JPH0476392B2 - - Google Patents

Info

Publication number
JPH0476392B2
JPH0476392B2 JP12623186A JP12623186A JPH0476392B2 JP H0476392 B2 JPH0476392 B2 JP H0476392B2 JP 12623186 A JP12623186 A JP 12623186A JP 12623186 A JP12623186 A JP 12623186A JP H0476392 B2 JPH0476392 B2 JP H0476392B2
Authority
JP
Japan
Prior art keywords
resin
weight
epoxy
composition according
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12623186A
Other languages
Japanese (ja)
Other versions
JPS62283161A (en
Inventor
Juichi Yoshida
Masateru Takimoto
Satoru Kobori
Yoshio Shindo
Motoo Kabeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Paint Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Nippon Steel Corp filed Critical Nippon Paint Co Ltd
Priority to JP12623186A priority Critical patent/JPS62283161A/en
Publication of JPS62283161A publication Critical patent/JPS62283161A/en
Publication of JPH0476392B2 publication Critical patent/JPH0476392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は防錆鋼板用塗料組成物にかかり、さら
に詳しくは電着塗装性に優れ、高防食性、高加工
密着性を有し、スポツト溶接可能な塗膜を与えう
る防錆鋼板用塗料組成物に関するものである。 従来技術 近年、自動車、什器、家電業界等で生産性向上
のために塗装鋼板の採用が高まり、塗料分野にお
いてもかかる需要に応えるための各種の防錆塗装
鋼板用の塗料組成物が開発されてきた。しかしな
がら従来の塗料組成物にあつては、塗装鋼板に対
する各種の要求品質、例えばプレス加工、電着塗
装、スポツト溶接等における要求品質を充分満た
すものではなかつた。すなわち特公昭45−24230
号、特公昭47−6882号等に提案されているジンク
リツチ塗料では電着塗装は可能でもプレス加工性
が不充分で防食性、溶接性の点でも充分ではな
く、また特公昭52−44569号、特開昭58−138758
号、特開昭51−79138号、特公昭58−19706号等で
提案された導電顔料配合の塗料では亜鉛メツキ鋼
板等で防食性が著しく改善され、また溶接性も向
上しているが、亜鉛末、金属粉、金属炭化物、金
属リン化物等の比較的大粒子の顔料を含むため電
着塗膜の肌の凹凸が激しく、膜平滑性に欠け、ま
たプレス形成性が不充分で使用部位か限られてお
り、さらにまた導電顔料を含まず0.3〜3μといつ
た薄膜で電着塗装を可能にした特開昭60−197773
号、同60−199074号、同58−224174号、同60−
174879号等に提案されている有機複合シリケート
膜およびその塗装鋼板においては、高防食性、溶
接性、プレス形成性等で改善がみとめられるもの
の、電着肌凹凸の問題、特に有機複合シリケート
膜の膜厚の微小変動に対して電着肌が大きく変動
し、平滑な電着膜が得られないという問題が残さ
れている。このうに従来提案されてきた技術はい
づれも今日的な塗装鋼板に対する要求品質の点で
不充分でありとくに湿潤、腐食環境下での電着塗
膜密着性、平滑性の点で問題になることが多い。 発明が解決しようとする問題点 そこで防錆鋼板用塗料組成物であつて、導電顔
料によることなく電着塗装性(電着塗膜密着性お
よび平滑性)に優れ、高防食能及び高プレス加工
を有し、スポツト溶接が可能な塗料組成物を提案
することができれば自動車、什器、家電業界等に
おける要求品質を満たすことができ塗装鋼板用塗
料として極めて有用であり、かかる要望に応える
ことが本発明の主目的である。また電着塗装にお
いて防錆鋼板用塗料組成物の塗装膜厚変動に対し
て品質の変化が小さく生産性に優れた塗装鋼板用
塗料組成物を提供することも本発明目的である。 問題点を解決するための手段 本発明に従えば、上記目的が塗料不揮発分とし
て (イ) 分子中に50重量%以上のフエノールを含有す
るエポキシ樹脂、該エポキシ樹脂にアミン触媒
の存在下あるいは不存在下にジカルボン酸を反
応させて得られるエポキシエステル樹脂及び前
記エポキシエステル樹脂に部分ブロツクイソシ
アナート化合物を反応させて得られるウレタン
化エポキシエステル樹脂からなる群より選ばれ
る数平均分子量300〜100000のエポキシ系バイ
ンダー樹脂30〜90重量% (ロ) (−CH2−および/または=CH−)/(−
CONH−)の比が7/1〜0/1で、重合度
が50〜1000の親水性ポリアミド樹脂5〜40重量
% (ハ) 平均粒子径1〜100mμのシリカ粒子5〜40
重量% を含むことを特徴とする溶剤型の防錆鋼板用塗料
組成物を提供することにより達成せられる。 本発明においては上記の如く、高耐水性のエポ
キシ系樹脂と、親水性ポリアミド樹脂と微粒シリ
カの組合せを特徴とするものであつて、電着膜平
滑性に対し、親水性ポリアミド樹脂が必要である
こと、微粒シリカを併用しないと密着性、耐食性
が低下すること、親水性ポリアミド樹脂と微粒シ
リカの柔軟な樹脂と高硬度粒子の組合せは膜の潤
滑性に良好な結果を与えるが、電着膜との密着性
が不充分なため高耐水性のエポキシ系樹脂バイン
ダーが必要であることなどの知見に基づき完成さ
れたものである。 本発明で用いられるエポキシ系のバインダー樹
脂は、耐食性、耐水性、密着性、耐薬品性、硬化
性等に優れた有機溶剤可溶型で、50重量%以上の
フエノールを含有し、数平均分子量が300〜
100000、好ましくは1000〜20000のエポキシ樹脂
a1、就中、ビスフエノール型エポキシ樹脂、レゾ
ルシン型エポキシ樹脂あるいはそれらの混合樹脂
が用いられる。数平均分子量が300未満では形成
される膜の耐久性が不充分であり、100000を越え
ると塗料粘度が上昇して均一な塗膜が形成され
ず、目的とする品質が得られない。例えば、式 (式中、RはHまたはCH3;−A−は>C
(CH32、−CH2−、−O−、
INDUSTRIAL APPLICATION FIELD The present invention relates to a coating composition for rust-proofing steel plates, and more specifically, it relates to a coating composition for rust-proofing steel plates, and more specifically, it has excellent electrodeposition coating properties, high corrosion resistance, high processing adhesion, and can provide a coating film that can be spot welded. The present invention relates to a coating composition for rusted steel plates. Prior Art In recent years, coated steel plates have been increasingly adopted to improve productivity in the automobile, fixtures, home appliances, etc. industries, and various paint compositions for anti-corrosion coated steel plates have been developed to meet this demand in the paint field. Ta. However, conventional coating compositions do not sufficiently satisfy various quality requirements for coated steel sheets, such as those required for press working, electrodeposition coating, spot welding, and the like. In other words, Special Public Service 1972-24230
Although the zinc-rich paints proposed in Japanese Patent Publication No. 47-6882, etc., are capable of electrodeposition coating, their press workability is insufficient and their corrosion resistance and weldability are not sufficient. Japanese Patent Publication No. 58-138758
Paints containing conductive pigments proposed in Japanese Patent Application Laid-open No. 51-79138 and Japanese Patent Publication No. 58-19706 have significantly improved corrosion resistance and weldability on galvanized steel sheets, etc. However, since it contains relatively large pigment particles such as metal powder, metal carbide, and metal phosphide, the surface of the electrodeposited film is extremely uneven, lacks film smoothness, and has insufficient press formability, resulting in damage to the application area. Japanese Patent Application Laid-Open No. 60-197773 made it possible to perform electrodeposition coating with a thin film of 0.3 to 3μ without containing conductive pigments.
No. 60-199074, No. 58-224174, No. 60-
Although the organic composite silicate film proposed in No. 174879 and other papers and steel sheets coated with it have been improved in terms of high corrosion resistance, weldability, press formability, etc., there are problems with the unevenness of the electrodeposited surface, especially in the organic composite silicate film. There remains the problem that the surface of the electrodeposited film changes greatly in response to minute changes in the film thickness, making it impossible to obtain a smooth electrodeposited film. As described above, all of the techniques proposed in the past are insufficient in terms of the quality required for today's coated steel sheets, and problems arise particularly in terms of adhesion and smoothness of electrodeposition coatings in humid and corrosive environments. There are many. Problems to be Solved by the Invention Therefore, the present invention provides a coating composition for rust-preventing steel plates, which has excellent electrodeposition coating properties (electrodeposition film adhesion and smoothness) without using conductive pigments, has high anticorrosion ability, and has high pressability. If we can propose a paint composition that can be spot welded, it would be extremely useful as a paint for painted steel sheets because it would meet the quality requirements in the automobile, fixtures, and home appliance industries. This is the main purpose of the invention. Another object of the present invention is to provide a coating composition for a coated steel plate that exhibits small quality changes due to variations in coating film thickness of the coating composition for a rust-preventing steel plate in electrodeposition coating, and has excellent productivity. Means for Solving the Problems According to the present invention, the above-mentioned purpose is achieved by (a) epoxy resin containing 50% by weight or more of phenol in the molecule, the epoxy resin in the presence of an amine catalyst or in the absence of an amine catalyst; An epoxy ester resin having a number average molecular weight of 300 to 100,000 selected from the group consisting of an epoxy ester resin obtained by reacting a dicarboxylic acid in the presence of the epoxy ester resin and a urethanized epoxy ester resin obtained by reacting the epoxy ester resin with a partially blocked isocyanate compound. 30 to 90% by weight of binder resin (-CH 2 - and/or =CH-)/(-
CONH-) ratio of 7/1 to 0/1 and a degree of polymerization of 5 to 40% by weight of a hydrophilic polyamide resin (c) 5 to 40% of silica particles with an average particle diameter of 1 to 100 mμ
This can be achieved by providing a solvent-based rust-preventing coating composition for steel sheets, characterized in that it contains % by weight. As mentioned above, the present invention is characterized by a combination of a highly water-resistant epoxy resin, a hydrophilic polyamide resin, and fine silica, and the hydrophilic polyamide resin is necessary for the smoothness of the electrodeposited film. However, the combination of hydrophilic polyamide resin, flexible resin and high hardness particles of fine silica gives good results for the lubricity of the film, but electrodeposition This was completed based on the knowledge that a highly water-resistant epoxy resin binder was required due to insufficient adhesion to the film. The epoxy binder resin used in the present invention is an organic solvent-soluble type with excellent corrosion resistance, water resistance, adhesion, chemical resistance, hardening properties, etc., contains 50% by weight or more of phenol, and has a number average molecular weight. is 300~
100000, preferably 1000-20000 epoxy resin
a 1 Among these, bisphenol type epoxy resin, resorcinol type epoxy resin, or a mixed resin thereof is used. If the number average molecular weight is less than 300, the durability of the film formed will be insufficient, and if it exceeds 100,000, the viscosity of the paint will increase and a uniform coating film will not be formed, making it impossible to obtain the desired quality. For example, the expression (In the formula, R is H or CH 3 ; -A- is >C
( CH3 ) 2 , -CH2- , -O-,

