JPH0476259A - Heat and electricity parallel supply device - Google Patents

Heat and electricity parallel supply device

Info

Publication number
JPH0476259A
JPH0476259A JP2191894A JP19189490A JPH0476259A JP H0476259 A JPH0476259 A JP H0476259A JP 2191894 A JP2191894 A JP 2191894A JP 19189490 A JP19189490 A JP 19189490A JP H0476259 A JPH0476259 A JP H0476259A
Authority
JP
Japan
Prior art keywords
hot water
flow rate
heat
load
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2191894A
Other languages
Japanese (ja)
Other versions
JP2593575B2 (en
Inventor
Akio Wakao
若尾 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2191894A priority Critical patent/JP2593575B2/en
Publication of JPH0476259A publication Critical patent/JPH0476259A/en
Application granted granted Critical
Publication of JP2593575B2 publication Critical patent/JP2593575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To prevent reduction of the supply due to load fluctuations on heat load side by making it possible to switch the operation modes of electric load follow-up operation and heat load follow-up operation by switching operation of a switch device, and giving preference to load on high load side when variation in steam load and hot-water load is corrected at the time of heat load follow-up operation. CONSTITUTION:In a heat and electricity supply device in which an exhaust heat heat exchanger and an exhaust gas heat exchanger are installed to an internal combustion engine for driving an electricity generator, a detection value of a fuel flow detector 4 is compared to a set electric power of the generator to determine a deviation, and add values of detection values of respective hot-water flow detectors 26, 28 are compared to a detection value of a steam flow detector 24 to select a high value by a high value preferred circuit 34 and to adjust the opening of a fuel flow adjusting valve 3 by a switching device 42 when heat load is followed up. A signal obtained by adding detection values of the hot-water flow detectors 26, 28 is outputted as a bias signal to an adder-subtractor 57, and a limit value check of a variation obtained by calculating signals of a detection value of the temperature in a steam accumulator and a detection value of the hot-water temperature at the outlet of the exhaust heat heat exchanger, is performed by a limiter 52 to adjust the opening of a hot-water flow adjusting valve 21 when the variation is within the limit value.

Description

【発明の詳細な説明】 「発明の目的〕 (産業上の利用分野) 本発明は、電力と蒸気および温水を供給する熱電併給装
置に係り、特に、内燃機関の排熱により温水を発生させ
る排熱熱交換器の温水負荷と、内燃機関の排ガスを利用
して蒸気を発生させ、貯蔵する蒸気蓄熱器の蒸気負荷の
負荷要求量に対する負荷変動を解消するために、先行要
素として温水負荷と蒸気負荷量に見合った内燃機関の燃
料流量制御と、温水温度制御への二次遅れによる負荷変
動を防止した熱電併給装置に関する。
Detailed Description of the Invention Object of the Invention (Industrial Field of Application) The present invention relates to a combined heat and power system that supplies electric power, steam, and hot water, and particularly relates to a combined heat and power system that supplies electric power, steam, and hot water, and particularly relates to a combined heat and power system that supplies electric power, steam, and hot water. In order to eliminate load fluctuations with respect to the load requirements of the hot water load of the heat exchanger and the steam load of the steam regenerator that generates and stores steam using the exhaust gas of the internal combustion engine, the hot water load and steam are combined as preceding elements. The present invention relates to a combined heat and power supply system that controls the fuel flow rate of an internal combustion engine in accordance with the amount of load and prevents load fluctuations due to secondary delays in hot water temperature control.

(従来の技術) 熱電併給装置は、一般に、発電機を駆動する内燃機関を
排熱熱交換器の冷水により冷却し、その排熱により冷水
を温水に変えるとともに、この温水を排ガス熱交換器に
導入し、内燃機関の排カスにより更に加熱して蒸気に変
え、これらの温水と蒸気を貯湯槽および蓄熱タンクにそ
れぞれ貯蔵し、熱負荷装置により温水負荷または蒸気負
荷に供給するよう構成されている。
(Prior art) A combined heat and power system generally cools an internal combustion engine that drives a generator with cold water from an exhaust heat exchanger, uses the exhaust heat to convert the cold water into hot water, and then transfers this hot water to the exhaust gas heat exchanger. The hot water and steam are then stored in a hot water tank and a heat storage tank, respectively, and supplied to a hot water load or steam load by a heat load device. .

この熱電併給装置の蓄熱制御方式としては、蓄熱タンク
に蓄熱される蒸気の圧力が一定となるように、排ガス熱
交換器の出口側の蒸気圧力検出値に基づいて、この排ガ
ス熱交換器の受熱側入口に供給される温水流量を制御し
ている。また、温水負荷制御方式としては、温水熱交換
器および貯湯槽から温水負荷に供給される温水の温度か
一定となるように、排熱熱交換器から温水を温水熱交換
器と排ガス熱交換器に分配する温水ヘッダ内の温度検出
値に基づいて、排熱熱交換器の受熱側(二次側)入口に
供給される冷水流量が設定値に合致するよう制御してい
る。また、その排熱は貯湯槽内の温度検出値に基づいて
一定となるように各給水弁、温水弁により温水負荷へ供
給される温水供給流量を制御している。
The heat storage control method of this combined heat and power system is based on the detected steam pressure on the outlet side of the exhaust gas heat exchanger, so that the pressure of the steam stored in the heat storage tank is constant. Controls the flow rate of hot water supplied to the side inlet. In addition, as a hot water load control method, hot water is transferred from the waste heat heat exchanger to the hot water heat exchanger and the exhaust gas heat exchanger so that the temperature of the hot water supplied from the hot water heat exchanger and the hot water storage tank to the hot water load is constant. The flow rate of cold water supplied to the heat receiving side (secondary side) inlet of the waste heat heat exchanger is controlled to match the set value based on the detected temperature value in the hot water header distributed to the exhaust heat exchanger. Further, the flow rate of hot water supplied to the hot water load is controlled by each water supply valve and hot water valve so that the exhaust heat is constant based on the detected temperature value in the hot water storage tank.

