保温した鰯身の
挽肉500gを混合し、充分混和したものを角型に
充填し、10℃以下の冷蔵庫に保存、冷却後、角型
枠より角型に成形された、鰯成形ゲル状食品を収
得する。 オーブン(30分間) 成形性安定 湯 浴 (30分間) 崩壊せず 実施例 29 80℃以上に保温されている実施例2のゲル素材
500gに加熱調理され80℃以上に保温した豚赤身
の挽肉500gを混合し、充分混和したものを角型
に充填し、10℃以下の冷蔵庫に保存、冷却後、角
型枠より角型に成形された、豚肉成形ゲル状食品
を収得する。 オーブン(30分間) 成形性安定 湯 浴 (30分間) 崩壊せず
[Table] Example 28 Gel material of Example 1 kept warm at 80℃ or higher
Mix 500g of ground sardine meat that has been cooked and kept at 80℃ or above, fill the mixture into a square mold, store in the refrigerator at 10℃ or below, and after cooling, form into a square shape using a square frame. A sardine-shaped gel-like food is obtained. Oven (30 minutes) Stable moldability Hot water bath (30 minutes) No disintegration Example 29 Gel material of Example 2 kept at a temperature of 80°C or higher
Mix 500g of ground pork lean meat that has been heated and kept at 80℃ or above, fill the mixture into a square shape, store in the refrigerator below 10℃, and after cooling, form into a square shape using a square frame. A gel-like pork product is obtained. Oven (30 minutes) Stable moldability Hot water bath (30 minutes) No disintegration

【表】【table】

【表】【table】

【表】 実施例 45 80℃以上に保温されている実施例( )のゲル
素材500gに加熱調理され80℃以上に保温したさ
んまのすり身500gを混合し、充分混和したもの
を角型に充填し、10℃以下の冷蔵庫に保存、冷却
後、角型より成形されたさんま成形ゲル状食品
を、乾燥器にて乾燥して乾燥さんま成形ゲル状食
品とする。 水戻し効果 92% 実施例 46 80℃以上に保温されている実施例( )のゲル
素材500gに加熱調理され80℃以上に保温した牛
赤身挽肉500gを混合し、充分混和したものを角
型に充填し、10℃以下の冷蔵庫に保存、冷却後、
角型より成形された牛肉成形ゲル状食品を、乾燥
器にて乾燥して乾燥牛肉成形ゲル状食品とする。 水戻し効果 85%
[Table] Example 45 500g of the gel material of Example ( ) kept at 80℃ or higher was mixed with 500g of sanma paste that had been cooked and kept at 80℃ or higher, and the thoroughly mixed mixture was filled into a square shape. After cooling and storing in a refrigerator at 10° C. or below, the square-shaped gel-like food is dried in a dryer to obtain a dry gel-like food. Water rehydration effect: 92% Example 46 Mix 500g of the gel material of Example ( ) that has been kept at 80℃ or higher with 500g of lean ground beef that has been cooked and kept at 80℃ or higher, and mix well and form into a square shape. Fill it, store it in the refrigerator below 10℃, and after cooling,
A gel-like beef product formed from a square shape is dried in a dryer to obtain a gel-like dried beef product. Water rehydration effect 85%

【表】【table】

【表】【table】

【表】 実施例 62 80℃以上に保温されている実施例( )のゲル
素材500gに加熱調理され80℃以上に保温したさ
んま身の挽肉500gを混合し、充分混和したもの
を角型に充填し、10℃以下の冷蔵庫に保存、冷却
後、角型のまま−20℃の冷凍庫にて凍結して、凍
結成形ゲル状食品とする。 7日間冷凍庫に放置、室温にて解凍してその原
形復帰性、及び保形性安定性は以下の通り。 原形復帰性 96% 保形性安定性 115
[Table] Example 62 Mix 500g of the gel material of Example ( ) kept at 80℃ or higher with 500g of ground sanma meat that has been cooked and kept at 80℃ or higher, and fill the thoroughly mixed mixture into a square shape. Then, store it in a refrigerator at 10℃ or below, cool it, and freeze it in a -20℃ freezer as a square shape to make a frozen gel-like food. After being left in the freezer for 7 days and thawed at room temperature, its ability to return to its original shape and its shape retention stability are as follows. Restorability to original shape 96% Shape retention stability 115