【式】、または −S−;nは0または1〜14の整数) で表される樹脂が使用されてよく、その具体例と
して例えば、東都化成社製商品名「エポトート
YD−017」、「同YD−014」、「同YD−011」、「同
YD−128」、大日本インキ化学工業社製商品名
「エピクロン4050」等と市販品が挙げられ、これ
らを単独、またはこれらの50重量%以下をその他
のエポキシ樹脂(例えば数平均分子量300〜
100000のポリアルキレングリコールグリシジルエ
ーテル等)で置換した系で構成される。上記置換
率が50重量%を越えると、耐食性、耐水性、密着
性、耐薬品性、硬化性等が低下する傾向にある。 本発明ではまた、上記エポキシ樹脂a1にアミン
触媒の存在あるいは不存在下にジカルボン酸a2
反応させて得られるエポキシエステル樹脂(A1
またはA1′)もバインダー樹脂として使用せられ
る。この場合に用いられるジカルボン酸a2として
は例えば、ポリメチレンジカルボン酸(アジピン
酸、アゼライン酸、セバシン酸など)、芳香族ジ
カルボン酸(無水フタル酸、フタル酸、イソフタ
ル酸、テレフタル酸など)、ダイマー酸、ポリブ
タジエンジカルボン酸、ポリエステルジカルボン
酸のなど、分子量5000以内のジカルボン酸が挙げ
られ、これらの1種または2種以上を使用に供す
る。特にポリメチレンジカルボン酸が加工性、溶
解性、相溶性の点から好ましく中でもアゼライン
酸が最も好ましい。またかかるa2成分に分子量
5000以内の3価のカルボン酸類をジカルボン酸の
同重量以内で併用してもよい。 エポキシ樹脂にかかるジカルボン酸を反応せし
めることによりエポキシ環が開環しエステル結合
により該酸が樹脂中に組み入れられる。この際、
例えば、アミン触媒を用いることが好ましく本発
明においては特に第1級ヒドロキシル基を有する
第2級アミンa3が好ましく使用され、触媒作用と
共に該アミン自体も樹脂中に組み込まれ第1級ヒ
ドロキシル基を与えることになる。この第1級ヒ
ドロキシル基を有するエポキシエステル樹脂を
〔A1〕とする。使用せられる第2級アミンとして
は、例えばジアルカノールアミン(ジエタノール
アミン、ジプロパノールアミン、ジブタノールア
ミンなど)、アルキルアルカノールアミン(エチ
ルエタノールアミンなど)等が挙げられ、これら
の1種または2種以上を使用に供する。特に、ジ
アルカノールアミンが好ましく、中でもジエタノ
ールアミンが最適である。さらにアミン触媒とし
て、第3級アミン(トリエチルアミン、トリブチ
ルアミンなど)または第4級アミン(テトラメチ
ルアンモニウムクロライド、テトラブチルアンモ
ニウムクロライドなど)も使用することができ、
この場合には前述のアミンに由来する第1級ヒド
ロキシル基はアミン触媒を使用しない場合と同様
に導入されないが、所望のエポキシエステル樹脂
が得られ、これを〔A1′〕とする。 反応はエポキシ樹脂を溶融もしくは適当な非反
応性溶剤にとかした後、ジカルボン酸成分および
アミン触媒成分を添加し、要すればN2ガス下、
通常80〜200℃で1〜15時間加熱反応させればよ
い。エステル化により塗膜可撓性が良好となる。 本発明ではさらに、素地との密着性を一段と良
好ならしめるため上記エポキシエステル樹脂をウ
レタン化して得られる樹脂[A2]もバインダー
樹脂として使用せられる。この場合には上記第1
級ヒドロキシル基を有するエポシキエステス樹脂
〔A1〕に部分ブロツクポリイソシアナート化合物
〔B〕が反応せしめられるのであるがこの化合物
〔B〕はポリイソシアナート化合物b1とイソシア
ネート保護剤b2とを、b1イソシアナート基の数/
b2の活性水素基の数の比が5/1〜5/4となる
ような割合で反応させることにより得られる。こ
の反応は通常、無溶剤あるいは熱反応溶剤中にて
室温〜150℃の温度で行われるがb1成分を非反応
性溶剤に溶解し50〜100℃に加熱した後、b2成分
もしくはその適当な非反応性溶剤との溶液を滴下
しつつ反応せしめることが、生成物〔B〕の品質
および反応制御の点から好ましい。 上記ポリイソシアナート化合物b1としては、例
えば脂肪族もしくは脂環族ジイソシアナート化合
物(ヘキサメチレンジイソシアナート、イソホロ
ンジイソシアナート、水素化ジフエニルメタンジ
イソシアナートなど)、芳香族ジイソシアナート
化合物(トリレンジイソシアナート、ジフエニル
メタン−4,4′−ジイソシアナート等)トリイソ
シアナート化合物(トリメチロールプロパン1モ
ルと前記ジイソシアナート3モルのアダクト体、
ヘキサメチレンジイソシアナートやトリレンジイ
ソシアナートなどのジイソシアナートの3量体な
ど)等が挙げられ、これらの1種または2種以上
を使用に供する。特に脂肪族もしくは脂環族ジイ
ソシアナート化合物が熱硬化性樹脂の溶解性、相
溶性および加工性の点から好適である。 上記イソシアナート保護剤b2は、b1成分のイソ
シアナート基に付加して生成する付加物が常温に
おいて安定で且つ140〜250℃に加熱した際、解離
して遊離のイソシアナート基を再生せしめるよう
にするものでなければならない。かかる保護剤と
しては、例えばラクタム系保護剤(ε−カプロラ
クタム、γ−ブチロラクタム等)オキシム系保護
剤(メチルエチルケトオキシム、シクロヘキサノ
ンオキシムなど)、アルコール系保護剤(メタノ
ール、エタノール、イソブチルアルコールなど)、
フエノール系保護剤(フエノール、パラターシヤ
リブチルフエノール、クレゾールなど)が挙げら
れる。 ウレタン化エポキシエステル樹脂[A2]の製
造法は上記生成物〔A1〕と〔B〕とを反応させ
ることにより極めて好都合に製造せられる。この
場合の反応割合は生成物〔A1〕に含まれる第1
級ヒドロキシル基の数/生成物〔B〕に含まれる
遊離のイソシアナート基の数の比が10/1〜10/
8、好ましくは10/1〜10/6の範囲となるよう
に設定する必要がある。というのは、上記比が、
10/1より大きくなると塗膜の硬化性が低下しこ
の比が10/8より小さくなると塗料製造時のゲル
化の原因となる傾向を示すからである。反応は通
常、要すればN2ガス下50〜150℃の温度で、イソ
シアナート基が実質的には存在しなくなるまで行
う。また、場合によつてはイソシアナート基が残
存していても分子量が所望の値に達した時点で、
例えば1級アルコールを加えて反応を停止させて
もよい。 この様にして製造されたウレタン化エポキシエ
ステル樹脂[A2]の数平均分子量は6000〜
100000が適切である。この分子量の調節は主とし
てエポキシエステル主鎖の分子量で調節され、エ
ポシキ樹脂a1のグリシジル基のg当量/多価カル
ボン酸a2のカルボキシル基のg当量の比が1.1〜
1.4、好ましくは1.15〜1.25に配合されることが良
くa1とa2の反応生成物の酸価が2(KOHmg/g)
以下、好ましくは1(KOHmg/g)以下になるよ
う反応を完結させることが好ましい。かかる熱硬
化性樹脂は従来より要求されている密着性、加工
性、耐食性、耐水性、耐薬品性に優れた塗料の提
供に寄与する。尚、比較的低分子量のエポキシ樹
脂、比較的分子量の大なるエポキシエステル樹脂
を勘案し、エポキシ系バインダー樹脂の数平均分
子量は300〜100000の範囲内で、かかる樹脂が塗
料不揮発分の30〜90重量%を構成する。前記樹脂
が30重量%未満では電着膜の密着性、加工性の低
下がみられ好ましくない。 本発明では前記バインダー樹脂と共に第2の樹
脂成分として親水性ポリアミド樹脂が塗料不揮発
分に対し5〜40重量%の範囲内で用いられる。こ
のポリアミド樹脂は分子内の(−CH2−および/
または=CH−)/(−CONH−)の比が7/1
〜0/1で、重合度が50〜1000であることを特徴
とする。分子内に酸アミド結合を有するポリアミ
ド樹脂としては各種のものが知られており例えば
ラクタムの開環重合やアルキレンジアミンと二塩
基酸の重縮合で得られる脂肪族ポリアミドのナイ
ロン6、ナイロン66、ナイロン610、あるいはこ
れらと他のナイロンの共重合物;ラクタムとポリ
オールとからのポリエーテルポリオール変性ナイ
ロンポリブタジエンポリオール変性ナイロン、ポ
リエステルポリオール変性ナイロン(例えば、特
開昭61−12729号、同61−12728号);あるいはポ
リメタフエニレンイソフタルアミド、ポリパラフ
エニレンテレフタルアミドなどの芳香族ポリアミ
ドなどが知られており、本発明においてはこれら
公知のポリアミド樹脂の内でポリアミド骨格内の
−CH2−基および/または芳香族性のものをも含
めた=CH−基の総和と−CONH−基の数の比が
7/1〜0/1の範囲大にあり且つ重合度が50〜
1000の範囲内にある限り、任意のポリアミド樹脂
が好適に使用されるのである。かかる樹脂は従来
エポキシ樹脂の硬化用として使用されてきた−
CH2−/−CONH−比が10/1〜20/1、重合
度5〜20程度のポリアミド樹脂と異なり、酸アミ
ド結合が非常に多く高親水性、高吸湿性であり、
かつ重合度が大で極めて高分子量である特徴をも
つ。本発明者らはかかる親水性ポリアミド樹脂を
用いることにより電着塗装時に塗膜内に電着液が
浸透し、塗膜電気抵抗値が低下して良好な電着性
が生じ、電着膜外観が著しく改善されることを見
出し、それが本発明の重要な基礎の1つとなつた
のである。ポリアミド骨格内の(−CH2−およ
び/または=CH−)/(−CONH−)の比が
7/1より大であると親水性基が不充分で電着性
の改善が認められない。また、ポリアミド樹脂の
分子量が大であることは表面処理、電着時の樹脂
の溶解の防止に役立つ。すなわち重合度は50〜
1000、好ましくは50〜500でなければならず、重
合度が50未満では電着時塗膜が溶解し均一な電着
が得られず、また耐酸性の低下が認められ、1000
を越えると高分子すぎて発明目的に不適当であ
る。ポリアミド樹脂の配合はまた可撓性、高加工
性を付与する上で望ましい。塗料中への配合量に
関して上記ポリアミド樹脂は塗料不揮発分の5〜
40重量%の範囲内、好ましくは5〜25重量%に選
択せられる。というのは、5重量%未満では電着
性改善の効果がなく、また40重量%を越えると、
かえつて電着膜密着性の低下が認められるからで
ある。次に本発明においては防食性改善目的で平
均粒径1〜100mμの微粒シリカが塗料不揮発分
に対し5〜40重量%の範囲内で用いられる。シリ
カ粒子の一次粒径として1mμ未満では耐アルカ
リ性が低下し望ましくなく、また100mμを越え
ると防食性改善の効果がなく、電着膜の平滑性も
低下する。従つてシリカ粒子の平均粒径は1〜
100mμの範囲でなければならず特に5〜50mμ
の範囲のものが好ましい。かかるシリカ粒子とし
てはヒユームドシリカ、コロイダルシリカなどが
挙げられ就中ヒユームドシリカの使用が好まし
い。コロイダルシリカはそのコロイド安定化のた
めアンモニウムイオン、アルカリ金属イオンを含
有しこれらのイオンは膜防食能を低下せしめる傾
向にある。またシリカ粒子の配合量は塗料不揮発
分に対し5〜40重量%、好ましくは10〜20重量%
で、5重量%未満では防食性向上の効果がなく、
また40重量%を越えると加工性の低下が認められ
発明目的に対し不充分である。本発明にあつては
上記各成分が有機溶剤に溶解乃至は分散され、塗
料組成物が得られる。有機溶剤としては各種炭化
水素、エステル、ケトン、アルコール、アミドな
ど通常塗料用に使用せられる各種溶剤の中から適
宜選択されるが、エポキシ樹脂とポリアミド樹脂
の双方を溶解するものを選択することもできる
し、あるいはキシレン、メチルエチルケトン、セ
ロソルブアセテート、イソプロピルアルコールな
どの混合系にエポキシ樹脂を溶解させ、アルコー
ルと炭化水素の混合溶剤にポリアミドを溶解させ
両者を混合するなど各種溶剤の組合せを使用する
とかあるいはポリアミド樹脂をそのままエポキシ
樹脂ワニス中に分散含有せしめることであつても
かまわない。但し、ポリアミド樹脂を分散して用
いる場合はその粒径は5mμ以下が良い。5mμ
を越えると電着膜の平滑性が低下する。塗料化は
通常の溶剤型塗料の調整に準じて実施せられ、何
ら特殊な手法を必要としない。 このように本発明の塗料組成物は不揮発分とし
て各々特定量のエポキシ系バインダー樹脂、親水
性ポリアミド樹脂および微粒シリカを含み、かか
る三成分の組合せにより相剰的に電着塗装性を改
善し、高耐食性、高加工性で密着性に優れ、平滑
な、スポツト溶接可能な塗膜を与えることができ
る。尚、加工性に関し本発明の塗料組成物にはポ
リオレフイン系、カルボン酸エステル系、カルボ
ン酸金属塩、ポリアルキレングリコール系などの
滑剤、二硫化モリブデン、シリコーン化合物、フ
ツ素化合物などの滑剤粉末を塗料不揮発分に対し
20重量%以下、好ましくは1〜10重量%を加え加
工性の一段の改善をはかることが好ましい。特に
好ましい滑剤は、密度0.94以上、分子量1000〜
10000、酸価15KOHmg/g以下のポリエチレンワ
ツクスである。しかしながら滑剤を加える場合、
その最大添加量は20重量%までとすべきで、それ
を越えるとかえつて電着膜密着性が低下し望まし
くない。また本発明の塗料組成物にはメラミン樹
脂、レゾール型フエノール樹脂、ポリイソシアネ
ートなどの硬化剤をエポキシ樹脂に対し固形分重
量比で硬化剤/エポキシ樹脂=0.1/9.9/〜4/
6の割合で含有させ熱硬化せしめることができ
る。レゾール型フエノール樹脂として特に好まし
いものは、式 (式中nは0〜4;Wは−CH2−または−CH2
O−CH2−;RはCH3、Hまたは
[Formula], or -S-; n is 0 or an integer of 1 to 14) Resin represented by the following may be used, and specific examples thereof include the product name "Epotote" manufactured by Toto Kasei Co., Ltd.
YD-017”, “YD-014”, “YD-011”, “YD-011”, “YD-014”, “YD-011”,
Commercial products such as "YD-128" and "Epiclon 4050" manufactured by Dainippon Ink and Chemicals Co., Ltd. are listed.
100,000 polyalkylene glycol glycidyl ether, etc.). When the above substitution rate exceeds 50% by weight, corrosion resistance, water resistance, adhesion, chemical resistance, hardenability, etc. tend to decrease. The present invention also provides an epoxy ester resin ( A 1
or A 1 ′) can also be used as a binder resin. Examples of dicarboxylic acids a2 used in this case include polymethylene dicarboxylic acids (adipic acid, azelaic acid, sebacic acid, etc.), aromatic dicarboxylic acids (phthalic anhydride, phthalic acid, isophthalic acid, terephthalic acid, etc.), dimer Examples include dicarboxylic acids having a molecular weight of 5000 or less, such as acid, polybutadiene dicarboxylic acid, and polyester dicarboxylic acid, and one or more of these can be used. In particular, polymethylene dicarboxylic acid is preferred from the viewpoint of processability, solubility, and compatibility, and azelaic acid is most preferred. It also takes a molecular weight of two components