(発明が解決しようとする課題) 以上のように構成した従来の熱電併給装置では、内燃機
関の負荷が変動する場合は、−次系の排ガス流量が変動
すること、および排ガス熱交換器出口の蒸気圧力に基づ
いて温水流量調整の開度制御が行われることにより排熱
熱交換器の熱交換効率が低下し、蒸気負荷および温水負
荷要求量に対し、負荷変動か大きくなる。また、温水負
荷や蒸気負荷の負荷変動に対して内燃機関の排熱量が不
足し、実質上、温水負荷、蒸気負荷の供給量の負荷変動
となる。
(Problems to be Solved by the Invention) In the conventional combined heat and power system configured as described above, when the load of the internal combustion engine fluctuates, the exhaust gas flow rate of the secondary system fluctuates, and the exhaust gas heat exchanger outlet By controlling the opening degree of the hot water flow rate adjustment based on the steam pressure, the heat exchange efficiency of the exhaust heat exchanger decreases, and the load fluctuation increases with respect to the required steam load and hot water load. In addition, the amount of exhaust heat from the internal combustion engine is insufficient in response to load fluctuations in the hot water load and steam load, and this essentially results in load fluctuations in the supply amount of the hot water load and steam load.

上記排ガス熱交換器で発生させた蒸気圧力は蓄熱タンク
に貯蔵されるが、蒸気負荷の増減によっては、蓄熱タン
クの器内圧力が蓄熱タンクの放熱等の影響により低下す
る。蒸気負荷が減少した場合や温水負荷量か増大した場
合、内燃機関の排熱量を増大させなければならない。更
に温水負荷要求量の変動に対して二次的な遅れか生じる
という問題があった。
The steam pressure generated by the exhaust gas heat exchanger is stored in the heat storage tank, but depending on the increase or decrease in the steam load, the internal pressure of the heat storage tank decreases due to the effects of heat radiation from the heat storage tank, etc. When the steam load decreases or when the hot water load increases, the amount of exhaust heat from the internal combustion engine must be increased. Furthermore, there is a problem in that a secondary delay occurs due to fluctuations in the hot water load requirement.

また、排熱熱交換器の受熱側(二次側)出口から温水が
供給される温水ヘッダの温度が設定値に対して変動し、
しかも、その温水は一次系の排熱流量変動に伴って、排
熱熱交換器の二次遅れ原因により、同様に熱交換熱量が
実質上減少し、排ガス熱交換器出口の温水温度の変動幅
が設定値に対して大きくなるという問題点があった。ま
た、熱負荷追従運転時には、排熱熱交換器排熱および排
ガス熱交換器の二次遅れ原因による熱交換量の変動と、
蒸気負荷、温水負荷変動に対し、設定値より大きくなる
という問題点があった。
In addition, the temperature of the hot water header to which hot water is supplied from the heat receiving side (secondary side) outlet of the waste heat heat exchanger fluctuates relative to the set value,
Moreover, as the hot water fluctuates in the exhaust heat flow rate of the primary system, the amount of heat exchanged also substantially decreases due to the secondary lag cause of the exhaust heat exchanger, and the fluctuation range of the hot water temperature at the outlet of the exhaust gas heat exchanger. There was a problem that the value became larger than the set value. In addition, during thermal load following operation, fluctuations in the amount of heat exchange due to secondary delay causes of exhaust heat heat exchanger exhaust heat and exhaust gas heat exchanger,
There was a problem that the steam load and hot water load fluctuations were larger than the set values.

本発明は上記事情を考慮してなされたもので、内燃機関
の負荷変動や蒸気負荷、温水負荷の変動時における蒸気
圧力や温水温度の低下を防止できる熱電併給装置を提供
することを目的とするものである。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a combined heat and power generation device that can prevent a drop in steam pressure and hot water temperature during changes in internal combustion engine load, steam load, and hot water load. It is something.

