JPH0476466A - Electromagnetic wave measuring device - Google Patents

Electromagnetic wave measuring device

Info

Publication number
JPH0476466A
JPH0476466A JP18964490A JP18964490A JPH0476466A JP H0476466 A JPH0476466 A JP H0476466A JP 18964490 A JP18964490 A JP 18964490A JP 18964490 A JP18964490 A JP 18964490A JP H0476466 A JPH0476466 A JP H0476466A
Authority
JP
Japan
Prior art keywords
electromagnetic waves
electromagnetic wave
coefficient ratio
calculation means
external environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18964490A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kaneko
金子 良明
Nobufumi Miyahara
宮原 信文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Denshi Kogyo KK
Original Assignee
Sanki Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Denshi Kogyo KK filed Critical Sanki Denshi Kogyo KK
Priority to JP18964490A priority Critical patent/JPH0476466A/en
Publication of JPH0476466A publication Critical patent/JPH0476466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To enable accurate and automatic measurement by receiving only external environmental electromagnetic wave on a first and a second wideband antennas and receiving artificial electromagnetic wave in addition to the former, obtaining a gain coefficient ratio from the former and a space transmitting coefficient ratio from the latter, and obtaining emitting electromagnetic wave component from both. CONSTITUTION:A first and a second wideband antennas A1, A2 having nearly equal electric characteristic are provided in the same direction and at different distances L1, L2 from a device to be detected EUT. A gain coefficient ratio of both antennas A1, A2 is obtained from the measured output of a first and a second spectrum analyzers SA1, SA2 at receiving only external electromagnetic wave on the antennas, and a space transmitting coefficient ratio is obtained from the measured output at receiving the external electromagnetic wave together with artificial electromagnetic wave from the device EUT position. The electromagnetic wave component emitted from the device EUT is obtained from the measured output, the gain coefficient ratio, the space transmitting coefficient ratio of the latter. Hereby, measurement can be performed accurately and automatically.

Description

【発明の詳細な説明】 産業上の利用分野 電気または電子装置、特にディジタル電気または電子装
置の普及に伴って、これらの装置から放出される電磁波
による無線受信機またはテレビジョン受像機等への妨害
が問題となり、国際電気標準会議の下部組織である国際
無線障害特別委員会によって、電気または電子装置から
放出される電磁波の許容限度値およびその測定方法等に
関する規格が制定され、各国政府にその採用が勧告され
、各国は国情に合った形で採用実施している。
Detailed Description of the Invention: Industrial Field of Application With the spread of electrical or electronic devices, especially digital electrical or electronic devices, interference with radio receivers, television receivers, etc. due to electromagnetic waves emitted from these devices has arisen. became a problem, and the International Special Committee on Radio Interference, a subordinate organization of the International Electrotechnical Commission, established standards regarding the permissible limits of electromagnetic waves emitted from electrical or electronic devices and their measurement methods, and the governments of each country are required to adopt them. Recommendations have been made, and each country is implementing the system in a manner that suits its national circumstances.

本発明は、電気または電子装置の放出する電磁波の測定
装置に関するものである。
The present invention relates to an apparatus for measuring electromagnetic waves emitted by electric or electronic devices.

従来の技術 第8図は、電気または電子装置から放出される電磁波の
従来における測定装置を示す図で、Aは広帯域アンテナ
、SAはスペクトラムアナライザ、PLはプロッタであ
る。
BACKGROUND ART FIG. 8 is a diagram showing a conventional measuring device for electromagnetic waves emitted from electric or electronic equipment, in which A is a broadband antenna, SA is a spectrum analyzer, and PL is a plotter.

この測定装置によって被試験電気または電子装置から放
出される電磁波の測定を行うに当っては、周囲に電磁波
の反射物体の存在しない場所(オーブンエリアテストサ
イト)を選定し、被試験電気または電子装置と広帯域ア
ンテナA間の距離を所定値に保ち、被試験電気または電
子装置から放出される電磁波を広帯域アンテナAで受信
し、スペクトラムアナライザSAによって受信電磁波の
周波数分布および各周波数毎の電界強度を測定してプロ
ッタPLにより記録する。
When measuring electromagnetic waves emitted from the electrical or electronic device under test using this measurement device, select a location (oven area test site) where there are no objects that reflect electromagnetic waves around the electrical or electronic device under test. The distance between the antenna and wideband antenna A is maintained at a predetermined value, the electromagnetic waves emitted from the electrical or electronic device under test are received by the wideband antenna A, and the frequency distribution of the received electromagnetic waves and the electric field strength for each frequency are measured by the spectrum analyzer SA. and record it with plotter PL.

発明が解決しようとする課題 上記従来の測定装置は、被試験電気または電子装置が広
範囲の周波数領域に亙って電磁波を分散放出する場合に
おいても各周波数毎の電界強度を測定し得る利点を有す
るが、オーブンエリアテストサイトの選定が不適当であ
ると、例えば放送波または工場等に設置されている電気
または電子装置からの放出電磁波等の外来環境電磁波が
被試験電気または電子装置の放出する電磁波に重畳して
受信され、これらを分離識別することが出来ないため、
被試験電気または電子装置の放出する電磁波の周波数と
外来環境電磁波の周波数とが同一なる場合、または両波
の周波数差が小なる場合には、両波の重畳された電界強
度が測定されることとなり、外来環境電磁波の強度の方
が高い場合は勿論、外来環境電磁波の強度が被試験電気
または電子装置の放出電磁波の強度に匹敵する場合にも
正確な測定を行うことができない。
Problems to be Solved by the Invention The conventional measuring device described above has the advantage of being able to measure the electric field strength for each frequency even when the electrical or electronic device under test emits electromagnetic waves in a distributed manner over a wide frequency range. However, if the selection of the oven area test site is inappropriate, for example, external environmental electromagnetic waves such as broadcast waves or electromagnetic waves emitted from electrical or electronic equipment installed in factories etc. may cause electromagnetic waves emitted by the electrical or electronic equipment under test. Since it is not possible to separate and identify these,
When the frequency of electromagnetic waves emitted by the electrical or electronic device under test is the same as the frequency of external environmental electromagnetic waves, or when the frequency difference between the two waves is small, the electric field strength of the superimposed waves shall be measured. Therefore, accurate measurements cannot be made not only when the intensity of the external electromagnetic waves is higher, but also when the intensity of the external electromagnetic waves is comparable to the intensity of the electromagnetic waves emitted by the electrical or electronic device under test.