Trivalent carboxylic acids having a value of 5,000 or less may be used in combination within the same weight as the dicarboxylic acid. By reacting the dicarboxylic acid with the epoxy resin, the epoxy ring opens and the acid is incorporated into the resin through an ester bond. On this occasion,
For example, it is preferable to use an amine catalyst, and in the present invention, a secondary amine a3 having a primary hydroxyl group is particularly preferably used, and the amine itself is incorporated into the resin along with the catalytic action to form a primary hydroxyl group. will give. This epoxy ester resin having a primary hydroxyl group is designated as [A 1 ]. Examples of the secondary amines that can be used include dialkanolamines (diethanolamine, dipropanolamine, dibutanolamine, etc.), alkylalkanolamines (ethylethanolamine, etc.), and one or more of these can be used. put it into use. Particularly preferred are dialkanolamines, with diethanolamine being most suitable. Furthermore, tertiary amines (triethylamine, tributylamine, etc.) or quaternary amines (tetramethylammonium chloride, tetrabutylammonium chloride, etc.) can also be used as amine catalysts.
In this case, the primary hydroxyl group derived from the amine described above is not introduced as in the case where no amine catalyst is used, but the desired epoxy ester resin is obtained, which is designated as [A 1 ']. The reaction is carried out by melting the epoxy resin or dissolving it in a suitable non-reactive solvent, then adding the dicarboxylic acid component and the amine catalyst component, and if necessary under N2 gas.
Usually, the reaction may be carried out by heating at 80 to 200°C for 1 to 15 hours. Esterification improves coating film flexibility. In the present invention, a resin [A 2 ] obtained by urethanizing the above-mentioned epoxy ester resin is also used as a binder resin in order to further improve the adhesion to the substrate. In this case, the above first
A partially blocked polyisocyanate compound [B] is reacted with an epoxy Esthes resin [A 1 ] having a class hydroxyl group, and this compound [B] is a mixture of a polyisocyanate compound b 1 and an isocyanate protecting agent b 2 , b Number of 1 isocyanate groups/
It is obtained by reacting at a ratio such that the ratio of the number of active hydrogen groups in b 2 is 5/1 to 5/4. This reaction is usually carried out without a solvent or in a hot reaction solvent at a temperature between room temperature and 150 ° C. It is preferable to carry out the reaction while dropping a solution with a non-reactive solvent, from the viewpoint of the quality of the product [B] and reaction control. Examples of the polyisocyanate compound b 1 include aliphatic or alicyclic diisocyanate compounds (hexamethylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, etc.), and aromatic diisocyanate compounds. (Tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, etc.) Triisocyanate compound (adduct of 1 mol of trimethylolpropane and 3 mol of the above diisocyanate,
trimers of diisocyanates such as hexamethylene diisocyanate and tolylene diisocyanate), and one or more of these may be used. Particularly suitable are aliphatic or alicyclic diisocyanate compounds from the viewpoint of solubility, compatibility and processability of the thermosetting resin. The isocyanate protecting agent b 2 is such that the adduct formed by adding it to the isocyanate group of component b 1 is stable at room temperature and dissociates when heated to 140 to 250°C to regenerate free isocyanate groups. It must be something that does that. Examples of such protective agents include lactam-based protective agents (ε-caprolactam, γ-butyrolactam, etc.), oxime-based protective agents (methyl ethyl ketoxime, cyclohexanone oxime, etc.), alcohol-based protective agents (methanol, ethanol, isobutyl alcohol, etc.),
Examples include phenolic protective agents (phenol, paratertiary butylphenol, cresol, etc.). The urethanized epoxy ester resin [A 2 ] can be produced very conveniently by reacting the above product [A 1 ] with [B]. In this case, the reaction rate is
The ratio of the number of class hydroxyl groups/the number of free isocyanate groups contained in the product [B] is 10/1 to 10/
8, preferably in the range of 10/1 to 10/6. This is because the above ratio is
This is because when the ratio is greater than 10/1, the hardenability of the coating film decreases, and when this ratio is less than 10/8, it tends to cause gelation during paint production. The reaction is usually carried out at a temperature of 50-150<0>C, optionally under N2 gas, until substantially no isocyanate groups are present. In some cases, even if isocyanate groups remain, once the molecular weight reaches the desired value,
For example, the reaction may be stopped by adding a primary alcohol. The number average molecular weight of the urethanized epoxy ester resin [A 2 ] produced in this way is 6000~
100000 is appropriate. This molecular weight is mainly controlled by the molecular weight of the epoxy ester main chain, and the ratio of g equivalent of glycidyl group of epoxy resin a 1 / g equivalent of carboxyl group of polyvalent carboxylic acid a 2 is 1.1 to 1.
1.4, preferably 1.15 to 1.25, and the acid value of the reaction product of a 1 and a 2 is 2 (KOHmg/g)
Hereinafter, it is preferable to complete the reaction so that the concentration becomes preferably 1 (KOHmg/g) or less. Such thermosetting resins contribute to the provision of paints with excellent adhesion, processability, corrosion resistance, water resistance, and chemical resistance, which have been conventionally required. In addition, taking into account epoxy resins with relatively low molecular weights and epoxy ester resins with relatively large molecular weights, the number average molecular weight of the epoxy binder resin is within the range of 300 to 100,000, and such resin has a content of 30 to 90% of the non-volatile content of the paint. Makes up % by weight. If the amount of the resin is less than 30% by weight, the adhesion and processability of the electrodeposited film will deteriorate, which is not preferable. In the present invention, a hydrophilic polyamide resin is used as a second resin component together with the binder resin in an amount of 5 to 40% by weight based on the nonvolatile content of the paint. This polyamide resin has (−CH 2 − and/or
Or the ratio of =CH-)/(-CONH-) is 7/1