[発明の構成コ (課題を解決するための手段) 本発明の熱電併給装置は発電機を駆動する内燃機関と;
この内燃機関に供給される燃料の供給流量を検出・調整
する燃料流量検出器および燃料流量調整弁と;前記内燃
機関からの排熱により冷水を加熱して温水を発生させる
排熱熱交換器と;この排熱熱交換器の受熱側に供給され
た温水の出口温度を検出する温水温度検出器および冷水
供給流量を調整する冷水流量調整弁と;前記排熱熱交換
器の受熱側からの温水を、排ガス熱交換器において、前
記内燃機関からの排ガスにより更に加熱して発生させた
蒸気を蓄熱する蒸気蓄熱器と;前記排熱熱交換器に供給
される温水の供給流量を調整する第1の温水流量調整弁
と;前記蒸気蓄熱器の器内の熱水温度を検出し、温水ヘ
ッダへの供給流量を調整する熱水流量調整弁と、前記温
水熱交換器の与熱側から貯湯槽に供給される温水の供給
流量を調整する第2の温水流量調整弁と;前記温水熱交
換器および貯湯槽の各受熱側から温水負荷にそれぞれ供
給される温水供給流量を検出する第1および第2の温水
流量検出器と:前記蒸気蓄熱器から蒸気負荷に供給され
る蒸気の供給流量を検出する蒸気流量検出器と;前記蒸
気蓄熱器の器内圧力を検出する器内圧力検出器と;を有
する熱電併給装置において;前記燃料流量検出器により
検出された検出値と前記発電機の電力設定値とを比較し
て偏差を出力する比較器と;前記第1および第2の温水
流量検出器により検出された温水流量検出値の加算値と
、上記蒸気流量検出器により検出された蒸気流量検出値
を比較し、高値を出力する高値優先回路の出力信号によ
り、熱負荷追従運転モトで燃料流量調整弁の開度を調整
して燃料流量調整弁に制御信号を与える調節計と;前記
第]および第2の温水流量検出器により検出された温水
供給流量検出値をそれぞれ加減演算回路で演算し、バイ
アス信号として前記蒸気蓄熱器の器内の温度検出値と、
前記排熱熱交換器出口の温水の温度検出値の信号を加減
演算器で演算した偏差値の制限値チェックを行い、制限
値以内であれば、その偏差信号をバイアス信号として前
記排熱熱交換器出口の温度検出値と温度設定値とを比較
し、それらの偏差信号を前記調節計に与えた信号に加減
演算し、前記排熱熱交換器の受熱側の冷水供給流量を調
整し、前記第1および第2の温水供給温度検出器により
検出された温水供給温度検出値と温度設定値とを比較し
、それらの偏差信号を前記調節計に与えて前記バイアス
信号を先行的に加え、前記第1および第2の温水流量調
整弁および冷水流量調整弁に与え、弁開度を調整させる
先行制御装置と;を備えたことを特徴とするものである
[Configuration of the Invention (Means for Solving the Problems) The combined heat and power generation device of the present invention includes an internal combustion engine that drives a generator;
A fuel flow rate detector and a fuel flow rate adjustment valve that detect and adjust the flow rate of fuel supplied to the internal combustion engine; and an exhaust heat exchanger that heats cold water using exhaust heat from the internal combustion engine to generate hot water. ; a hot water temperature detector for detecting the outlet temperature of hot water supplied to the heat receiving side of the waste heat heat exchanger; and a cold water flow rate adjustment valve for adjusting the cold water supply flow rate; hot water from the heat receiving side of the waste heat heat exchanger; a steam regenerator for storing heat of steam generated by further heating with the exhaust gas from the internal combustion engine in the exhaust gas heat exchanger; a first for adjusting the supply flow rate of hot water supplied to the exhaust heat heat exchanger; a hot water flow rate adjustment valve that detects the hot water temperature inside the steam heat storage device and adjusts the supply flow rate to the hot water header; a second hot water flow rate regulating valve that adjusts the flow rate of hot water supplied to the hot water load; 2 hot water flow rate detector: a steam flow rate detector that detects the supply flow rate of steam supplied from the steam regenerator to the steam load; an internal pressure detector that detects the internal pressure of the steam regenerator; a comparator that compares a detection value detected by the fuel flow rate detector with a power setting value of the generator and outputs a deviation; and the first and second hot water flow rate detectors. The added value of the hot water flow rate detection value detected by the steam flow rate detector is compared with the steam flow rate detection value detected by the steam flow rate detector mentioned above, and the fuel flow rate is determined by the output signal of the high value priority circuit which outputs the higher value. a controller that adjusts the opening degree of the regulating valve and provides a control signal to the fuel flow regulating valve; and a controller that calculates the detected value of the hot water supply flow rate detected by the first and second hot water flow rate detectors using an addition/subtraction calculation circuit, respectively. , a temperature detection value inside the steam regenerator as a bias signal;
A limit value check of the deviation value calculated by the addition/subtraction calculator is performed on the signal of the detected temperature value of the hot water at the outlet of the waste heat heat exchanger, and if it is within the limit value, the deviation signal is used as a bias signal to control the waste heat heat exchanger. Compare the detected temperature value at the outlet of the chamber with the temperature set value, add or subtract the difference signal between them to the signal given to the controller, adjust the flow rate of cold water supply to the heat receiving side of the waste heat heat exchanger, The hot water supply temperature detection values detected by the first and second hot water supply temperature detectors are compared with the temperature set value, and their deviation signals are provided to the controller to apply the bias signal in advance, and the bias signal is applied in advance to the controller. A preceding control device is provided to the first and second hot water flow rate adjustment valves and the cold water flow rate adjustment valve to adjust the valve opening degrees.

(作用) 上述のように構成した本発明装置において、熱電併給装
置の電気負荷追従運転を行なう場合には、切替器の運転
モードとして電気負荷追従運転モードを選択すると、内
燃機関に供給される燃料の供給量を調整する燃料流量調
節弁の開度がその燃料供給流量を検出する燃料流量検出
器の検出器と電力設定値との偏差が零になるように調整
され電気負荷要求に対応した電気負荷追従運転が行われ
る。
(Function) In the device of the present invention configured as described above, when performing electric load following operation of the combined heat and power generation device, when the electric load following operation mode is selected as the operation mode of the switch, the fuel supplied to the internal combustion engine is The opening degree of the fuel flow control valve that adjusts the supply amount of the fuel is adjusted so that the deviation between the detector of the fuel flow detector that detects the fuel supply flow rate and the power set value is zero, and the electric power that corresponds to the electric load request is adjusted. Load following operation is performed.

一方、熱電併給装置の熱負荷追従運転を行う場合には、
切替器の運転モードを熱負荷追従運転モトに選択すると
、内燃機関に供給される燃料の供給流量を制御する燃料
流量調整弁の開度が、蒸気負荷および温水負荷の変動に
追従して制御される。
On the other hand, when performing thermal load following operation of the combined heat and power generation device,
When the operating mode of the switch is selected as thermal load following operation Moto, the opening degree of the fuel flow rate adjustment valve that controls the flow rate of fuel supplied to the internal combustion engine is controlled to follow fluctuations in the steam load and hot water load. Ru.

即ち、燃料流量制御弁の開度の調整は、蒸気負荷および
上記第1、第2の温水供給流量を検出する温水流量検出
値の信号を加減演算回路で温水負荷量を演算した信号の
いずれが高値を優先する高値優先回路からの信号により
、燃料流N調整弁の開度は蒸気負荷、温水負荷の供給量
を優先に制御され、電力負荷は熱負荷追従して運転され
る。
That is, the opening degree of the fuel flow rate control valve is adjusted by adjusting the steam load and the signal of the hot water flow rate detection value that detects the first and second hot water supply flow rates, and the signal obtained by calculating the hot water load amount using the addition/subtraction calculation circuit. Based on the signal from the high value priority circuit that gives priority to the high value, the opening degree of the fuel flow N regulating valve is controlled to give priority to the supply amount of the steam load and the hot water load, and the electric power load is operated to follow the heat load.