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 温時に液態を保ち、冷時に非可逆性ゲルとな
る性質の非可逆性成形ゲルを製造するにあたり、
加温された水性のアルギン酸ナトリウムに、アル
ギン酸又はクエン酸又はグリシン類の単独又は混
合物と炭酸カルシウムの混合した液態混合物を成
形枠を介して成形、冷却をへて、加温によつて液
態に戻らない特徴を有する、非可逆性成形ゲルの
製造方法。 2 温時が60℃以上130℃以内とし、冷時が生成
ゲルが凍結しない温域の特許請求の範囲第1項記
載の非可逆性成形ゲルの製造方法。 3 アルギン酸とアルギン酸ナトリウムの混合物
が、アルギン酸の固態と水性アルギン酸ナトリウ
ムの混合物又は、アルギン酸を一部残し他をナト
リウム塩とするか又はアルギン酸ナトリウムの一
部をアルギン酸になつている特許請求の範囲第1
項記載の非可逆性成形ゲルの製造方法。 4 アルギン酸とアルギン酸ナトリウムの混合比
率が固形分重量比率でアルギン酸ナトリウム100
部とした場合、アルギン酸は50部を上限とし、3
部を下限とし、クエン酸は10部を上限とし、1部
を下限とし、グリシンは200部を上限とし、20部
を下限とし、又、炭酸カルシウムは100部を上限
とし2部を下限とする特許請求の範囲第1項記載
の非可逆性成形ゲルの製造方法。 5 温時に液態を保ち、冷時に非可逆性ゲルとな
る性質の該液態と食品類とを混合して成形ゲル状
食品類を製造するにあたり、加温された水性アル
ギン酸ナトリウムに、アルギン酸又はクエン酸又
はグリシン類の単独又は混合物と炭酸カルシウム
の混合した液態混合物と食品類とを混合して混合
物とし、該混合物を成型枠を介して成形、冷却を
へて加温によつて歪まない成形性を有する特徴の
非可逆性ゲルと食品類より成る、成形ゲル状食品
類の製造方法。 6 温時に液態を保ち、冷時に非可逆性ゲルとな
る性質の該液態と食品類とを混合して、成形ゲル
状食品類とし、それを乾燥して、その乾燥物が水
戻し容易な乾燥食品を製造するにあたり、加温さ
れた水性アルギン酸ナトリウムにアルギン酸又
は、クエン酸又はグリシン類の単独又は混合物と
炭酸カルシウムの混合した液態混合物と食品類と
を混合して混合物とし、該混合物を成型枠を介し
て成形、冷却後、それを乾燥して乾燥物とするこ
とによつて水戻し容易な特徴を有する非可逆性ゲ
ルと食品類との混合物の乾燥した、成形ゲル状食
品類の乾燥物の製造方法。 7 食品類が農産物、海産物、畜産物のそのまま
又はその加工物である特許請求の範囲第5項記載
の成形ゲル状食品類の製造方法。 8 食品類が農産物、海産物、畜産物のそのまま
又はその加工物である特許請求の範囲第6項記載
の成形ゲル状食品類の乾燥物の製造方法。
[Claims] 1. In producing an irreversible molded gel that maintains a liquid state when warm and becomes an irreversible gel when cold,
A liquid mixture of calcium carbonate and alginic acid, citric acid, or glycine, alone or as a mixture, is molded into heated aqueous sodium alginate through a mold, cooled, and returned to a liquid state by heating. A method for producing an irreversible moldable gel having unique characteristics. 2. The method for producing an irreversible molded gel according to claim 1, wherein the heating temperature is 60°C or more and 130°C or less, and the cooling temperature is within a temperature range in which the produced gel does not freeze. 3. Claim 1, wherein the mixture of alginic acid and sodium alginate is a mixture of solid alginic acid and aqueous sodium alginate, or a mixture of alginic acid in a solid state and aqueous sodium alginate, or a mixture in which some alginic acid is left and the rest is a sodium salt, or a part of sodium alginate is made into alginic acid.
A method for producing an irreversible molded gel as described in Section 1. 4 The mixing ratio of alginic acid and sodium alginate is sodium alginate 100 in terms of solid content weight ratio.
parts, the upper limit for alginic acid is 50 parts, and 3 parts.
For citric acid, the upper limit is 10 parts and the lower limit is 1 part. For glycine, the upper limit is 200 parts and the lower limit is 20 parts. For calcium carbonate, the upper limit is 100 parts and the lower limit is 2 parts. A method for producing an irreversible molded gel according to claim 1. 5. When producing molded gel foods by mixing foods with liquids that maintain a liquid state when warm and become irreversible gels when cold, alginic acid or citric acid is added to heated aqueous sodium alginate. Alternatively, a liquid mixture of glycine alone or a mixture of calcium carbonate and food is mixed to form a mixture, and the mixture is molded through a molding frame and cooled to ensure moldability that will not be distorted by heating. A method for producing molded gel-like foods comprising an irreversible gel having the characteristics of: 6. Mix food with the liquid, which maintains a liquid state when warm and becomes an irreversible gel when cold, to form gel-like foods, and dry it so that the dried product can be easily rehydrated. In producing foods, food is mixed with a liquid mixture of warmed aqueous sodium alginate, alginic acid, citric acid, or glycine alone or as a mixture, and calcium carbonate, and the mixture is molded into a molding frame. A dried product of a gel-like food product, which is a mixture of an irreversible gel and a food product that can be easily rehydrated by forming and cooling the product by drying it to form a dry product. manufacturing method. 7. The method for producing shaped gel-like foods according to claim 5, wherein the foods are agricultural products, marine products, or livestock products as they are or processed products thereof. 8. The method for producing dried shaped gel-like foods according to claim 6, wherein the foods are agricultural products, marine products, or livestock products as they are or processed products thereof.
JP59274432A 1984-12-28 1984-12-28 Preparation of irreversible formed gel and formed gel food Granted JPS61158753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274432A JPS61158753A (en) 1984-12-28 1984-12-28 Preparation of irreversible formed gel and formed gel food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274432A JPS61158753A (en) 1984-12-28 1984-12-28 Preparation of irreversible formed gel and formed gel food