~0/1, and the degree of polymerization is 50 to 1000. Various types of polyamide resins having acid amide bonds in the molecule are known, such as nylon 6, nylon 66, and nylon, which are aliphatic polyamides obtained by ring-opening polymerization of lactam or polycondensation of alkylene diamine and dibasic acid. 610, or copolymers of these and other nylons; polyether polyol-modified nylons from lactams and polyols, polybutadiene polyol-modified nylons, polyester polyol-modified nylons (e.g., JP-A-61-12729, JP-A-61-12728) Alternatively, aromatic polyamides such as polymetaphenylene isophthalamide and polyparaphenylene terephthalamide are known, and in the present invention, among these known polyamide resins, -CH 2 - groups and/or Or the ratio of the total number of =CH- groups including aromatic ones to the number of -CONH- groups is in the large range of 7/1 to 0/1, and the degree of polymerization is 50 to 0/1.
Any polyamide resin can be suitably used as long as it is within the range of 1000. Such resins have traditionally been used for curing epoxy resins.
Unlike polyamide resin, which has a CH 2 −/−CONH− ratio of 10/1 to 20/1 and a degree of polymerization of about 5 to 20, it has a large number of acid amide bonds and is highly hydrophilic and highly hygroscopic.
It also has the characteristics of a high degree of polymerization and an extremely high molecular weight. The present inventors have found that by using such a hydrophilic polyamide resin, the electrodeposition liquid penetrates into the coating film during electrodeposition coating, the electrical resistance value of the coating film decreases, good electrodeposition properties are produced, and the electrodeposition film appearance was found to be significantly improved, and this became one of the important basis of the present invention. If the ratio of (-CH 2 - and/or =CH-)/(-CONH-) in the polyamide skeleton is greater than 7/1, there will be insufficient hydrophilic groups and no improvement in electrodepositivity will be observed. Furthermore, the high molecular weight of the polyamide resin is useful for surface treatment and prevention of resin dissolution during electrodeposition. In other words, the degree of polymerization is 50~
1000, preferably 50 to 500. If the degree of polymerization is less than 50, the coating film will dissolve during electrodeposition and uniform electrodeposition will not be obtained, and a decrease in acid resistance will be observed.
If it exceeds this amount, the polymer is too high and is inappropriate for the purpose of the invention. Incorporation of polyamide resin is also desirable for imparting flexibility and high processability. Regarding the amount of the polyamide resin blended into the paint, the above polyamide resin has a content of 5 to 50% of the non-volatile content of the paint.
It is selected within the range of 40% by weight, preferably from 5 to 25% by weight. This is because if it is less than 5% by weight, there is no effect of improving electrodepositivity, and if it exceeds 40% by weight,
This is because, on the contrary, a decrease in the adhesion of the electrodeposited film is observed. Next, in the present invention, finely divided silica having an average particle size of 1 to 100 mμ is used in an amount of 5 to 40% by weight based on the nonvolatile content of the paint for the purpose of improving corrosion resistance. If the primary particle size of the silica particles is less than 1 mμ, the alkali resistance will deteriorate, which is undesirable, and if it exceeds 100 mμ, there will be no effect of improving corrosion resistance, and the smoothness of the electrodeposited film will also deteriorate. Therefore, the average particle size of silica particles is 1~
Must be in the range of 100mμ, especially 5-50mμ
Preferably, the range is . Examples of such silica particles include fumed silica and colloidal silica, and among them, fumed silica is preferably used. Colloidal silica contains ammonium ions and alkali metal ions for colloidal stabilization, and these ions tend to reduce membrane anticorrosion ability. The amount of silica particles added is 5 to 40% by weight, preferably 10 to 20% by weight based on the nonvolatile content of the paint.
If it is less than 5% by weight, there is no effect of improving corrosion resistance.
Moreover, if it exceeds 40% by weight, a decrease in processability is observed, which is insufficient for the purpose of the invention. In the present invention, each of the above components is dissolved or dispersed in an organic solvent to obtain a coating composition. The organic solvent is appropriately selected from various solvents commonly used for paints, such as various hydrocarbons, esters, ketones, alcohols, and amides, but it is also possible to select one that dissolves both epoxy resin and polyamide resin. Alternatively, you can use a combination of various solvents, such as dissolving the epoxy resin in a mixed system of xylene, methyl ethyl ketone, cellosolve acetate, isopropyl alcohol, etc., dissolving the polyamide in a mixed solvent of alcohol and hydrocarbon, and mixing the two. The polyamide resin may be directly dispersed and contained in the epoxy resin varnish. However, when the polyamide resin is used in a dispersed manner, the particle size is preferably 5 mμ or less. 5mμ
If it exceeds this, the smoothness of the electrodeposited film will decrease. The preparation of the paint is carried out in accordance with the preparation of ordinary solvent-based paints, and no special techniques are required. As described above, the coating composition of the present invention contains specific amounts of an epoxy binder resin, a hydrophilic polyamide resin, and particulate silica as nonvolatile components, and the combination of these three components additively improves the electrodeposition coating properties. It has high corrosion resistance, high workability, excellent adhesion, and can provide a smooth, spot-weldable coating. Regarding processability, the coating composition of the present invention contains lubricants such as polyolefins, carboxylic esters, carboxylic acid metal salts, and polyalkylene glycols, as well as lubricant powders such as molybdenum disulfide, silicone compounds, and fluorine compounds. For non-volatile content
It is preferable to add 20% by weight or less, preferably 1 to 10% by weight, to further improve processability. Particularly preferred lubricants have a density of 0.94 or more and a molecular weight of 1000 or more.
10,000, a polyethylene wax with an acid value of 15KOHmg/g or less. However, when adding a lubricant,
The maximum amount added should be up to 20% by weight; if it exceeds this amount, the adhesion of the electrodeposited film will deteriorate, which is not desirable. Furthermore, in the coating composition of the present invention, a curing agent such as a melamine resin, a resol type phenolic resin, or a polyisocyanate is added to the epoxy resin at a solid weight ratio of curing agent/epoxy resin = 0.1/9.9/~4/.
It can be contained in a ratio of 6 to 6 and thermally cured. Particularly preferable resol type phenolic resins have the formula (In the formula, n is 0 to 4; W is -CH 2 - or -CH 2 -
O-CH 2 -; R is CH 3 , H or