温水負荷が不足する場合には、上記の蒸気蓄熱器の器内
温度と内燃機関の排熱熱交換器の出口の温水温度と偏差
信号に制御値チェックし、制限値内であればその信号を
バイアス信号として、上記冷水流量調整弁の開度を調整
し、温水負荷変動に対応して運転される。更に、上記第
1、第2の温水流量検出器の各々の信号を加減演算し、
信号をバイアス信号として上記第1、第2の温水流量調
整弁に与えられ、それらの弁開度が調整される。
If the hot water load is insufficient, check the control value of the temperature inside the steam regenerator described above, the hot water temperature at the outlet of the exhaust heat heat exchanger of the internal combustion engine, and the deviation signal, and if it is within the limit value, the signal is As a bias signal, the opening degree of the cold water flow rate regulating valve is adjusted and operated in response to hot water load fluctuations. Furthermore, adding and subtracting the signals of each of the first and second hot water flow rate detectors,
The signal is applied as a bias signal to the first and second hot water flow rate regulating valves, and the opening degrees of these valves are adjusted.

(実施例) 次に、図面を参照しなから本発明の詳細な説明する。(Example) The present invention will now be described in detail with reference to the drawings.

第2図は本発明装置の実施例の全体構成を示す系統図で
あり、同期発電機1を駆動する内燃機関2に供給される
燃料の供給流量は、燃料流量調整弁3により制御され、
燃料流量検出器4により検出される。
FIG. 2 is a system diagram showing the overall configuration of an embodiment of the device of the present invention, in which the supply flow rate of fuel supplied to the internal combustion engine 2 that drives the synchronous generator 1 is controlled by a fuel flow rate regulating valve 3;
It is detected by the fuel flow rate detector 4.

内燃機関2はウォータジャケット等の排熱熱交換器5に
より冷却され、またその排ガスは排ガス熱交換器6の与
熱側胴内を通して排出される。
The internal combustion engine 2 is cooled by an exhaust heat exchanger 5 such as a water jacket, and its exhaust gas is discharged through the heating side body of the exhaust gas heat exchanger 6.

排熱熱交換器5の受熱側(二次側)の冷水入口には、冷
水管5aを介して貯湯槽7の与熱側出口が連結されてい
る。この冷水管には、上流側から下流側に向けて貯湯槽
三方弁(第2の温水流量調整弁)8、冷水源(図示せず
)に接続された冷水ヘッダ9 a %冷水ポンプ10、
冷水流量調整弁11か順次設置され、排熱熱交換器5の
受熱側入口に冷水を供給するように構成されている。
A cold water inlet on the heat receiving side (secondary side) of the waste heat heat exchanger 5 is connected to a heating side outlet of the hot water storage tank 7 via a cold water pipe 5a. This cold water pipe includes, from the upstream side to the downstream side, a hot water tank three-way valve (second hot water flow rate adjustment valve) 8, a cold water header 9 connected to a cold water source (not shown), a cold water pump 10,
Cold water flow rate adjustment valves 11 are installed in sequence, and are configured to supply cold water to the heat receiving side inlet of the waste heat exchanger 5.

排熱熱交換器5の受熱側出口には、温水温度を検出する
温水温度検出器12を備えた温水管13を介して、温水
ヘッダ9bが接続されている。また温水ヘッダ9bは、
温水熱交換器14の与熱側入口に接続されると共に、熱
水管15aを介して蒸気蓄熱器15に接続されている。
A hot water header 9b is connected to the heat receiving side outlet of the waste heat exchanger 5 via a hot water pipe 13 equipped with a hot water temperature detector 12 for detecting hot water temperature. In addition, the hot water header 9b is
It is connected to the heating side inlet of the hot water heat exchanger 14, and is also connected to the steam heat storage device 15 via the hot water pipe 15a.

温水ヘッダ9bのもう一つの出口端は、配管6aを介し
て排ガス熱交換器6の与熱側入口に接続されている。配
管6aの途中には、上流側から下流側に向けて温水ポン
プ16、流量調整弁17が介挿されており、温水ポンプ
16により排ガス熱交換器6に供給された温水を内燃機
関2からの排ガスにより加熱して蒸気を発生させるよう
になっている。、 排ガス熱交換器6の受熱側出口は、蒸気管6bを介して
蒸気負荷(図示せず)側に連結されている。この蒸気管
6bの途中には、蒸気蓄熱器15が介挿され、蒸気蓄熱
器15の前後には、蒸気圧力検出器18および蒸気流量
検出器24が接続されている。
The other outlet end of the hot water header 9b is connected to the heating side inlet of the exhaust gas heat exchanger 6 via a pipe 6a. A hot water pump 16 and a flow rate regulating valve 17 are inserted in the middle of the piping 6a from the upstream side to the downstream side, and the hot water pump 16 supplies hot water to the exhaust gas heat exchanger 6 from the internal combustion engine 2. It is heated by exhaust gas to generate steam. A heat receiving side outlet of the exhaust gas heat exchanger 6 is connected to a steam load (not shown) side via a steam pipe 6b. A steam regenerator 15 is inserted in the middle of the steam pipe 6b, and a steam pressure detector 18 and a steam flow rate detector 24 are connected before and after the steam regenerator 15.

蒸気蓄熱器15の器内には、器内温度検出器19および
器内圧力検出器20が設置されている。
Inside the steam regenerator 15, an internal temperature detector 19 and an internal pressure detector 20 are installed.

また、熱水管15aの途中には、熱水流量調整弁21と
熱水流量検出器22が設置されている。
Further, a hot water flow rate adjustment valve 21 and a hot water flow rate detector 22 are installed in the middle of the hot water pipe 15a.

温水熱交換器14の与熱側連絡管23aの途中には温水
熱交三方弁(第1の温水流量調整弁)23が介挿されて
いる。
A hot water heat exchanger three-way valve (first hot water flow rate regulating valve) 23 is inserted in the middle of the heating side communication pipe 23a of the hot water heat exchanger 14.