このため、国際無線障害特別委員会の規格においては、
外来環境電磁波の強度が、被試験電気または電子装置の
放出する電磁波の強度よりも6dB以上小なる条件にお
いて測定を行うように規定されて居り、このような条件
を満足するオーブンエリアテストサイトは部会から遠く
離れた山間僻地に限られ、測定を行う上で極めて不便で
ある。
Therefore, in the standards of the International Special Committee on Radio Interference,
It is stipulated that measurements be performed under conditions where the intensity of external environmental electromagnetic waves is 6 dB or more lower than the intensity of electromagnetic waves emitted by the electrical or electronic device under test, and oven area test sites that meet these conditions are It is extremely inconvenient to carry out measurements as it is limited to remote mountainous areas far away from the mountains.

なお、従来の測定装置としては、上記のほか、ダイポー
ルアンテナと電界強度測定装置とを組合せた装置も用い
られているが、その性能が上記従来の測定装置と同等で
あるばかりでなく、測定に際して多くの人手と時間を要
する欠点を有する。
In addition to the above-mentioned conventional measuring devices, a device that combines a dipole antenna and a field strength measuring device is also used, but its performance is not only equivalent to the conventional measuring device described above, but also It has the drawback of requiring a lot of manpower and time.

課題を解決するための手段 本発明装置は、周囲に電磁波の反射物体の存在しない場
所において、被試験電気または電子装置から同一方向に
異なる距離L1およびL2を隔てて設けられるとともに
、実質的に同一またはほぼ等しい電気的特性を有する第
18よび第2の広帯域アンテナと、 前記第1および第2の広帯域アンテナの各受信出力が各
別に加えられるとともに、実質的に同一またはほぼ等し
い電気的特性を有する第1.t3よび第2のスペクトラ
ムアナライザと、 前記第1および第2の広帯域アンテナに外来環境電磁波
のみを受信せしめた際における前記第1および第2のス
ペクトラムアナライザの各測定出力を入力とし、 昇り工= F (f) A2(f)・N (f) A、(fl  :前記第1の広帯域アンテナの利得係数
A2(f)  :前記第2の広帯域アンテナの利得係数
N(f):外来環境電磁波のレベル f:任意の周波数 なる演算を行って利得係数比F(f)を求める第1の演
算手段と、 前記第1の演算手段において求められた利得係数比を記
憶する第1の記憶手段と、 前記第1および第2の広帯域アンテナに外来環境電磁波
を受信せしめるとともに、被試験電気または電子装置の
設置位置から放射せしめられ、外来環境電磁波に比し強
度の大なる擬似電磁波を受信せしめた際における前記第
1および第2のスペクトラムアナライザの各測定出力を
入力とし、α、 (t、、、fl  :前記距離L1間
における電磁波の空間伝送係数 α2 (L2.f)  :前記距離L2間における電磁
波の空間伝送係数 なる演算を行って電磁波の空間伝送係数比βを求める第
2の演算手段と、 前記第2の演算手段において求められた電磁波の空間伝
送係数比を記憶する第2の記憶手段と、前記第1および
第2の広帯域アンテナに被試験電気または電子装置の放
出電磁波および外来環境電磁波を受信せしめた際におけ
る前記第1および第2のスペクトラムアナライザの各測
定出力p、(f)およびp2(f)ならびに前記第1お
よび第2の記憶手段の記憶情報を入力とし、 α、 (Ll、f)・A、(f)・S (f)、 ’−
1(P、(f)−pg(f)・F(f))で表わされる
前記被試験電気または電子装置の放出電磁波成分を求め
る第3の演算手段と、前記第3の演算手段の出力の表示
装置とを備えることによって、従来装置の欠点を除こう
とするものである。
Means for Solving the Problems The device of the present invention is installed at different distances L1 and L2 in the same direction from the electrical or electronic device to be tested in a place where there are no objects reflecting electromagnetic waves around it, and at substantially the same distances L1 and L2. or eighteenth and second wideband antennas having substantially equal electrical characteristics; and the receiving outputs of the first and second broadband antennas are applied separately and have substantially the same or substantially equal electrical characteristics. 1st. t3 and a second spectrum analyzer, and each measurement output of the first and second spectrum analyzers when the first and second broadband antennas are made to receive only external environmental electromagnetic waves is input, and the riser = F (f) A2(f)・N (f) A, (fl: Gain coefficient of the first broadband antenna A2(f): Gain coefficient of the second broadband antenna N(f): Level of external environmental electromagnetic waves f: a first calculation means that calculates the gain coefficient ratio F(f) by calculating an arbitrary frequency; a first storage means that stores the gain coefficient ratio obtained by the first calculation means; When the first and second broadband antennas are made to receive external environmental electromagnetic waves and receive pseudo-electromagnetic waves that are radiated from the installation position of the electrical or electronic device under test and have a higher intensity than the external environmental electromagnetic waves, With each measurement output of the first and second spectrum analyzers as input, α, (t,,,fl: Spatial transmission coefficient of electromagnetic waves between the distance L1 α2 (L2.f): Space of electromagnetic waves between the distance L2 a second calculation means for calculating the spatial transmission coefficient ratio β of electromagnetic waves by calculating a transmission coefficient; a second storage means for storing the spatial transmission coefficient ratio of electromagnetic waves calculated by the second calculation means; The measurement outputs p, (f) and p2 (f ) and the storage information of the first and second storage means as input, α, (Ll, f)・A, (f)・S (f), '−
1(P,(f)-pg(f)・F(f)); a third calculation means for determining the electromagnetic wave component emitted by the electrical or electronic device under test; and an output of the third calculation means. By providing a display device, the drawbacks of the conventional device are eliminated.