【式】 で表されるレゾール型フエノール樹脂である。 本発明の塗料組成物は自動車、什器、電気器具
に用いられる防錆塗装鋼板用塗料組成物として極
めて有用であり、該鋼板用基材として溶融亜鉛メ
ツキ鋼板、溶融亜鉛アルミメツキ鋼板、電気亜鉛
メツキ鋼板、電気亜鉛・ニツケルまたは電気亜
鉛・鉄合金メツキ鋼板、電気亜鉛・鉄二層メツキ
鋼板、冷延鋼板などに用いられる。本発明の塗料
組成物はこれら基材を必要によつてアルカリ脱脂
等表面を清浄化した後、これら直接または通常の
塗装前処理を行つた後、塗装される。この塗装前
処理としてはクロメート化成処理やリン酸塩化成
処理が用いられ、前者には電解クロメート、塗布
型クロメート、反応型クロメート処理があり、後
者にはリン酸亜鉛処理がある。 本発明の塗料組成物は、スプレー、ロールコー
ト、シヤワーコートなど適当な塗装方法により塗
装され、乾燥して塗膜が形成される。好ましくは
100〜250℃で焼付乾燥が行われる。 本発明の塗装組成物が乾燥膜厚0.3〜3μ程度に
塗装された鋼板は、優れた耐食性を示し、また潤
滑性にも優れ、良好なプレス加工性を示し、また
スポツト溶接も可能である。さらに、本塗料組成
物によつて塗装された鋼板の特に優れた特徴はそ
の電着塗装によつて形成される電着膜の平滑性、
均一性、密着性が極めて良好な品質を示す点であ
り、したがつて本発明の塗料組成物は自動車什
器、家電業界等各種分野での高度の要求品質に応
えることができる防錆鋼板用塗料組成物として極
めて有用である。 以下実施例により本発明を説明する。特にこと
わりなき限り、部および%は重量による。 製造例 1 ウレタン化エポキシエステル樹脂ワニスの製法 エポキシ樹脂(東都化成社製商品名「エポトー
トYD−014」、エポキシ当量950)475部をキシロ
ール95部およびセロソルブアセテート119部に溶
解した後、アゼライン酸39.2部およびジエタノー
ルアミン8.3部を加え、145℃で6時間反応し、樹
脂固形分の酸価が1.1KOHmg/gになつたところ
でキシロール209部およびメチルエチルケトン130
部を加え、冷却して生成物Aを得る。 別途、イソホロジイソシアナート222部をセロ
ソルブアセテート222部に溶解し80℃まで加熱し
た後、ε−カプロラクタム113部とセロソルブア
セテート113部の溶液を1時間にわたつて滴下し
つつ反応させる。滴下終了後、さらに3時間にわ
たり80℃に保温しながら反応を完結させ、イソシ
アナート当量670g当量の生成物Bを得る。 次に先の生成物Aに生成物B55.9部およびセロ
ソルブアセテート118部を加え、100℃で3時間反
応したところでイソプロピルアルコール102部を
加え、冷却してウレタン化エポキシエステル樹脂
ワニスを得る。 製造例 2 ポリプピレングリコール変性ナイロン−6の製
法 実質的に無水のε−カプロラクタム70重量%お
よび分子量4000のポリプロピレングリコール30重
量%の混合物を80℃で溶融保持し、ここにナトリ
ウムカプロラクタメートをε−カプロラクタムに
対して1モル%および参考例(*)の方法で調製
したピリジンジカルボニルビスカプロラクタムを
ε−カプロラクタムに対して2モル%添加して均
一に配合した後、直ちに混合物を140℃に保持し
た金型内に注入して同温度で重合を実施した。重
合は約6分で完結した。 *参考例 撹拌機、窒素導入管を備えたフラスコ内に、1
モルのピリジン−2,6−ジカルボン酸ジクロリ
ド、6モルのε−カプロラクタムおよび塩化水素
捕捉剤としてのピリジンを仕込み、窒素雰囲気下
120℃で1時間反応させた。次いで反応混合物を
大量の冷水中に投入して反応生成物を沈澱として
析出させ濾別した後、純水、メタノールで順次洗
浄し、真空乾燥することにより、灰白色の粉末の
ピリジンジカルボニルビスカプロラクタムを得
た。 実施例 1 製造例1で得たウレタン化エポキシエステル樹
脂ワニス(固形分重量換算)48部にレゾール型フ
エノール樹脂(固形分重量換算)12部を加えさら
に製造例2で得たポリプロピレングリコール変性
ナイロン6(固形分重量換算)20部をN−メチル
−2−ピロリドンに20重量%濃度に溶解して得た
ワニス(固形分重量換算)20部と粒径8mμのヒ
ユームドシリカ15部およびポリエチレン粉末(ヘ
キスト社、商品名セリダスト3620、密度0.95〜
0.97、分子量2000、酸価0)を加え均一に撹拌混
合し、N−メチル−2−ピロリドンで不揮発分濃
度20重量%に調整された塗料組成物を得た。 実施例2〜10および比較例1〜7 実施例1と同様方法で、但し第1表記載の原料
を用い、不揮発濃度20重量%の各塗料組成物を得
た。尚、これら実施例および比較例で用いられた
樹脂は下記の通りである。 エポキシ樹脂:エポトートYD017(ビスフエノー
ルA型エポキシ樹脂、東都化成) ナイロン12:−CH2−/−CONH=11/1重合
度200(発明外) ナイロン6:−CH2−/−CONH=5/1重合
度200 脂肪酸ポリアミド:−CH2−/−CONH=16/
1重合度10 ポリメタフエニレンイソフタルアミド:−CH2
−/−CONH=6/1重合度150(発明外) レゾール型フエノール樹脂:BKS−316(昭和高
分子KK製)
It is a resol type phenol resin represented by the following formula. The coating composition of the present invention is extremely useful as a coating composition for anti-rust coated steel sheets used in automobiles, fixtures, and electrical appliances, and can be used as a base material for hot-dip galvanized steel sheets, hot-dip galvanized aluminized steel sheets, and electrogalvanized steel sheets. , electrolytic zinc/nickel or electrolytic zinc/iron alloy plated steel sheets, electrolytic zinc/iron double-layer plated steel sheets, cold rolled steel sheets, etc. The coating composition of the present invention is applied to these substrates after the surfaces thereof have been cleaned, such as by alkaline degreasing, if necessary, and after these substrates have been directly or subjected to conventional pre-painting treatment. As this pre-painting treatment, chromate chemical conversion treatment and phosphate chemical conversion treatment are used; the former includes electrolytic chromate, coating-type chromate, and reactive chromate treatment, and the latter includes zinc phosphate treatment. The coating composition of the present invention is applied by a suitable coating method such as spraying, roll coating, shower coating, etc., and dried to form a coating film. Preferably
Baking drying is performed at 100-250°C. A steel plate coated with the coating composition of the present invention to a dry film thickness of about 0.3 to 3 microns exhibits excellent corrosion resistance, excellent lubricity, good press workability, and can be spot welded. Furthermore, the particularly excellent characteristics of the steel plate coated with this coating composition are the smoothness of the electrodeposited film formed by the electrodeposition coating,
The coating composition of the present invention exhibits extremely good quality in terms of uniformity and adhesion. Therefore, the coating composition of the present invention is a coating for rust-proofing steel sheets that can meet the high quality requirements in various fields such as automobile fixtures and home appliance industries. It is extremely useful as a composition. The present invention will be explained below with reference to Examples. Parts and percentages are by weight unless otherwise specified. Production Example 1 Method for producing urethanized epoxy ester resin varnish After dissolving 475 parts of epoxy resin (trade name: "Epotote YD-014" manufactured by Toto Kasei Co., Ltd., epoxy equivalent: 950) in 95 parts of xylol and 119 parts of cellosolve acetate, 39.2 parts of azelaic acid was dissolved. and 8.3 parts of diethanolamine were added, and the reaction was carried out at 145°C for 6 hours. When the acid value of the resin solid content reached 1.1 KOHmg/g, 209 parts of xylol and 130 parts of methyl ethyl ketone were added.
1 part and cooled to obtain product A. Separately, 222 parts of isophorodiisocyanate is dissolved in 222 parts of cellosolve acetate, heated to 80°C, and then a solution of 113 parts of ε-caprolactam and 113 parts of cellosolve acetate is added dropwise over 1 hour to react. After completion of the dropwise addition, the reaction was completed while keeping the temperature at 80° C. for another 3 hours to obtain Product B having an isocyanate equivalent of 670 g. Next, 55.9 parts of product B and 118 parts of cellosolve acetate were added to the above product A, and after reacting at 100°C for 3 hours, 102 parts of isopropyl alcohol was added and cooled to obtain a urethanized epoxy ester resin varnish. Production Example 2 Process for producing polypropylene glycol-modified nylon-6 A mixture of 70% by weight of substantially anhydrous ε-caprolactam and 30% by weight of polypropylene glycol having a molecular weight of 4000 was melted and held at 80°C, and sodium caprolactamate was added thereto. After adding 1 mol% of ε-caprolactam and 2 mol% of pyridine dicarbonyl biscaprolactam prepared by the method of Reference Example (*) to ε-caprolactam and uniformly blending, the mixture was immediately heated to 140°C. It was injected into a mold that was held and polymerization was carried out at the same temperature. Polymerization was completed in about 6 minutes. *Reference example: In a flask equipped with a stirrer and a nitrogen introduction tube, 1
mol of pyridine-2,6-dicarboxylic acid dichloride, 6 mol of ε-caprolactam, and pyridine as a hydrogen chloride scavenger were charged, and the mixture was heated under a nitrogen atmosphere.
The reaction was carried out at 120°C for 1 hour. Next, the reaction mixture was poured into a large amount of cold water to precipitate the reaction product, which was separated by filtration, washed sequentially with pure water and methanol, and dried in vacuum to produce pyridine dicarbonyl biscaprolactam as an off-white powder. Obtained. Example 1 To 48 parts of the urethanized epoxy ester resin varnish (in terms of solid content weight) obtained in Production Example 1, 12 parts of resol type phenol resin (in terms of solid content weight) was added, and then to the polypropylene glycol-modified nylon 6 obtained in Production Example 2 (solid content weight equivalent) 20 parts varnish obtained by dissolving 20 parts (solid content weight equivalent) in N-methyl-2-pyrrolidone to a concentration of 20% by weight, 15 parts fumed silica with a particle size of 8 mμ, and polyethylene powder (Hoechst Co., Ltd.) , Product name Seridust 3620, Density 0.95~
0.97, molecular weight 2000, acid value 0) and were uniformly stirred and mixed to obtain a coating composition whose nonvolatile content concentration was adjusted to 20% by weight with N-methyl-2-pyrrolidone. Examples 2 to 10 and Comparative Examples 1 to 7 Coating compositions having a non-volatile concentration of 20% by weight were obtained in the same manner as in Example 1, but using the raw materials listed in Table 1. The resins used in these Examples and Comparative Examples are as follows. Epoxy resin: Epotote YD017 (bisphenol A type epoxy resin, Toto Kasei) Nylon 12: -CH 2 -/-CONH = 11/1 Degree of polymerization 200 (not inventive) Nylon 6: -CH 2 -/-CONH = 5/ 1 Degree of polymerization 200 Fatty acid polyamide: -CH 2 -/-CONH=16/
1 degree of polymerization 10 Polymetaphenylene isophthalamide: -CH 2
-/-CONH=6/1 degree of polymerization 150 (not inventive) Resol type phenol resin: BKS-316 (manufactured by Showa Kobunshi KK)