温水熱交換器14の受熱側には冷水供給管25aか接続
され、また受熱側出口は第1の温水供給管25bを介し
て温水負荷(図示せず)側に接続されている。
A cold water supply pipe 25a is connected to the heat receiving side of the hot water heat exchanger 14, and an outlet of the heat receiving side is connected to a hot water load (not shown) via a first hot water supply pipe 25b.

第1の温水供給管25bの途中には、第1の温水温度検
出器25と第1の温水流量検出器26が設置されている
A first hot water temperature detector 25 and a first hot water flow rate detector 26 are installed in the middle of the first hot water supply pipe 25b.

一方、貯湯槽7の受熱部の胴部は、第2の温水供給管2
7aを介して温水負荷側に接続され、また第2の温水供
給管27aの途中には、第2の温水温度検出器27と第
2の温水流量検出器28が設置されている。
On the other hand, the body of the heat receiving part of the hot water storage tank 7 is connected to the second hot water supply pipe 2.
7a to the hot water load side, and a second hot water temperature detector 27 and a second hot water flow rate detector 28 are installed in the middle of the second hot water supply pipe 27a.

貯湯槽三方弁8の一端は温水熱交換器14の与熱側連絡
管23aに接続されている。
One end of the hot water tank three-way valve 8 is connected to the heating side communication pipe 23a of the hot water heat exchanger 14.

制御装置29には、破線で示す信号線により、燃料流量
調整弁3、燃料流量検出器4、冷水流量調整弁11、温
水温度検出器12、温水供給流量調整弁17、蒸気圧力
検出器18、蒸気蓄熱器15の器内温度検出器19と器
内圧力検出器20、熱水流量調整弁21、熱水流量検出
器22、温水熱交三方弁(第1の温水流量調整弁)23
、第1の温水温度検出器25、第1の温水流量検出器2
6、貯湯槽三方弁8、第2の温水温度検出器27および
第2の温水流量検出器28がそれぞれ電気的に接続され
、各検出器からの検出値を受けて各種調整弁の開度を制
御する。
The control device 29 has a fuel flow rate adjustment valve 3, a fuel flow rate detector 4, a cold water flow rate adjustment valve 11, a hot water temperature detector 12, a hot water supply flow rate adjustment valve 17, a steam pressure detector 18, An internal temperature detector 19 and an internal pressure detector 20 of the steam regenerator 15, a hot water flow rate adjustment valve 21, a hot water flow rate detector 22, a hot water heat exchanger three-way valve (first hot water flow rate adjustment valve) 23
, first hot water temperature detector 25, first hot water flow rate detector 2
6. The hot water tank three-way valve 8, the second hot water temperature detector 27, and the second hot water flow rate detector 28 are electrically connected, and the opening degrees of the various regulating valves are adjusted based on the detected values from each detector. Control.

制御装置29は、第1図に示すように構成されている。The control device 29 is configured as shown in FIG.

即ち、燃料流量検出器4により検出された内燃機関2に
供給される燃料供給流量信号は開平演算機30aでリニ
アにされ、電力設定器41で電力に比例する設定信号と
比較され、それらの偏差信号は、電気負荷追従時には、
切替器42をa 7 bに流れ、PID調節計43で制
御信号となる。この制御信号は、電気信号を空気信号に
変える電空変換器44で空気信号となり、燃料流量調整
弁3の開度を調整し、発電機1の出力が一定になるよう
に制御する。
That is, the fuel supply flow rate signal supplied to the internal combustion engine 2 detected by the fuel flow rate detector 4 is linearized by the square root calculator 30a, compared with a setting signal proportional to electric power by the power setting device 41, and the deviation thereof is When following electrical load, the signal is
The signal flows through the switch 42 to a 7 b, and becomes a control signal at the PID controller 43. This control signal is turned into an air signal by an electro-pneumatic converter 44 that converts an electric signal into an air signal, and the opening degree of the fuel flow rate regulating valve 3 is adjusted so that the output of the generator 1 is controlled to be constant.

一方、熱負荷追従時には、蒸気流量検出器24の信号は
開平演算器30bにより平滑された後、高値優先回路3
4に入力される。また第1の温水流量検出器26と第2
の温水流量検出器28の検出信号は、各々開平演算器3
0c、30dで平滑され、加減演算器33で加算された
後、高値優先回路34に導かれて開平演算器30bから
の信号と比較され、いずれか高値の信号が切替器42に
導かれ、PID調節計34で制御信号となり、電空変換
器44て空気信号に変換されて燃料流量調整弁3の開度
を制御する。
On the other hand, during thermal load tracking, the signal from the steam flow rate detector 24 is smoothed by the square root calculator 30b, and then smoothed by the high value priority circuit 30b.
4 is input. In addition, the first hot water flow rate detector 26 and the second
The detection signals of the hot water flow rate detector 28 are respectively output by the square root calculator 3.
After being smoothed by signals 0c and 30d and added by an addition/subtraction calculator 33, the signal is led to a high value priority circuit 34 and compared with the signal from the square root calculator 30b, and the signal with the highest value is led to a switch 42 and then added to the PID The controller 34 converts the signal into a control signal, which is converted into an air signal by the electro-pneumatic converter 44 to control the opening degree of the fuel flow rate regulating valve 3.

排ガス熱交換器6において内燃機関2の排ガスとの熱交
換によって発生した蒸気の圧力は蒸気圧力検出器18に
よって検出され、圧力設定器35て圧力設定値と比較さ
れて偏差信号となる。また蒸気圧力検出器18からの圧
力信号と、蒸気蓄熱器15の器内圧力検出器20からの
圧力信号は加減演算器36で加減演算され、得られた信
号はバイアス器37でバイアス信号を付加された後、圧
力設定器35からの偏差信号と共に加減演算器38に導
かれ、加減演算される。加減演算器38の出力信号はP
ID調節計39で制御信号となり、電空変換器45で空
気信号に変換されて温水流量調整弁17の開度を調整し
、蒸気圧力を制御している。
The pressure of steam generated by heat exchange with the exhaust gas of the internal combustion engine 2 in the exhaust gas heat exchanger 6 is detected by the steam pressure detector 18, and compared with a pressure setting value by the pressure setting device 35 to generate a deviation signal. Further, the pressure signal from the steam pressure detector 18 and the pressure signal from the internal pressure detector 20 of the steam regenerator 15 are added and subtracted by an addition/subtraction calculator 36, and a bias signal is added to the obtained signal by a biaser 37. After that, it is led to the addition/subtraction calculator 38 together with the deviation signal from the pressure setting device 35, and is subjected to addition/subtraction calculations. The output signal of the addition/subtraction calculator 38 is P
The signal is converted into a control signal by the ID controller 39 and converted into an air signal by the electro-pneumatic converter 45 to adjust the opening degree of the hot water flow rate regulating valve 17 and control the steam pressure.