Publications (2)

Publication Number Publication Date
JPS61158753A JPS61158753A (en) 1986-07-18
JPH0476651B2 true JPH0476651B2 (en) 1992-12-04

Family

ID=17541593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274432A Granted JPS61158753A (en) 1984-12-28 1984-12-28 Preparation of irreversible formed gel and formed gel food

Country Status (1)

Country Link
JP (1) JPS61158753A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025833A (en) * 1988-06-24 1990-01-10 Kazuo Hara Production of gelatinous foods
JP5131474B2 (en) * 2008-09-12 2013-01-30 味の素株式会社 Food molding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130445A (en) * 1977-04-15 1978-11-14 Takeda Chemical Industries Ltd Food and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130445A (en) * 1977-04-15 1978-11-14 Takeda Chemical Industries Ltd Food and production thereof

Also Published As

Publication number Publication date
JPS61158753A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
US4676976A (en) Konjak mannan-containing reversible gel
US3930052A (en) Gelatin compositions
CN108925859A (en) A kind of compounding skin freezes product stabilizer and its application
KR100449050B1 (en) Jellied food made from gelatin
JPS62118861A (en) Utilization of konjak
KR20010099294A (en) Jellied food for a diet
JPH0476651B2 (en)
JPH0829046B2 (en) Pasta firata cheese containing uniformly dispersed food material and method for preparing the same
JPS63269A (en) Molded gelatinous material and molded gelatinous food
JP2010063398A (en) Packaged frozen processed egg, and method for producing the same
JPS611358A (en) Gelatinous food
JP4484244B2 (en) A method for producing a food having a novel gel-like structure formed by fusing fish meat and konjac.
JPS6257295B2 (en)
KR100449048B1 (en) Jellied food for a diet
KR20050083041A (en) Jellied nutritious food.
JPH0628548B2 (en) Dry matter and method for producing the same
JPS6119457A (en) Gelatinous food
JPH07203873A (en) Fish meat-containing glucomannan gel food stock
RU2791912C1 (en) Method for obtaining a fat additive for fish products
JP2537675B2 (en) Process for producing packaged cheese processed food or packaged cheese-like processed food using collagen film as casing
JPH0125549B2 (en)
JPS6027503B2 (en) Foods and their manufacturing methods
JPH0411853A (en) Foamed gel-like food and preparation thereof
JPS62257A (en) Soup stock
JPS61158754A (en) Preparation of formed gel food and dried product thereof