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 冷延鋼板(SPKD、厚さ0.8mm)に、予めZn/
Ni電気メツキ(Ni含有率11%、目付量20g/m2
を行ない電解クロメート処理(目付量40mgCr/
m2)した基材を用い、前記実施例および比較例で
得た各塗料組成物をロールコート塗装し、200℃
で30秒間焼付処理し、表示乾燥膜厚の塗膜を有す
る塗装鋼鈑を作つた。この塗装鋼鈑につき下記の
試験を行なつた。 (A) 耐食性 塗装鋼鈑に5%NaClを35℃で4時間噴霧し、
60℃で2時間乾燥させたあと、50℃、相対湿度
95%以上の雰囲気に2時間保持する複合腐食試
験を100サイクル実施し、平面部のサビ発性状
況を肉眼により観察した。 (評価基準) ◎……異常なし ○……10%未満の白サビ △……10%以上の白サビ ×……赤サビ発生 (B) 潤滑性(加工密着性と深絞り性) 加工密着性は、塗装鋼板をポンチ径50mmφ、
絞り比1.9、しわ押さえ圧0.5tで円筒深絞り加工
後、円筒側壁部のセロハン粘着テープによる剥
離で塗膜の密着性を調べて評価した。 (評価基準) ◎……剥離なし ○……微小の剥離 △……50%未満の剥離 ×……50%以上の剥離 深絞り性は、角筒クランクプレス材(アマダ
製作所製、150tプレス材)による60×120mm角
の角筒絞りで、絞り高さにより評価した。 (評価基準) ◎……70mm以上 ○……50〜70mm未満 △……30〜50mm未満 ×……30mm未満 次に前記塗装鋼板に、カチオン型電着塗料パワ
ートツプU−30を用い、加電圧200V、時間3分、
浴温28〜30℃で電着塗装し、175℃で30分間焼付
処理し、乾燥膜厚20μの電着塗膜を作り、下記試
験を行つた。 (C) 電着塗膜外観評価 肉眼で電着塗膜の平滑性、均一性を評価した。 (評価基準) ◎……優れている ○……良好 △……ユズ肌 ×……非塗装部あり (D) 電着塗膜耐食性 5%NaClを35℃で4時間噴霧し、60℃で2
時間乾燥後50℃、相対湿度95%以上の雰囲気に
2時間保持する複合腐食試験を100サイクル実
施し、クロスカツト部でのセロハン粘着テープ
による塗膜剥離巾(片側、mm)で耐食性を評価
した。 (評価基準) ◎……0〜1mm未満 ○……1〜3mm未満 △……3〜5mm未満 ×……5mm以上 (E) 電着塗膜二次密着性 前記複合腐食試験後の塗装板を40℃の純水中
に240時間浸漬後、室温で24時間放置し、1mm
角ごばん目100コをナイフで切り込み、セロハ
ン粘着テープを用いて剥離試験を行つた。 (評価基準) ◎……剥離なし ○……剥離1/100内 △……剥離2/100〜10/100 ×……剥離11/100以上 これらの試験結果を第2表に示した。
[Table] Zn/
Ni electroplating (Ni content 11%, area weight 20g/m 2 )
Electrolytic chromate treatment (fabric weight 40mgCr/
m2 ) was coated with each coating composition obtained in the above Examples and Comparative Examples, and heated at 200°C.
A painted steel sheet with a coating film of the indicated dry film thickness was produced by baking for 30 seconds. The following tests were conducted on this painted steel plate. (A) Corrosion resistance Spray 5% NaCl on painted steel plate at 35℃ for 4 hours,
After drying at 60°C for 2 hours, at 50°C, relative humidity.
A composite corrosion test was conducted for 100 cycles in which the specimen was held in an atmosphere of 95% or higher for 2 hours, and the occurrence of rust on the flat surface was observed with the naked eye. (Evaluation criteria) ◎...No abnormalities ○...Less than 10% white rust △...10% or more white rust ×...Red rust (B) Lubricity (processing adhesion and deep drawability) Processing adhesion Punch the painted steel plate with a diameter of 50mmφ,
After cylindrical deep drawing at a drawing ratio of 1.9 and a wrinkle pressing pressure of 0.5 t, the adhesion of the coating film was examined and evaluated by peeling off the cylindrical side wall using cellophane adhesive tape. (Evaluation criteria) ◎...No peeling ○...Minute peeling △...Less than 50% peeling ×...50% or more peeling Deep drawability is based on rectangular cylinder crank press material (manufactured by Amada Seisakusho, 150t press material) Evaluation was made based on the aperture height using a 60 x 120 mm rectangular tube aperture. (Evaluation criteria) ◎...70 mm or more ○...50 to less than 70 mm △...30 to less than 50 mm ×...less than 30 mm Next, apply a voltage of 200 V to the painted steel plate using Power Top U-30, a cationic electrodeposition paint. , time 3 minutes,
Electrodeposition coating was carried out at a bath temperature of 28 to 30°C, and baking treatment was performed at 175°C for 30 minutes to produce an electrodeposition coating film with a dry film thickness of 20μ, and the following tests were conducted. (C) Appearance evaluation of electrodeposition coating The smoothness and uniformity of the electrodeposition coating was evaluated with the naked eye. (Evaluation criteria) ◎...Excellent ○...Good △...Yuzu skin ×...Unpainted areas (D) Electrodeposition coating corrosion resistance Sprayed with 5% NaCl at 35℃ for 4 hours, then heated to 60℃ for 2 hours.
After drying, a composite corrosion test was carried out for 2 hours at 50°C and a relative humidity of 95% or higher for 100 cycles, and the corrosion resistance was evaluated by the peeling width (one side, mm) of the coating film with cellophane adhesive tape at the cross cut part. (Evaluation criteria) ◎...0 to less than 1 mm ○...1 to less than 3 mm △...3 to less than 5 mm ×...5 mm or more (E) Secondary adhesion of electrodeposition coating The coated plate after the above composite corrosion test After immersing in pure water at 40℃ for 240 hours, it was left at room temperature for 24 hours.
100 square squares were cut with a knife and a peel test was performed using cellophane adhesive tape. (Evaluation criteria) ◎... No peeling ○... Peeling within 1/100 △... Peeling 2/100 to 10/100 ×... Peeling 11/100 or more The results of these tests are shown in Table 2.