排熱熱交換器5の出口の温水温度は温水温度検出器12
によって検出され、温度変換器46て電流信号に変換さ
れた後、温度設定器47において温度設定値と比較され
、演算信号となってPID調節計48に導かれ、電空変
換器49で空気信号に変換された後、冷水流量調整弁1
1の開度を調整し、温水ヘッダ9bに供給される冷水の
温度を制御している。
The hot water temperature at the outlet of the waste heat heat exchanger 5 is determined by the hot water temperature detector 12.
After being detected by the temperature converter 46 and converted into a current signal, it is compared with the temperature setting value in the temperature setting device 47, and is converted into a calculation signal and guided to the PID controller 48, and then converted into an air signal by the electro-pneumatic converter 49. After being converted into cold water flow regulating valve 1
1 is adjusted to control the temperature of cold water supplied to the hot water header 9b.

蒸気蓄熱器15の器内温度検出器]9の検出値は温度変
換器50て電流信号に変換され、温度変換器46からの
電流信号と共に加減演算器51に導かれて加減演算され
る。加減演算器51の出力は、制限器52で上下限チェ
ックを行われ、制限値内であればバイアス器53に入力
される。また温度変換器50からの電流信号は、温度設
定器54で温度設定値と比較され、その偏差信号はPI
D調節計55に入力される。
The detected value of the internal temperature detector of the steam regenerator 15 is converted into a current signal by the temperature converter 50, and is led to the addition/subtraction calculator 51 together with the current signal from the temperature converter 46 for addition/subtraction calculation. The output of the addition/subtraction calculator 51 is checked for upper and lower limits by a limiter 52, and if it is within the limit value, it is input to a biaser 53. Further, the current signal from the temperature converter 50 is compared with the temperature setting value in the temperature setting device 54, and the deviation signal is
It is input to the D controller 55.

一方、加減演算器33にて得られた信号をバイアス器5
6を介してバイアス信号に変換し、このバイアス信号と
、バイアス器53からの信号と、PID調節計55から
の制御信号とを加減演算器57にて加減演算し、その出
力を電空変換器58で空気信号に変換し、熱水流量調整
弁21の開度を調整して温水ヘッダ9bの温度を制御す
る。
On the other hand, the signal obtained by the addition/subtraction calculator 33 is sent to the bias unit 5.
This bias signal, the signal from the bias device 53, and the control signal from the PID controller 55 are added and subtracted by an addition/subtraction calculator 57, and the output is converted to a bias signal by an electro-pneumatic converter. At step 58, the signal is converted into an air signal, and the opening degree of the hot water flow rate regulating valve 21 is adjusted to control the temperature of the hot water header 9b.

温水熱変換器14の二次側に供給される温水の温度を第
1の温水温度検出器25で検出し、この検出値を温度変
換器60で電流信号に変換し、温度設定器61で温度設
定値と比較し、その偏差信号をPID調節計62に導い
て制御信号とし、この信号と、バイアス器56からのバ
イアス信号とを加減演算器63で加減演算し、得られた
信号を電空変換器64で空気信号に変換し、温水熱交三
方弁(第1の温水流量調整弁)23の開度を調整して第
1の温水供給温度を制御している。
The temperature of the hot water supplied to the secondary side of the hot water heat converter 14 is detected by the first hot water temperature detector 25, this detected value is converted into a current signal by the temperature converter 60, and the temperature is set by the temperature setting device 61. It is compared with the set value, the deviation signal is led to the PID controller 62 as a control signal, this signal and the bias signal from the bias device 56 are added and subtracted by the adder/subtractor 63, and the obtained signal is electro-pneumatically The converter 64 converts it into an air signal, and adjusts the opening degree of the hot water heat exchanger three-way valve (first hot water flow rate regulating valve) 23 to control the first hot water supply temperature.

更に、第2の温水温度検出器27の検出信号を温度変換
器65で電流信号に変換した後、温度設定器66で温度
設定値と比較し、その偏差信号をPID調節計67に導
いて制御信号とし、この制御信号と、バイアス器56か
らのバイアス信号とを加減演算器68で加減演算し、得
られた信号を電空変換器69で空気信号に変換し、第2
の温水流量調整弁(貯湯槽三方弁)8の開度を調整して
第2の温水供給温度を制御している。
Furthermore, after the detection signal of the second hot water temperature detector 27 is converted into a current signal by the temperature converter 65, it is compared with the temperature setting value by the temperature setting device 66, and the deviation signal is guided to the PID controller 67 for control. This control signal and the bias signal from the bias device 56 are added and subtracted by an addition/subtraction calculator 68, and the obtained signal is converted into an air signal by an electro-pneumatic converter 69.
The second hot water supply temperature is controlled by adjusting the opening degree of the hot water flow rate adjustment valve (hot water tank three-way valve) 8.

以上の構成により、貯湯槽7および温水熱交換器14か
ら供給される温水供給流量の負荷変動と蒸気蓄熱器15
から供給される蒸気負荷流量とのいずれか高値を高値優
先回路により選択し、熱負荷追従時の発電機出力を上げ
て熱負荷変動要因による負荷供給の低下を防止すること
ができる。
With the above configuration, load fluctuations in the hot water supply flow rate supplied from the hot water storage tank 7 and the hot water heat exchanger 14 and the steam heat storage 15
The higher value priority circuit selects the higher value of the steam load flow rate supplied from the generator and the steam load flow rate supplied from the generator to increase the generator output during thermal load tracking, thereby preventing a drop in load supply due to thermal load fluctuation factors.