作用 第1および第2の広帯域アンテナに、外来環境電磁波の
みを受信せしめた際における第1および第2のスペクト
ラムアナライザの各測定出力から、第1および第2の広
帯域アンテナの利得係数比が求められる。
The gain coefficient ratio of the first and second broadband antennas is determined from each measurement output of the first and second spectrum analyzers when the first and second broadband antennas are made to receive only external environmental electromagnetic waves. .

第1および第2の広帯域アンテナに、外来環境電磁波を
受信せしめるとともに、被試験電気または電子装置の設
置位置から放射せしめられ、外来環境電磁波に比し強度
の犬なる擬似電磁波を受信せしめた際における第1およ
び第2のスペクトラムアナライザの各測定出力から、被
試験電気または電子装置と第1および第2の広帯域アン
テナ間における電磁波の空間伝送係数比が求められる。
When the first and second broadband antennas are made to receive external environmental electromagnetic waves and receive pseudo-electromagnetic waves emitted from the installation position of the electrical or electronic device under test and which are stronger than the external environmental electromagnetic waves, A spatial transmission coefficient ratio of electromagnetic waves between the electrical or electronic device under test and the first and second broadband antennas is determined from each measurement output of the first and second spectrum analyzers.

第1および第2の広帯域アンテナに、外来環境電磁波と
ともに被試験電気または電子装置の放出電磁波を受信せ
しめた際における第1および第2のスペクトラムアナラ
イザの各測定出力、前記第1および第2の広帯域アンテ
ナの利得係数比および電磁波の空間伝送係数比から、被
試験電気または電子装置の放出する電磁波成分が求めら
れる。
Measured outputs of the first and second spectrum analyzers when the first and second broadband antennas receive external environmental electromagnetic waves as well as electromagnetic waves emitted by the electrical or electronic device under test; and the first and second broadband antennas. The electromagnetic wave component emitted by the electrical or electronic device under test is determined from the antenna gain coefficient ratio and the electromagnetic wave spatial transmission coefficient ratio.

実施例 第1図は、本発明の一実施例を示す図で、八!およびA
2はそれぞれ受信用アンテナで、実質的に同一またはほ
ぼ等しい電気的特性を有し、所要の周波数領域(少なく
とも国際無線障害特別委員会の規格である30MHzな
いし100100O)に亙る電磁波の受信可能な広帯域
アンテナより成る。
Embodiment FIG. 1 is a diagram showing an embodiment of the present invention. and A
2 are receiving antennas, each having substantially the same or almost the same electrical characteristics, and a wide band capable of receiving electromagnetic waves over the required frequency range (at least 30 MHz to 100,100 O according to the standards of the International Special Committee on Radio Interference). It consists of an antenna.

受信用アンテナA、およびA2を設置するに当っては、
周囲に電磁波の反射物体の存在しない場所(オーブンエ
リアテストサイト)を選定し、第2図に平面概略図を示
すように、被試験電気または電子装置EUTから同一方
向に異なる距離L1およびL2を隔てるとともに、遠方
からの外来環境電磁波(例えば放送波または工場等に設
置されている電気または電子装置等の放出電磁波)に対
しては、受信用アンテナA1およびA2の各受信電界強
度が互いにほぼ等しくなるように設ける。
When installing receiving antennas A and A2,
Select a location (oven area test site) where there are no electromagnetic wave reflecting objects around, and separate it from the electrical or electronic device under test EUT by different distances L1 and L2 in the same direction, as shown in the schematic plan view in Figure 2. At the same time, for external environmental electromagnetic waves from a distance (for example, broadcast waves or electromagnetic waves emitted by electrical or electronic devices installed in factories, etc.), the receiving electric field strengths of the receiving antennas A1 and A2 are approximately equal to each other. Provided as follows.

第1図に戻って、SA、およびSA2はそれぞれスペク
トラムアナライザで、電気的特性が実質的に同一または
ほぼ等しく、後述するコンピュータからのスタート信号
によって各々同一の周波数を掃引受信するように形成し
である。M++ 、Mi□、M21およびM2□はそれ
ぞれスペクトラムアナライザSA+およびSA2の内部
メモリ、INTtおよびIIIJT2はそれぞれインタ
フェース、CPUはコンピュータで、例えばパーソナル
コンピュータより成る。SLはコンピュータCPUから
スペクトラムアナライザSA、およびSA2に、共通の
スタート信号を加えるための信号伝送線、DISは表示
装置である。
Returning to FIG. 1, SA and SA2 are spectrum analyzers, each having substantially the same or almost the same electrical characteristics, and configured to sweep and receive the same frequency in response to a start signal from a computer, which will be described later. be. M++, Mi□, M21 and M2□ are internal memories of the spectrum analyzers SA+ and SA2, respectively, INTt and IIIJT2 are interfaces, respectively, and the CPU is a computer, for example, a personal computer. SL is a signal transmission line for applying a common start signal from the computer CPU to the spectrum analyzers SA and SA2, and DIS is a display device.