Claims (1)

【特許請求の範囲】 1 塗料不揮発分として (イ) 分子中に50重量%以上のフエノールを含有す
るエポキシ樹脂、該エポキシ樹脂にアミン触媒
の存在下あるいは不存在下にジカルボン酸を反
応させて得られるエポキシエステル樹脂及び前
記エポキシエステル樹脂に部分ブロツクイソシ
アナート化合物を反応させて得られるウレタン
化エポキシエステル樹脂からなる群より選ばれ
る数平均分子量300〜100000のエポキシ系バイ
ンダー樹脂30〜90重量% (ロ) (−CH2−および/または=CH−)/(−
CONH−)の比が7/1〜0/1で、重合度
が50〜1000の親水性ポリアミド樹脂5〜40重量
% (ハ) 平均粒子径1〜100mμのシリカ粒子5〜40
重量% を含むことを特徴とする、溶剤型の防錆鋼板用塗
料組成物。 2 塗料不揮発分中に滑材を20重量%以下の量で
含有せしめる特許請求の範囲第1項記載の組成
物。 3 滑材が密度0.94以上、分子量1000〜10000、
酸価15KOHmg/g以下のポリエチレンワツクス
である特許請求の範囲第2項記載の組成物。 4 メラミン樹脂、レゾール型フエノール樹脂お
よびポリイソシアネートから選ばれる硬化剤をエ
ポキシ系バインダー樹脂に対し固形分重量比で
0.1/9.9〜4/6の割合で含有せしめる特許請求
の範囲第1項記載の組成物。 5 親水性ポリアミド樹脂が、ナイロン6、ナイ
ロン66およびそれらと他のナイロンの共重合物;
ポリエーテルポリオール−、ポリエステルポリオ
ール−、ポリブタジエンポリオール−変性ナイロ
ン;ポリメタフエニレンイソフタルアミド、ポリ
パラフエニレンテレフタルアミド等の芳香族ポリ
アミドから選ばれる特許請求の範囲第1項記載の
組成物。
[Scope of Claims] 1. As a paint non-volatile component (a) an epoxy resin containing 50% by weight or more of phenol in the molecule, obtained by reacting the epoxy resin with a dicarboxylic acid in the presence or absence of an amine catalyst; and urethanized epoxy ester resins obtained by reacting the epoxy ester resin with a partially blocked isocyanate compound. ) (−CH 2 − and/or =CH−)/(−
CONH-) ratio of 7/1 to 0/1 and a degree of polymerization of 5 to 40% by weight of a hydrophilic polyamide resin (c) 5 to 40% of silica particles with an average particle diameter of 1 to 100 mμ
A solvent-based antirust coating composition for steel plate, characterized in that it contains % by weight. 2. The composition according to claim 1, which contains a lubricant in an amount of 20% by weight or less in the nonvolatile content of the paint. 3 The lubricant has a density of 0.94 or more, a molecular weight of 1000 to 10000,
The composition according to claim 2, which is a polyethylene wax having an acid value of 15 KOH mg/g or less. 4 A curing agent selected from melamine resin, resol type phenolic resin, and polyisocyanate is added to the epoxy binder resin in terms of solid content weight ratio.
The composition according to claim 1, wherein the composition is contained in a ratio of 0.1/9.9 to 4/6. 5 Hydrophilic polyamide resin is a copolymer of nylon 6, nylon 66, and other nylons;
The composition according to claim 1, which is selected from polyether polyol-, polyester polyol-, polybutadiene polyol-modified nylon; aromatic polyamides such as polymetaphenylene isophthalamide and polyparaphenylene terephthalamide.
JP12623186A 1986-05-30 1986-05-30 Coating compound composition for rust-preventive steel plate Granted JPS62283161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12623186A JPS62283161A (en) 1986-05-30 1986-05-30 Coating compound composition for rust-preventive steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12623186A JPS62283161A (en) 1986-05-30 1986-05-30 Coating compound composition for rust-preventive steel plate