また、温水負荷か瞬時に増大した場合でも、蒸気蓄熱器
の熱水を有効利用して熱負荷の変動による供給負荷の低
下を防止することができる。
Furthermore, even if the hot water load increases instantaneously, it is possible to effectively utilize the hot water in the steam regenerator to prevent a drop in the supply load due to fluctuations in the heat load.

[発明の効果] 以上説明したように、本発明は切替器の切替操作により
電気負荷追従運転と熱負荷追従運転の運転モード切替え
を行うことができ、しかも熱負荷追従運転時に蒸気負荷
と温水負荷変動分を修正する修正量を、高負荷優先回路
により、高負荷側の負荷を優先させ、発電機を駆動する
内燃機関の負荷を上昇または減少させることにより、熱
負荷側の負荷変動による供給低下を防止できる。
[Effects of the Invention] As explained above, the present invention is capable of switching the operation mode between electrical load following operation and thermal load following operation by switching the switching device, and moreover, it is possible to switch the operation mode between the electric load following operation and the thermal load following operation, and moreover, the operation mode can be switched between the steam load and hot water load during the thermal load following operation. A high load priority circuit prioritizes the load on the high load side and increases or decreases the load on the internal combustion engine that drives the generator, thereby reducing supply due to load fluctuations on the thermal load side. can be prevented.

また、温水負荷が蒸気負荷量に対して上昇した場合には
、蒸気蓄熱器の熱水を利用して温水負荷の変動防止を図
ることにより、熱利用率を向上させることかできる。
Furthermore, when the hot water load increases relative to the steam load amount, the heat utilization rate can be improved by using the hot water in the steam heat storage device to prevent fluctuations in the hot water load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱雷併給装置における制御装置の
実施例の要部を示すブロック図、第2図は熱電併給装置
の全体構成を例示するブロック図である。 1・・・・・・・・・同期発電機 2・・・・・・・・・内燃機関 3.8,11.17,21.23・・・調整弁4.22
,24,26.28・・・流量検出器5.6・・・排熱
熱交換器 7・・・・・・・・・貯湯槽 9a・・・・・・・・・冷水ヘッダ 9b・・・・・・・・・温水ヘッダ 10・・・・・・・・・冷却ポンプ 12.19.25.27・・・温度検出器13・・・・
・・・・・温水系統 14・・・・・・・・・温水熱交換器 15・・・・・・・・・蒸気蓄熱器 16・・・・・・・・・温水供給ポンプ18.20・・
・圧力検出器 29・・・・・・・・・制御装置 30a〜30d・・・開平演算器 33.35,36,38,51,57.63゜6 8・
・・・・・・・・加減演算器 34・・・・・・・・・高値優先回路 35.41,47,54,61.66・・・設定器 37.56・・・バイアス器 39.43.48.55,62.67・・・PID調節
計 42・・・・・・・・・切替器 44.45.49,58,64.69 ・・・電空変換器
FIG. 1 is a block diagram showing essential parts of an embodiment of a control device in a combined heat and power generation device according to the present invention, and FIG. 2 is a block diagram illustrating the overall configuration of the combined heat and power generation device. 1...Synchronous generator 2...Internal combustion engine 3.8, 11.17, 21.23...Adjusting valve 4.22
, 24, 26.28...Flow rate detector 5.6...Exhaust heat exchanger 7...Hot water storage tank 9a...Cold water header 9b... ......Hot water header 10...Cooling pump 12.19.25.27...Temperature detector 13...
...Hot water system 14...Hot water heat exchanger 15...Steam heat storage 16...Hot water supply pump 18.20・・・
・Pressure detector 29...Control device 30a to 30d...Square root calculator 33.35, 36, 38, 51, 57.63°6 8.
...... Addition/subtraction calculator 34... High value priority circuit 35.41, 47, 54, 61.66... Setting device 37.56... Bias device 39. 43.48.55, 62.67... PID controller 42... Switcher 44.45.49, 58, 64.69... Electro-pneumatic converter

Claims (1)