本発明装置によって測定を行うには、先ず予備測定を行
って所要のパラメータを導出記憶せしめる。
To carry out measurements using the apparatus of the present invention, preliminary measurements are first made to derive and store the required parameters.

すなわち、第2図に示した被試験電気または電子装置E
UTの位置に受信用アンテナA1およびA2と同様特性
の送信用広帯域アンテナを仮設し、例えばスペクトラム
アナライザSA、およびSA2の受信周波数範囲(少な
くとも国際無線障害特別委員会の規格である30MHz
ないし100100O)にほぼ一致する周波数信号を出
力するトラッキング発振器の出力によって励振せしめる
That is, the electrical or electronic device under test E shown in FIG.
Temporarily install a wideband transmitting antenna with characteristics similar to those of the receiving antennas A1 and A2 at the UT position, and use the receiving frequency range of the spectrum analyzers SA and SA2 (at least 30 MHz, which is the standard of the International Special Committee on Radio Interference).
It is excited by the output of a tracking oscillator which outputs a frequency signal that substantially coincides with 100,100 O).

なお、トラッキング発振器の出力を適宜大ならしめて、
仮設送信用広帯域アンテナの放射電磁波を受信用アンテ
ナA1およびA2によって受信せしめた際に、この電磁
波の受信レベルが外来環境電磁波の受信レベルよりも6
dB以上大(国際無線障害特別委員会の規格)となるよ
うに調整する。
In addition, increase the output of the tracking oscillator as appropriate,
When the radiated electromagnetic waves from the temporary transmitting wideband antenna are received by the receiving antennas A1 and A2, the reception level of this electromagnetic wave is 6 times higher than the reception level of external environmental electromagnetic waves.
Adjust so that it is at least dB (standard of the International Special Committee on Radio Interference).

まず、トラッキング発振器の発振を停止し、受信用アン
テナA1およびA2によって外来環境電磁波(以下、外
来雑音と略記する)のみを受信せしめ、スペクトラムア
ナライザSA+およびSA2の各出力回路をメモリM□
1およびM21に接続した後、コンピュータCPUから
のスタート信号を伝送線SLを介してスペクトラムアナ
ライザSA+およびSA2に加えてこれらを同期して作
動せしめると、受信用アンテナA1およびA2の各受信
出力がスペクトラムアナライザSAtおよびSA2に各
別に加えられ、各周波数毎の測定出力がメモリM11お
よびM21に順次読み込まれる。
First, the oscillation of the tracking oscillator is stopped, and only external environmental electromagnetic waves (hereinafter abbreviated as external noise) are received by the receiving antennas A1 and A2, and the output circuits of the spectrum analyzers SA+ and SA2 are transferred to the memory M□.
1 and M21, a start signal from the computer CPU is applied to the spectrum analyzers SA+ and SA2 via the transmission line SL, and when these are operated synchronously, the receiving outputs of the receiving antennas A1 and A2 become the spectrum analyzers SA+ and SA2. They are applied to analyzers SAt and SA2 separately, and the measurement outputs for each frequency are sequentially read into memories M11 and M21.

外来雑音をN(f)(fは任意の周波数)、受信用アン
テナA1およびA2の各利得係数をA、(flおよびA
2(f)でそれぞれ表わすと、メモリM11およびM2
1に記憶された外来雑音情報は、At(f)・N(f)
8よびA2(f)・N (f)で表わされる。
The external noise is N(f) (f is an arbitrary frequency), the gain coefficients of the receiving antennas A1 and A2 are A, (fl and A
2(f), the memories M11 and M2
The external noise information stored in 1 is At(f)・N(f)
8 and A2(f)·N(f).

メモリM11およびM2□に記憶された外来雑音情報は
、コンピュータCPUに予め記憶されたプログラムに応
じて読み出され、インタフェースINT、およびINT
2を介してコンピュータCPUに導入され、なる演算に
より得られた利得係数比F (f)がコンピュータCP
Uにおける所定のメモリ内に格納される。
The external noise information stored in the memories M11 and M2□ is read out according to a program stored in advance in the computer CPU, and
2 to the computer CPU, and the gain coefficient ratio F (f) obtained by the calculation becomes
It is stored in a predetermined memory in U.

次にトラッキング発振器を発振せしめ、仮設送信用アン
テナから、擬似電磁波を順次放射せしめると、受信用ア
ンテナA、およびA2は外来雑音N (f)とともに、
仮設送信用アンテナから放射される擬似電磁波を受信す
る。
Next, when the tracking oscillator is oscillated and the pseudo electromagnetic waves are sequentially radiated from the temporary transmitting antenna, the receiving antennas A and A2, together with the external noise N (f),
Receive pseudo electromagnetic waves radiated from a temporary transmission antenna.

コンピュータCPUからのスタート信号によってスペク
トラムアナライザSA、およびSA2を同期して作動せ
しめると、受信用アンテナA+およびA2の各受信出力
がスペクトラムアナライザSA、およびSA2に加えら
れ、各周波数毎の測定出力がメモリM++、t3よびM
2□に順次読み込まれる。
When the spectrum analyzers SA and SA2 are operated synchronously by a start signal from the computer CPU, the respective reception outputs of the reception antennas A+ and A2 are applied to the spectrum analyzers SA and SA2, and the measurement output for each frequency is stored in the memory. M++, t3 and M
2 □ are read sequentially.

仮設送信用アンテナから放射される擬似電磁波(以下、
擬似信号と略記する)をSTげ)、仮設送信用アンテナ
と受信用アンテナA8間における擬似信号Sアげ)の空
間伝送係数をα置り、、f) 、仮設送信用アンテナと
受信用アンテナA2間における擬似信号5T(f)の空
間伝送係数をA2(L2.f)、スペクトラムアナライ
ザSA、およびSA2の各測定出力をPTI (f)お
よびPア。(f)でそれぞれ表わすと、メモリM11お
よびM21に記憶された情報は次式で表わされる。
Pseudo electromagnetic waves (hereinafter referred to as
The spatial transmission coefficient of the pseudo signal (S) between the temporary transmitting antenna and the receiving antenna A8 is set α, f), the temporary transmitting antenna and the receiving antenna A2 The spatial transmission coefficient of the pseudo signal 5T(f) between A2(L2.f) and the measured outputs of the spectrum analyzer SA and SA2 are PTI(f) and PA. (f), the information stored in the memories M11 and M21 is expressed by the following equation.

PTI (f) = at (Ll、f) −At (
f) −3T(f)  +AI (f) −N(f)・
・・・ (2) PT□(f)=α2 (t2.f)・A2 (f)・S
ア(fl  +Az(f)・N (f)・・・・ (3
) コンピュータCPUに予め記憶せしめたプログラムによ
ってメモリM11およびM21に記憶された情報を読み
出し、インタフェースINT、およびINT2を介して
コンピュータCPUに導入して、空間伝送係数a、 (
t、、、f)およびA2 (Lz、f)を比較し、例え
ば第2図に示したように、Ll<L2なる場合には、α
置し+、f) >A2 (L2.f)となるから、 at (t、+、f) =β、 (2z (L2.f)
   −−−−(4)が成立する空間伝送係数比β(β
〉■)を算出してコンピュータCPUにおける所定のメ
モリ内に格納する。
PTI (f) = at (Ll, f) - At (
f) −3T(f) +AI (f) −N(f)・
... (2) PT□(f)=α2 (t2.f)・A2 (f)・S
A(fl +Az(f)・N (f)... (3
) The information stored in the memories M11 and M21 is read out by a program previously stored in the computer CPU, and introduced into the computer CPU via the interfaces INT and INT2 to obtain the spatial transmission coefficients a, (
t, , f) and A2 (Lz, f), and if Ll<L2, as shown in Fig. 2, for example, α
Since at (t, +, f) = β, (2z (L2.f)
−−−−(4) holds, the spatial transmission coefficient ratio β (β
〉■) is calculated and stored in a predetermined memory in the computer CPU.

以上で予備測定を終了し、次いで本測定を行うが、この
場合には、仮設送信用アンテナおよびトラッキング発振
器を除き、被試験電気または電子装置EIJTを所定の
位置に置いて電源を投入するとともに、本発明測定装置
におけるスペクトラムアナライザSA、およびSA2の
各出力回路をメモリM+2およびM2□に切換え接続し
、コンピュータCPUからスタート信号を出力せしめて
スペクトラムアナライザSA、 8よびSA2を同期し
て作動せしめると、受信用アンテナAtおよびA2によ
って受信された電磁波、すなわち、被試験電気または電
子装置EIJTの放出電磁波および外来環境電磁波に対
応する出力がスペクトラムアナライザSA、およびSA
2に加えられ、各周波数毎の測定出力が順次メモリM1
□およびM2□に読み込まれる。
This completes the preliminary measurement, and then performs the main measurement. In this case, except for the temporary transmitting antenna and tracking oscillator, place the electrical or electronic device under test EIJT in the specified position and turn on the power. When the output circuits of the spectrum analyzers SA and SA2 in the measuring device of the present invention are switched and connected to the memories M+2 and M2□, and a start signal is output from the computer CPU, the spectrum analyzers SA, SA8 and SA2 are operated in synchronization. The outputs corresponding to the electromagnetic waves received by the receiving antennas At and A2, that is, the electromagnetic waves emitted by the electrical or electronic device under test EIJT and the external environmental electromagnetic waves, are output from the spectrum analyzers SA and SA.
2, and the measurement output for each frequency is sequentially stored in the memory M1.
Read into □ and M2□.

被試験電気または電子装置EUTの放出電磁波(以下、
信号と略記する)をS (f)、スペクトラムアナライ
ザSA+およびSA2の各出力、すなわち、各周波数に
対応する各測定出力をp+(flおよびP2(f)で表
わすと、測定出力p+(f)およびP2 (flは次式
で表わされる。
Electromagnetic waves emitted by the electrical or electronic device EUT under test (hereinafter referred to as
If the outputs of the spectrum analyzers SA+ and SA2, that is, the measurement outputs corresponding to each frequency are expressed as p+(fl and P2(f), then the measurement outputs p+(f) and P2 (fl is expressed by the following formula.

p、(fl=α、 (t、、、fl・At(fl・S 
(f) +A+ (f)・N (f)・・・・ (5) P2(f)=α2 (L2.f)・A2 (f)・5(
f) + A2 (f)・N (f)・・・・ (6) (5)式および(6)式で表わされた測定出力は、−旦
メモリM1□およびM2゜に各別に読み込まれ、メモリ
M1□およびM2□から読み出された情報p+(t)お
よびp2(f)はインタフェースINT、およびI N
T’xを介してコンピュータCPUに導入され、次の演
算が行われる。
p, (fl=α, (t, , fl・At(fl・S
(f) +A+ (f)・N (f)・・・・ (5) P2(f)=α2 (L2.f)・A2 (f)・5(
f) + A2 (f)・N (f)... (6) The measurement outputs expressed by equations (5) and (6) are read separately into memories M1□ and M2° at -1. , the information p+(t) and p2(f) read from the memories M1□ and M2□ are connected to the interface INT and I N
It is introduced into the computer CPU via T'x, and the following calculations are performed.

(5)式の両辺にA2(f)を乗すると、p、(t’)
・A2(f)=α、 (1,、、f)・A、(fl・A
2(fl・S (f)+A、(f)・A2 (fl・N
 (f)上式から、 N (f) ・・ (7) (6)式の両辺にA、(flを乗すると、P2(f)・
A、(fl=α2(L2.f)・A、(f)・A2 (
f)・S (f)+AI(f)・A2 (f)・N (
f)上式から、 N (f) ・・・・ (8) (7)式および(8)式から、 P+(f)42(f)   at(Ll、f)4+(f
)42(f)・5(f)=p2(f)・AI(f)−A
2 (Lz、f)・At(t)・A2(t)・S (f
)上式から、 ・・・・ (9) (9)式に(4)式を代入すると、 ・・・・ (10) または、 ・・・・ (11) (10)式から、 α、 (L、、f)・A、(f)・S (f)(11)
式から、 α2 (Lg、f)・Aa(f)・S (f)(12)
式に(1)式を代入すると、 a、(L、、f) ・A、 (f) ・5(f)ニーゴ
し−(P、 (f)−P2(f)・Fげ))・ ・ ・
 (14)β−1 (13)式に(1)式を代入すると、 α2 (L2.f)・A2(f)・S (f)I   
P、(f) =     (P2げ))・ ・ ・ ・ ・ (15
)β−I  Fff) (14)式または(15)式からS (f)すなわち、
被試験電気または電子装置の放出する電磁波の周波数分
布および各周波数の強度を求めることができる。
When both sides of equation (5) are multiplied by A2(f), p, (t')
・A2(f)=α, (1,,,f)・A, (fl・A
2(fl・S (f)+A, (f)・A2 (fl・N
(f) From the above equation, N (f)... (7) If both sides of equation (6) are multiplied by A and (fl), P2(f).
A, (fl=α2(L2.f)・A, (f)・A2 (
f)・S (f)+AI(f)・A2 (f)・N (
f) From the above formula, N (f) ... (8) From formulas (7) and (8), P+(f)42(f) at(Ll, f)4+(f
)42(f)・5(f)=p2(f)・AI(f)−A
2 (Lz, f)・At(t)・A2(t)・S (f
) From the above equation, ... (9) Substituting equation (4) into equation (9), ... (10) or ... (11) From equation (10), α, ( L,,f)・A,(f)・S (f)(11)
From the formula, α2 (Lg, f)・Aa(f)・S (f) (12)
Substituting equation (1) into the equation, we get a, (L,,f) ・A, (f) ・5(f) Nigoshi-(P, (f)-P2(f)・Fge))・・・
(14) β-1 Substituting equation (1) into equation (13), α2 (L2.f)・A2(f)・S (f)I
P, (f) = (P2ge)) ・ ・ ・ ・ ・ (15
) β-I Fff) From equation (14) or equation (15), S (f), that is,
The frequency distribution of electromagnetic waves emitted by the electrical or electronic device under test and the intensity of each frequency can be determined.

第3図は、上記予備測定における第1および第2の受信
用広帯域アンテナA、およびA2の利得係数比F、(f
)を求める作動のフローチャート、第4図は、上記予備
測定における被試験電気または電子装置EtJTと第1
および第2の受信用広帯域アンテナA、およびA2間に
おける電磁波の空間伝送係数比βを求める作動のフロー
チャート、第5図は、上記本測定の作動のフローチャー
トである。
FIG. 3 shows the gain coefficient ratio F, (f
) is a flowchart of the operation for determining the electrical or electronic device under test EtJT and the first
FIG. 5 is a flowchart of the operation of the above-mentioned main measurement.

第6図は、本発明の他の実施例を示す図で、LOはスペ
クトラムアナライザSA、およびSA2の各受信部に共
通の局部発振器、SMPは両スペクトラムアナライザに
共通のサンプリング信号発振器、SWPは両スペクトラ
ムアナライザに共通の周波数掃引信号発振器で、他の符
号および構成は第1図と同様である。
FIG. 6 is a diagram showing another embodiment of the present invention, in which LO is a local oscillator common to the receiving sections of spectrum analyzers SA and SA2, SMP is a sampling signal oscillator common to both spectrum analyzers, and SWP is a local oscillator common to both spectrum analyzers SA and SA2. This is a frequency sweep signal oscillator common to spectrum analyzers, and other symbols and configurations are the same as in FIG.

この実施例においては、スペクトラムアナライザSA+
およびSA2はコンピュータCPUの出力する共通のス
タート信号によって同時に始動せしめられた後も、両ス
ペクトラムアナライザに共通の局部発振器LO、サンプ
リング信号発振器SMPおよび周波数掃引信号発振器S
WPの各出力信号によって同期が確保され、正確な測定
が行われることとなる。
In this example, the spectrum analyzer SA+
Even after SA2 and SA2 are started simultaneously by a common start signal output from the computer CPU, the local oscillator LO, sampling signal oscillator SMP, and frequency sweep signal oscillator S common to both spectrum analyzers
Each output signal of the WP ensures synchronization and accurate measurements.

第7図は、特許請求の範囲に対応する図で、ARTIは
第1および第2の受信用アンテナA1およびA2の利得
係数比F (f)を求める第1の演算手段、MEMO,
は第1の演算手段ARTtにおいて求められた利得係数
比F(f)を記憶する第1の記憶手段、ART2は被試
験電気または電子装置PUTと第1および第2の受信用
アンテナAtおよびA2間における電磁波の空間伝送係
数比βを求める第2の演算手段、MEMO3は第2の演
算手段ART2において求められた電磁波の空間伝送係
数比βを記憶する第2の記憶手段、ARTaは本測定に
おいて被試験電気または電子装置EUTの放出する電磁
波成分を求める第3の演算手段、DISは表示装置で、
他の符号は第1図と同様である。
FIG. 7 is a diagram corresponding to the claims, in which ARTI is a first calculation means, MEMO,
is a first storage means for storing the gain coefficient ratio F(f) determined by the first calculation means ARTt; MEMO3 is a second calculation means for calculating the spatial transmission coefficient ratio β of electromagnetic waves obtained in the second calculation means ART2, and ARTa is a second storage means for storing the spatial transmission coefficient ratio β of electromagnetic waves obtained in the second calculation means ART2. The third calculation means for determining the electromagnetic wave component emitted by the test electrical or electronic device EUT, DIS is a display device,
Other symbols are the same as in FIG.

発明の効果 本発明装置は、外来環境電磁波の到来の避けられない部
会地においても、被試験電気または電子装置の放出する
電磁波を、外来環境電磁波と分離してその周波数分布お
よび強度をほぼ正確に求め得るとともに、予備測定およ
び本測定を通じてほとんど自動的に測定を行い得るもの
で、被試験電気または電子装置の放出電磁波による妨害
対策を講する上で、本発明の効果極めて大である。
Effects of the Invention The device of the present invention can separate the electromagnetic waves emitted by electrical or electronic devices under test from the external electromagnetic waves even in areas where the arrival of external environmental electromagnetic waves is inevitable, and can almost accurately determine the frequency distribution and intensity of the electromagnetic waves. The present invention is extremely effective in taking countermeasures against interference caused by electromagnetic waves emitted by electrical or electronic devices under test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す図、第2図は、その
要部の平面概略図、第3図ないし第5図は、作動説明の
ためのフローチャート、第6図は、本発明の他の実施例
を示す図、第7図は、クレーム対応図、第8図は、従来
の測定装置の一例を示す図で、AI、 A2およびA:
アンテナ、SA、 。 SA2およびSAニスペクトラムアナライザ、MIl+
M+2 、 M21およびM22  :メモ1ハINT
、およびINT2:インタフェース、CPU :コンピ
ュータ、SL:信号伝送線、DIS :表示装置、EU
T :被試験電気または電子装置、LO:局部発振器、
 SMP :サンプリング信号発振器、swp :周波
数掃引信号発振器、ARTt :第1の演算手段、ME
MO,:第1の記憶手段、ART、 :第2の演算手段
、MEMO2:第2の記憶手段、ART3 :第3の演
算手段、PL:プロッタである。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a schematic plan view of the main part thereof, FIGS. 3 to 5 are flowcharts for explaining the operation, and FIG. FIG. 7 is a diagram showing another embodiment of the invention, FIG. 7 is a diagram corresponding to claims, and FIG. 8 is a diagram showing an example of a conventional measuring device.
Antenna, SA, . SA2 and SA Nispectrum Analyzer, MIl+
M+2, M21 and M22: Memo 1 INT
, and INT2: Interface, CPU: Computer, SL: Signal transmission line, DIS: Display device, EU
T: Electrical or electronic device under test, LO: Local oscillator,
SMP: sampling signal oscillator, swp: frequency sweep signal oscillator, ARTt: first calculation means, ME
MO,: first storage means, ART,: second calculation means, MEMO2: second storage means, ART3: third calculation means, PL: plotter.

Claims (1)

【特許請求の範囲】 1、周囲に電磁波の反射物体の存在しない場所において
、被試験電気または電子装置から同一方向に異なる距離
L_1およびL_2を隔てて設けられるとともに、実質
的に同一またはほぼ等しい電気的特性を有する第1およ
び第2の広帯域アンテナと、前記第1および第2の広帯
域アンテナの各受信出力が各別に加えられるとともに、
実質的に同一またはほぼ等しい電気的特性を有する第1
および第2のスペクトラムアナライザと、 前記第1および第2の広帯域アンテナに外来環境電磁波
のみを受信せしめた際における前記第1および第2のス
ペクトラムアナライザの各測定出力を入力とし、 [A_1(f)・N(f)]/[A_2(f)・N(f
)]=F(f)A_1(f):前記第1の広帯域アンテ
ナの利得係数A_2(f):前記第2の広帯域アンテナ
の利得係数N(f):外来環境電磁波の強度 f:任意の周波数 なる演算を行って利得係数比F(f)を求める第1の演
算手段と、 前記第1の演算手段において求められた利得係数比を記
憶する第1の記憶手段と、 前記第1および第2の広帯域アンテナに外来環境電磁波
を受信せしめるとともに、被試験電気または電子装置の
設置位置から放射せしめられ、外来環境電磁波に比し強
度の大なる擬似電磁波を受信せしめた際における前記第
1および第2のスペクトラムアナライザの各測定出力を
入力とし、α_1(L_1,f)/α_2(L_2,f
)=βα_1(L_1,f):前記距離L_1間におけ
る電磁波の空間伝送係数 α_2(L_2,f):前記距離L_2間における電磁
波の空間伝送係数 なる演算を行って電磁波の空間伝送係数比βを求める第
2の演算手段と、 前記第2の演算手段において求められた電磁波の空間伝
送係数比を記憶する第2の記憶手段と、前記第1および
第2の広帯域アンテナに被試験電気または電子装置の放
出電磁波および外来環境電磁波を受信せしめた際におけ
る前記第1および第2のスペクトラムアナライザの各測
定出力P_1(f)およびP_2(f)ならびに前記第
1および第2の記憶手段の記憶情報を入力とし、 α_1(L_1,f)・A_1(f)・S(f)={β
/(β−1)}{P_1(f)−P_2(f)・F(f
)}で表わされる前記被試験電気または電子装置の放出
電磁波成分を求める第3の演算手段と、 前記第3の演算手段の出力の表示装置とを備えたことを
特徴とする電磁波測定装置。 2、第1および第2のスペクトラムアナライザが、各受
信部に共通の局部発振器、共通のサンプリング信号発振
器および共通の周波数掃引信号発振器を備えて成る請求
項1に記載の電磁波測定装置。
[Claims] 1. In a place where there are no electromagnetic wave reflecting objects around, installed at different distances L_1 and L_2 in the same direction from the electric or electronic device under test, and with substantially the same or almost equal electric power. first and second wideband antennas having a characteristic of
a first having substantially the same or nearly equal electrical characteristics;
and a second spectrum analyzer; inputting each measurement output of the first and second spectrum analyzers when the first and second broadband antennas receive only external environmental electromagnetic waves, [A_1(f)・N(f)]/[A_2(f)・N(f
)]=F(f)A_1(f): Gain coefficient of the first broadband antenna A_2(f): Gain coefficient of the second broadband antenna N(f): Intensity of external environmental electromagnetic waves f: Arbitrary frequency a first calculation means for calculating the gain coefficient ratio F(f) by performing the calculation; a first storage means for storing the gain coefficient ratio obtained by the first calculation means; and the first and second calculation means. The above-mentioned first and second when the broadband antenna is made to receive external environmental electromagnetic waves and receive pseudo electromagnetic waves that are radiated from the installation position of the electrical or electronic device under test and have a higher intensity than the external environmental electromagnetic waves. α_1(L_1, f)/α_2(L_2, f
)=βα_1 (L_1, f): Spatial transmission coefficient of electromagnetic waves between the distance L_1 α_2 (L_2, f): Spatial transmission coefficient of electromagnetic waves between the distance L_2 Calculate the spatial transmission coefficient ratio β of electromagnetic waves. a second calculation means; a second storage means for storing the spatial transmission coefficient ratio of electromagnetic waves obtained in the second calculation means; The measurement outputs P_1(f) and P_2(f) of the first and second spectrum analyzers when receiving the emitted electromagnetic waves and the external environmental electromagnetic waves and the storage information of the first and second storage means are input. , α_1(L_1,f)・A_1(f)・S(f)={β
/(β-1)}{P_1(f)-P_2(f)・F(f
)}; and a display device for displaying the output of the third calculation means. 2. The electromagnetic wave measuring device according to claim 1, wherein the first and second spectrum analyzers each include a common local oscillator, a common sampling signal oscillator, and a common frequency sweep signal oscillator.
JP18964490A 1990-07-18 1990-07-18 Electromagnetic wave measuring device Pending JPH0476466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18964490A JPH0476466A (en) 1990-07-18 1990-07-18 Electromagnetic wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18964490A JPH0476466A (en) 1990-07-18 1990-07-18 Electromagnetic wave measuring device

Publications (1)

Publication Number Publication Date
JPH0476466A true JPH0476466A (en) 1992-03-11

Family

ID=16244764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18964490A Pending JPH0476466A (en) 1990-07-18 1990-07-18 Electromagnetic wave measuring device

Country Status (1)

Country Link
JP (1) JPH0476466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084928A (en) * 1998-06-02 2000-07-04 Nec Corporation Radio environment analysis apparatus
JP2008128905A (en) * 2006-11-22 2008-06-05 Osaka Industrial Promotion Organization Active oxygen detector and active oxygen detecting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084928A (en) * 1998-06-02 2000-07-04 Nec Corporation Radio environment analysis apparatus
AU748803B2 (en) * 1998-06-02 2002-06-13 Nec Corporation Radio environment analysis apparatus
JP2008128905A (en) * 2006-11-22 2008-06-05 Osaka Industrial Promotion Organization Active oxygen detector and active oxygen detecting method

Similar Documents

Publication Publication Date Title
TW201817186A (en) Multi-antenna noise power measuring method and apparatus
CN103257340B (en) Method for calibrating amplitude consistency of a plurality of ground receivers with radar satellite
US6710737B1 (en) Calibrator for radar target simulator
Yates et al. Intensity-frequency dependence of the radio sky background
Chen et al. Analysis of log periodic dipole array antennas for site validation and radiated emissions testing
US5502394A (en) Compact, portable device for measuring the reflection coefficient of a structure exposed to microwave radiation
JPH0476466A (en) Electromagnetic wave measuring device
Glimm et al. A single-antenna method for traceable antenna gain measurement
JP2003133835A (en) Ionozonde apparatus
CN109728864A (en) System loss test method based on antenna measurement system
CN110579648A (en) antenna gain judging method and judging device
Larsen et al. Calibration of antenna factor at a ground screen field site using an automatic network analyzer
Parhami et al. Innovative pre-compliance test methodology using ambient cancellation and coherence detection techniques
Viner 26.3-MHz radio source survey. I-The absolute flux scale
Mullner et al. From NSA to site-reference method for EMC test site validation
Sevgi et al. Antenna calibration for EMC tests and measurements
Wait Precision measurement of antenna system noise using radio stars
Newell et al. Implementation of a technique for computing antenna system noise temperature using planar near-field data
US20230208537A1 (en) Method and system for determining a transfer function of an RX path
O'young et al. Survey of techniques for measuring RF shielding enclosures
Wansch A method for measuring G/T antenna performance in an anechoic chamber
Ekleman et al. On-site earth station antenna verification
Graham et al. Rapid spherical near-field antenna measurements for vehicle applications
SU1721547A1 (en) Method of determining field amplitude-phase distribution of antenna
Bryant et al. A cost-sensitive technique to pre-characterize UHF antennas at tertiary education institutions