Publications (2)

Publication Number Publication Date
JPS62283161A JPS62283161A (en) 1987-12-09
JPH0476392B2 true JPH0476392B2 (en) 1992-12-03

Family

ID=14930023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12623186A Granted JPS62283161A (en) 1986-05-30 1986-05-30 Coating compound composition for rust-preventive steel plate

Country Status (1)

Country Link
JP (1) JPS62283161A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511497B2 (en) * 1988-05-31 1996-06-26 川崎製鉄株式会社 Lubricant resin treated steel sheet with excellent formability
JPH0651171B2 (en) * 1989-10-16 1994-07-06 川崎製鉄株式会社 Organic composite coated steel sheet with excellent corrosion resistance and weldability
CA2064275A1 (en) * 1991-03-29 1992-09-30 Masaaki Takimoto Anticorrosive coating composition
JP2690629B2 (en) * 1991-04-12 1997-12-10 川崎製鉄株式会社 Organic composite coated steel sheet with excellent corrosion resistance and spot weldability
JP2816076B2 (en) * 1993-01-21 1998-10-27 日本ペイント株式会社 Dispersion of colloidal particles and aqueous coating composition
CN104559716A (en) * 2014-12-24 2015-04-29 合肥协知行信息系统工程有限公司 Polyurethane modified epoxide resin antirust coating and preparation method thereof

Also Published As

Publication number Publication date
JPS62283161A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
JPH0332638B2 (en)
JPH0428539B2 (en)
JPH05331412A (en) Coating composition
JPH0562585B2 (en)
CA2013089C (en) Steel plate with organic coating having improved corrosion resistance in as-worked state
US4756935A (en) Primer composition for a metallic material and a coating method using the same
EP0448341B1 (en) Coating composition for precoated metal material
KR920002011B1 (en) Process for treating plated steel sheet
JPH06235071A (en) Organic composite coated steel sheet
JPH0450349B2 (en)
JPH0476392B2 (en)
JPH03268939A (en) Organic composite coated steel plate excellent in electrodeposition painting properties and corrosion resistance
JPS62289274A (en) Rust prevented steel sheet having excellent workability
JP7538777B2 (en) Cationic electrodeposition coating composition, electrodeposition coated article, and method for producing electrodeposition coated article
JPH05255587A (en) Film-forming composition for lubricated steel sheet excellent in press moldability and lubricated steel sheet prepared therefrom
JPH02134238A (en) Organic coated steel plate with excellent electrodeposition coating property
JP3389884B2 (en) Surface treated steel sheet for fuel container and paint composition therefor
JPH02274532A (en) Organo-coated composite-plated steel plate with high weldability
JP3130754B2 (en) Thin-film organic composite steel sheet with excellent corrosion resistance and solvent resistance
JP3195510B2 (en) Paint composition for thin film coated steel sheet
JPH0791505B2 (en) Undercoat paint composition
JPH05148449A (en) Method for coating metal material
JPH0475941B2 (en)
JPH0463109B2 (en)
JPS62225569A (en) Primer composition for metal material and coating thereof