【特許請求の範囲】[Claims] 発電機を駆動する内燃機関と;この内燃機関に供給され
る燃料の供給流量を検出・調整する燃料流量検出器およ
び燃料流量調整弁と;前記内燃機関からの排熱により冷
水を加熱して温水を発生させる排熱熱交換器と;この排
熱熱交換器の受熱側に供給された温水の出口温度を検出
する温水温度検出器および冷水供給流量を調整する冷水
流量調整弁と;前記排熱熱交換器の受熱側からの温水を
、排ガス熱交換器にて、前記内燃機関からの排ガスによ
り更に加熱して発生させた蒸気を蓄熱する蒸気蓄熱器と
;前記排熱熱交換器に供給される温水の供給流量を調整
する第1の温水流量調整弁と;前記蒸気蓄熱器の器内の
熱水温度を検出し、温水ヘッダへの供給流量を調整する
熱水流量調整弁と;前記温水熱交換器の与熱側から貯湯
槽の与熱側に供給される温水の供給流量を調整する第2
の温水流量調整弁と;前記温水熱交換器および貯湯槽の
各受熱側から温水負荷にそれぞれ供給される温水供給流
量を検出する第1および第2の温水流量検出器と;前記
蒸気蓄熱器から蒸気負荷に供給される蒸気の供給流量を
検出する蒸気流量検出器と;前記蒸気蓄熱器の器内圧力
を検出する器内圧力検出器と;を有する熱電併給装置に
おいて;前記燃料流量検出器により検出された検出値と
前記発電機の電力設定値とを比較して偏差を出力する比
較器と;前記第1および第2の温水流量検出器により検
出された温水流量検出値の加算値と、上記蒸気流量検出
器により検出された蒸気流量検出値を比較し、高値を出
力する高値優先回路の出力信号により、熱負荷追従時切
替器で燃料流量調整弁の開度を調整して燃料流量調整弁
に制御信号を与える調節計と;前記第1および第2の温
水流量検出器により検出された温水供給流量検出値をそ
れぞれ加減演算回路で演算し、バイアス信号として前記
蒸気蓄熱器の器内の温度検出値と、前記排熱熱交換器出
口の温水の温度検出値の信号を加減演算器で演算した偏
差値の制限値チェックを行い、制限値以内であれば、そ
れらの偏差信号をバイアス信号として前記排熱熱交換器
出口の温度検出値と温度設定値とを比較し、それらの偏
差信号を前記調節計に与えた信号に加減演算し、前記排
熱熱交換器の受熱側の冷水供給流量を調整し、前記第1
および第2の温水供給温度検出器により検出された温水
供給温度検出値と温度設定値とを比較し、それらの偏差
信号を前記調節計に与えて前記バイアス信号を先行的に
加え、前記第1および第2の温水流量調整弁および冷水
流量調整弁に与え、弁開度を調整させる先行制御装置と
;を備えることを特徴とする熱電併給装置。
an internal combustion engine that drives a generator; a fuel flow detector and a fuel flow adjustment valve that detect and adjust the flow rate of fuel supplied to the internal combustion engine; and hot water by heating cold water using exhaust heat from the internal combustion engine. an exhaust heat heat exchanger that generates; a hot water temperature detector that detects the outlet temperature of hot water supplied to the heat receiving side of the exhaust heat heat exchanger; and a cold water flow rate adjustment valve that adjusts the cold water supply flow rate; a steam regenerator for storing heat of steam generated by further heating hot water from the heat receiving side of the heat exchanger with exhaust gas from the internal combustion engine in an exhaust gas heat exchanger; a first hot water flow rate adjustment valve that adjusts the flow rate of hot water supplied to the hot water header; a hot water flow rate adjustment valve that detects the temperature of hot water in the steam heat storage device and adjusts the flow rate of hot water supplied to the hot water header; A second controller that adjusts the flow rate of hot water supplied from the heating side of the heat exchanger to the heating side of the hot water storage tank.
a hot water flow rate regulating valve; first and second hot water flow rate detectors for detecting the hot water supply flow rates respectively supplied to the hot water load from the respective heat receiving sides of the hot water heat exchanger and the hot water storage tank; In a combined heat and power system having: a steam flow rate detector that detects the supply flow rate of steam supplied to a steam load; and an internal pressure detector that detects the internal pressure of the steam regenerator; a comparator that compares the detected value and the power setting value of the generator and outputs a deviation; an added value of the hot water flow rate detection values detected by the first and second hot water flow rate detectors; The fuel flow rate is adjusted by comparing the detected steam flow rate values detected by the steam flow rate detector and adjusting the opening degree of the fuel flow rate adjustment valve using the heat load follow-up switching device based on the output signal of the high value priority circuit that outputs the high value. a controller that provides a control signal to the valve; a hot water supply flow rate detection value detected by the first and second hot water flow rate detectors is calculated by an addition/subtraction calculation circuit; The temperature detection value and the signal of the hot water temperature detection value at the outlet of the exhaust heat heat exchanger are checked for the limit value of the deviation value calculated by the adder/subtraction calculator, and if it is within the limit value, the deviation signal is used as the bias signal. The detected temperature value at the outlet of the exhaust heat heat exchanger is compared with the temperature set value, and the difference signal is added or subtracted to the signal given to the controller, and the chilled water is supplied to the heat receiving side of the exhaust heat heat exchanger. Adjust the flow rate and
and compares the hot water supply temperature detection value detected by the second hot water supply temperature detector with the temperature set value, provides their deviation signal to the controller to apply the bias signal in advance, and and a preceding control device that is applied to the second hot water flow rate adjustment valve and the cold water flow rate adjustment valve to adjust the valve opening degree.
JP2191894A 1990-07-18 1990-07-18 Cogeneration system Expired - Fee Related JP2593575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2191894A JP2593575B2 (en) 1990-07-18 1990-07-18 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2191894A JP2593575B2 (en) 1990-07-18 1990-07-18 Cogeneration system

Publications (2)

Publication Number Publication Date
JPH0476259A true JPH0476259A (en) 1992-03-11
JP2593575B2 JP2593575B2 (en) 1997-03-26

Family

ID=16282219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191894A Expired - Fee Related JP2593575B2 (en) 1990-07-18 1990-07-18 Cogeneration system

Country Status (1)

Country Link
JP (1) JP2593575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280304A (en) * 1992-03-31 1993-10-26 Toshiba Corp Heat and electricity feeder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280304A (en) * 1992-03-31 1993-10-26 Toshiba Corp Heat and electricity feeder

Also Published As

Publication number Publication date
JP2593575B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
AU2005261689B2 (en) Process for operating a continuous steam generator
JPH0476259A (en) Heat and electricity parallel supply device
JP2960607B2 (en) Cogeneration system
JP2000161084A (en) Fuel heating device
JP2734390B2 (en) Hot water outlet temperature control method
JPH0786329B2 (en) Combined heat and power equipment
JP2651561B2 (en) Temperature control device for co-generation system
JP3488021B2 (en) LNG decompression heating controller
JPH06215786A (en) Control device for fuel cell
JP2542165B2 (en) Optimal temperature controller for cogeneration system
JPS58115242A (en) Temperature controller of instantaneous water heater
JPH0434359Y2 (en)
JPH0633730B2 (en) Control device for waste heat utilization system
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JP2637837B2 (en) Water heater
JPH05149108A (en) Drum level control device for compound cycle power generation plant
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine
JPH03260503A (en) Drain water level controller for water supplying and heating device
JP2567013B2 (en) Exhaust heat utilization system
JPH0733891B2 (en) Plant warming controller
JP2002286202A (en) Boiler vapor temperature control device
JPS60159314A (en) Recirculating flow control device for water supply pump
JPH09236202A (en) Apparatus and method for controlling fuel of boiler
JPH07332603A (en) Boiler starting control device
JPS6333043B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees