JPH0475733A - Twisting method for high-strength ultrafine wire - Google Patents

Twisting method for high-strength ultrafine wire

Info

Publication number
JPH0475733A
JPH0475733A JP18664890A JP18664890A JPH0475733A JP H0475733 A JPH0475733 A JP H0475733A JP 18664890 A JP18664890 A JP 18664890A JP 18664890 A JP18664890 A JP 18664890A JP H0475733 A JPH0475733 A JP H0475733A
Authority
JP
Japan
Prior art keywords
wire
bobbin
strength
ultra
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18664890A
Other languages
Japanese (ja)
Inventor
Takaaki Yuzutori
柚鳥 登明
Kazushige Aiwa
相輪 和茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18664890A priority Critical patent/JPH0475733A/en
Publication of JPH0475733A publication Critical patent/JPH0475733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avert the deterioration of the shape and accuracy of a twisted wire with lapse of time by disposing respective bobbins around which ultrafine wires are wound on the outer peripheral part of a disk and rotating the disk to bundle the respective ultrafine wires while revolving the respective bobbins. CONSTITUTION:A core wire 2a consisting of the high-strength ultrafine wires is wound around the bobbin 18. The core wire 2a consists of a two-phase structure steel wire having <=120mum wire diameter and >=300kgf/mm<2> tensile strength. A take-up bobbin 17 is rotated and the disk 11 is rotated by a driving motor 14. The respective outer wires 2b are then spirally wound around the central core wire 2a while revolving and the twisted wire 2 is thereby formed. This wire is taken up on the take-up bobbin 17. The twisted wire 2 is thereafter immersed into, for example, a resin bath and is coated with the resin, by which the minirope is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、線径120μ−以下の高強度極細綿を複数本
撚り合わ(−て燃^つ線を製造する加工方法に関し、特
に撚り合ね一1点加工する際の極細線に生しるねり、れ
を低減して形状7寸法精度の経時劣化を回避できるとと
もに、強度、靭性への悪影響を防止できるようにj−た
撚り合わせ方法の改善に関′づ〔従来の技術〕 例えば、計測機器、複写機、あるいは印字プリンタ等に
おいて、可動部材に運動を伝達U7てこれの位置制御を
行う場合、鍛二ローブが採用されている。このミニロー
ブは、例えば、」−記印字プリンタにおいて印字へ、ド
を所定値W t=移動さ−)債る際にアクチュエータか
らの運動を印字ヘッドに伝達するためのものであり、こ
のようなミニローブの一例とL7て、第6図に示す構造
のものがある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a processing method for manufacturing a wire by twisting together a plurality of high-strength ultrafine cottons with a wire diameter of 120 μm or less, and in particular, A twisting method that reduces the twisting and wrinkling that occur in ultra-fine wires when processing one point of the wire, thereby avoiding deterioration of the shape's dimensional accuracy over time, as well as preventing negative effects on strength and toughness. [Prior Art] For example, in measuring instruments, copying machines, printing printers, etc., when transmitting motion to a movable member U7 and controlling the position of the movable member, a forged lobe is employed. This mini-lobe is used, for example, to transmit the motion from the actuator to the print head when the print head is moved by a predetermined value Wt=-) to print in a printing printer. As an example of L7, there is a structure shown in FIG.

このミニローブ1は、金属極細綿からなるコア線2aを
中心に直線状に配置するとともに、これの周囲に6本の
極細線からなるアウタ線2b・・をスパイラル状に撚り
合ね(えてなる撚り線2により構成されている。、τの
ミニローブlには高強度高靭性が要求されるとともに、
制御精度を向上させるためにばね定数を大きくして軸方
向の伸び(を可能な限り減少さセる、−古が必要である
ことから、−に記コア線2a、 アウタ線21)にばピ
アノ線ステンレス線等が使用されている。
This mini-lobe 1 has a core wire 2a made of ultra-fine metal cotton arranged in a straight line, and outer wires 2b made of six ultra-fine wires twisted together in a spiral around the core wire 2a. The minilobe l of τ is required to have high strength and toughness, and
In order to improve control accuracy, the spring constant is increased to reduce the axial elongation as much as possible. A stainless steel wire, etc. is used.

このようなミニローブ1を構成する撚り線2を製造する
場合、従来、第7図に示すような加工装置が使用されて
いる。これは、回転自在に支持されたドラム3の一端に
シャフト4aを接続し、該ンヤフト4aにプーリ4b、
4cを介して駆動モータ5を接続し、上記ドラム3の他
端外方にポイス82巻取ボビン9を配設して構成されて
いる。
When manufacturing the stranded wire 2 constituting such a minilobe 1, a processing device as shown in FIG. 7 has conventionally been used. A shaft 4a is connected to one end of a rotatably supported drum 3, and a pulley 4b,
A drive motor 5 is connected through the drum 4c, and a pois 82 and a winding bobbin 9 are disposed outside the other end of the drum 3.

また、上記ドラム3内の軸心部には所定間隔ごとに6個
のアウタ線ボビン6が配置されており、上記ドラム3の
軸方向外方にはコア線ポビン7が配置されている。この
コア線ボビン7にはコア線2aが巻回されており、該コ
ア線2aは上記ドラム3の軸芯を遣ってボイス8に挿通
されている。さらに、上記各アウタ線ポビン6には上記
コア線2aに撚り合わされるアウタ線2bがそれぞれ巻
回されており、この各アウタ線2bは上記ドラム3の外
周面に引き出された後、集束されて上記ボイス8に挿通
されている。
Further, six outer wire bobbins 6 are arranged at predetermined intervals in the axial center of the drum 3, and a core wire bobbin 7 is arranged outside the drum 3 in the axial direction. A core wire 2a is wound around the core wire bobbin 7, and the core wire 2a is inserted into the voice 8 using the axis of the drum 3. Further, each outer wire pobbin 6 is wound with an outer wire 2b which is twisted around the core wire 2a, and each outer wire 2b is pulled out to the outer peripheral surface of the drum 3 and then bundled. It is inserted into the voice 8 mentioned above.

上記装置において撚り線2を製造するには、上記ドラム
3を高速回転させながらコア線2a、アウタ線2bをボ
イス8に集束させ、ここで撚り合わせて撚り線2に成形
し、これを巻取ボビン9で巻き取る。即ち、上記従来方
法では、コア線2aは自転するだけであるのに対し、ア
ウタ線2bはボビン6とボイス8との間の部分が糧跳び
のように振り回されることから自転しながら公転するこ
ととなり、この縄跳びの原理で撚り線化が行われる。
In order to manufacture the stranded wire 2 using the above device, the core wire 2a and the outer wire 2b are focused on the voice 8 while rotating the drum 3 at high speed, where they are twisted together to form the stranded wire 2, which is then wound. Wind with bobbin 9. That is, in the conventional method described above, the core wire 2a only rotates on its own axis, whereas the outer wire 2b rotates around its axis because the portion between the bobbin 6 and the voice 8 is swung around like a food jumper. The wire is twisted using this principle of skipping rope.

ここで、近年の各種機器の小型化、軽量化、高速化のな
かで、ミニロープ1としては、所定の強度、靭性を確保
しながら、より線径の細いものが要請されている。この
ような要請に応えるために、本件出願人は先に低炭素二
相組織m線を提案した。
Here, as various devices have become smaller, lighter, and faster in recent years, there has been a demand for mini ropes 1 that have a smaller wire diameter while ensuring predetermined strength and toughness. In order to meet such demands, the applicant of the present invention has previously proposed a low carbon two-phase structure m-line.

この低炭素二相組織鋼線は、重量%でC: 0.01〜
0.50%、Si:3.0%以下、Mn:5.0%以下
、残部Fe及び不可避的不純物からなる線径3.0〜6
.0fiの線材を一次熱処理、及び−次冷間伸線、二次
熱処理、及び二次冷間伸線により線径120μ−以下に
強加工して製造されたものである。なお、かかる製造方
法は特開昭62−20824号公報に記載されている。
This low carbon dual phase steel wire has C: 0.01 to 0.01 in weight%.
0.50%, Si: 3.0% or less, Mn: 5.0% or less, balance Fe and inevitable impurities, wire diameter 3.0-6
.. This wire is manufactured by subjecting a 0fi wire rod to primary heat treatment, secondary cold wire drawing, secondary heat treatment, and secondary cold wire drawing to reduce the wire diameter to 120 μm or less. Incidentally, such a manufacturing method is described in JP-A-62-20824.

上記方法により製造された低炭素二相組織鋼線からなる
金属極細線は、上記強加工による加工セルが一方向に繊
維状に配列された繊維状微細金属組織を有しており、か
つ上記加工セルの大きさ1繊維間隔が5〜100人、5
0−1000人であり、さらに引張強度が300〜60
0 kgf/m”以上である。このような低炭素二相組
織鋼線は、線径120μ−以下で引張強度300 kg
f/m”以上有し、上〔発明が解決しようとする問題点
〕 ところで、線径が120μ−以下、引張強度が300k
f/m”以上の高強度極細線を用いて上記従来の撚り線
加工方法により撚り線を製造すると、該撚り線に著しい
ねじれが生しることが判明した。
The ultrafine metal wire made of the low carbon dual-phase steel wire produced by the above method has a fibrous fine metal structure in which cells processed by the above strong processing are arranged in a fibrous shape in one direction, and Cell size 1 fiber spacing 5-100 people, 5
0-1000 people, and the tensile strength is 300-60
0 kgf/m" or more. Such a low carbon dual-phase steel wire has a wire diameter of 120μ or less and a tensile strength of 300 kg.
[Problem to be solved by the invention] By the way, the wire diameter is 120μ or less and the tensile strength is 300K.
It has been found that when a stranded wire is manufactured by the above-mentioned conventional stranded wire processing method using a high-strength ultrafine wire of f/m'' or more, the stranded wire is significantly twisted.

このようなねしれの著しい撚り線で例えばミニロ性面に
悪影響を及ぼすことになる。
Such stranded wires with significant twist will adversely affect, for example, the mini-rotation surface.

本発明の目的は、線径120μ霞以下、引張強度300
 kgf/m”以上の高強度極細線を撚り線化する際の
ねじれを低減して特性3性能への悪影響を回避できる高
強度極細線の撚り線加工方法を提供することにある。
The purpose of the present invention is to have a wire diameter of 120μ or less and a tensile strength of 300μ.
An object of the present invention is to provide a method for stranding high-strength ultra-fine wires that can reduce twisting when stranding high-strength ultra-fine wires of kgf/m'' or more and avoid adverse effects on characteristic 3 performance.

C問題点を解決するための手段〕 本件発明者は、上記120μ−以下の高強度極細線を撚
り線加工する際にねじれが生じる原因について検討した
。従来の加工装置は生産性の向上を図る目的η1ら、ド
ラムを高速回転できるように各ボビンをドラムの軸芯に
配設する構造となっている。このようにボビンを軸芯に
配置したことから各極細線をドラムの外周面に引き出し
た後、ボイスまで延長し、ここで集束させることとなる
。そのため各極細線は縄跳びのように振り回され、自転
しながら公転することとなり、その結果、アウタ線にね
しれの蓄積が大きくなり易い。この場合、従来の撚り線
のように素線の強度が低く、しかも線径が比較的太い場
合は、素線自体にねしれが生じても、撚り線化した際の
各素線の塑性変形によって上記ねじれが9収され、その
結果、撚り線の状態ではねj)れはあまり生しなかった
4)のJ:考えられる。しかし、本発明が対象とする線
径120μ−以下、引張強度300 kgf/lyn”
以上の高強度極細線を、」二記従来方法で撚り合わせる
と、線径が細く、また引張強度が大きい、二とから、素
線自体のねじれのt積が大きくなり、しかも撚り線化に
よる素線自体の塑性変形が少ないことからねじれを吸収
できず、その結果、撚り線の状態でのねしれが大きくな
るものと考えられる。
Means for Solving Problem C] The inventor of the present invention investigated the cause of twisting when the high-strength ultrafine wire of 120 μm or less is twisted. Conventional processing equipment has a structure in which each bobbin is disposed at the axis of the drum so that the drum can rotate at high speed for the purpose of improving productivity η1. Since the bobbin is arranged on the axis in this way, each ultrafine wire is drawn out to the outer peripheral surface of the drum, and then extended to the voice, where it is focused. Therefore, each ultra-thin wire is swung around like a skipping rope and revolves around its own axis, and as a result, the outer wire is likely to accumulate a large amount of twist. In this case, if the strength of the strands is low and the wire diameter is relatively thick, as in conventional stranded wires, even if the strands themselves are twisted, each strand will undergo plastic deformation when twisted. As a result, the above-mentioned twist was reduced by 9, and as a result, the stranded wire did not cause much sagging. 4) J: This can be considered. However, the present invention targets wires with a diameter of 120μ or less and a tensile strength of 300 kgf/lyn.
When the above-mentioned high-strength ultra-fine wires are twisted together using the conventional method described in Section 2, the wire diameter is small and the tensile strength is large. It is thought that since the plastic deformation of the strands itself is small, twisting cannot be absorbed, and as a result, the twist in the stranded wire becomes large.

本発明者は、−1,述のように従来方法による場合は、
素線が自転しながら公転するために上記ねしれか$量に
発生t7ているものと考え、上記自転置を抑制すれば、
上記問題点を解決できることに想到し、本発明を成した
ものである。
The inventor believes that -1. In the case of the conventional method as described above,
Assuming that the above-mentioned webbing occurs in the amount t7 because the strand revolves while rotating, and suppressing the above-mentioned rotation, we get
The present invention was created based on the idea that the above problems could be solved.

そこで本発明は、線径120μ四以下、引張強度300
 kgf/+u+”以上の高強度極細線を複数本撚り合
わせて撚り線加工する方法において、円形部材の外周部
に上記各極細線が巻回されたボビンを複数配置し、上記
円板を回転させることによって各ボビンを公転さ−ぜつ
つ各ボビンからの極細線を集束させて撚り線化ずろこと
を特徴と1,27いる。
Therefore, the present invention has a wire diameter of 120μ4 or less and a tensile strength of 300μ4 or less.
In a method of twisting together a plurality of high-strength ultra-fine wires of kgf/+u+" or more and processing them into a twisted wire, a plurality of bobbins each having each of the above-mentioned ultra-fine wires wound thereon are arranged around the outer periphery of a circular member, and the disk is rotated. By doing this, each bobbin is revolved and the ultra-fine wires from each bobbin are focused and twisted into wires.

[作用] 本発明に係る高強度極細線の撚り線加工方法りよれ器、
ど、円板の外周部乙こ配置された各ボビンからの各極細
線を集束させるようで1こしたので、従来の縄跳びのよ
うに極細線が振り回されることはなくなり、従ってそれ
だけ一ヒ記各極細線の自転量を抑制でき、各極細線自体
のねしりのt積置を犬幅乙こ減少できる。その結果、線
径120/zx以下、引張強度300 bf、/M2以
上の高強度極細線を撚り緑化する際のねし2れを低減で
き、例えばミニローブを避できる。
[Function] High-strength ultra-fine wire strand processing method twister according to the present invention,
Since the ultra-fine wires from each bobbin placed on the outer circumference of the disk are converged, the ultra-fine wires will no longer be swung around like in conventional jump ropes, and therefore each The amount of rotation of the ultra-fine wires can be suppressed, and the stack of twists of each ultra-fine wire itself can be reduced by two degrees. As a result, it is possible to reduce twisting when twisting and greening high-strength ultrafine wires with a wire diameter of 120/zx or less, a tensile strength of 300 bf, and /M2 or more, and for example, minilobes can be avoided.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は未発明の一実施例C5こよる高強度
極細線の撚り線加工方法を説明するだめの図である。本
実施例ではミニローブを構成する撚り線を製造する場合
を例にとって説明する。
FIGS. 1 and 2 are diagrams for explaining a method for processing high-strength ultra-fine wires according to an uninvented embodiment C5. This embodiment will be explained by taking as an example a case where stranded wires constituting a minilobe are manufactured.

図番こおいて、10は本実施質の1熱り線加工方法を実
現する加工装置である。この加工装置10の円板11の
軸心部にはシャフト12が接続されており、該シャフト
12にはプーリ13a、13bを介して駆動モータ14
が接続されている。また、上記円板11の」一方にはガ
イド部材15を介在(7てボイス16が配設されており
、該ボイス16の上方には巻取ボビン17が配設されて
いる。
In the figure, 10 is a processing device that implements the one-hot wire processing method of the present embodiment. A shaft 12 is connected to the axial center of the disc 11 of this processing device 10, and a drive motor 14 is connected to the shaft 12 via pulleys 13a and 13b.
is connected. Further, a voice 16 is disposed on one side of the disc 11 with a guide member 15 interposed therebetween (7), and a winding bobbin 17 is disposed above the voice 16.

さらに、上記円板11の下方にはコア線ボビン18が配
設されており、該ボビン18には高強度極細線からなる
コア線2aが巻回されている。、−のコア線2aは線径
120μ圏以下で引張強度300〜600 bf/mx
”の低炭素二相組織鋼線からなり、該Il纏は]−述の
組成を有(−、ト述の製造方法によって製造されたもの
である。ト記コア線2aは上記円板11の中心を貫通し
て上記ボイス16km挿通されている。
Further, a core wire bobbin 18 is disposed below the disk 11, and a core wire 2a made of a high-strength ultra-fine wire is wound around the bobbin 18. , - core wire 2a has a wire diameter of 120μ or less and a tensile strength of 300 to 600 bf/mx
The core wire 2a is made of a low-carbon dual-phase steel wire having a composition as described above. The voice 16 km is inserted through the center.

そして、上記円板11の上面の夕)周絨には、所定角度
間隔ごとに6個のアウタ綿ボビン20が配設されている
。この各ボビン20は支持部材21により回転自在に軸
支されており、該支持部材21は上記円板11に固定さ
れている。また、−上記各ボビン20には高強度極細線
からなるアウタ綿2bが巻回されており、該各アーフタ
線2bは上記と同様の低炭素二相組織鋼線からなってい
る、さらに、該各アウタ線2bは上記ボイス16に挿通
されており、これによりコア綿2a、アウタ線21〉は
ボイス16に集束されており、該ボ1゛ス16内で撚り
合わされる。
Six outer cotton bobbins 20 are arranged at predetermined angular intervals on the circumference of the upper surface of the disk 11. Each bobbin 20 is rotatably supported by a support member 21, and the support member 21 is fixed to the disk 11. Further, - each bobbin 20 is wound with an outer cotton 2b made of a high-strength ultra-fine wire, and each of the afterta wires 2b is made of the same low carbon dual-phase steel wire as described above; Each outer wire 2b is inserted through the voice 16, so that the core cotton 2a and the outer wire 21 are bundled in the voice 16 and twisted together within the voice 16.

次!に、」二記加T装置11N、″″、よる本実施例の
撚り線加工方法を説明する8 まず、コア綜2a、アう夕線2bを集束さ(4丁ボイス
16内に挿入するとともに巻取ボビン17に固着する。
Next! Next, we will explain the stranded wire processing method of this embodiment using the second adding T device 11N. It is fixed to the winding bobbin 17.

この状態で巻取ボビン17を回転させるとともに、駆動
モータ14により円板11を回転させる。すると、中心
のコアli 2aに各アウタ綿2bが公転しながら螺旋
状ζこ巻き付き、これにより撚り綿2が形成さね、巻取
ボビン17に巻回される。j、2かる後、この撚り綿2
を、例えば樹脂浴中に浸潤(2て樹脂を被覆することに
よりミニローブが製造される。
In this state, the winding bobbin 17 is rotated, and the disk 11 is also rotated by the drive motor 14. Then, each outer cotton 2b is wound around the central core li 2a in a spiral shape while revolving, thereby forming a twisted cotton 2, which is wound around the winding bobbin 17. j, After 2, this twisted cotton 2
Minilobes are produced by infiltrating (2) and coating with resin, for example in a resin bath.

このように本実施例によれば、駆動モータ14により回
転駆動される円板11の外周縁に各アウタ線ボビン20
を配置し、上記円板11を回転させつつコア線2a、ア
ウタ線2bを撚り合わせて撚りm2を製造したので、従
来のドラムの外周面に各極細線を引き出す構造のように
、アウタ線が振り回されることはなく、また各アウタ線
ボビン20とボイス16との距離を均等にできるととも
に、短くすることができ、それだけアウタ線2bの自転
量を抑制できる。その結果、線径120μm以下で引張
強度300 ktzf/1m”以上の高強度極細線から
なるコア線2a、アウタ&12bを撚り合わせ加工する
際のねしれを低減でき、ひいてはミニロープを形成した
場合の形状、精度の経時劣化を回避できるとともに、強
度、靭性等の特性面への悪影響を回避できる。さらにミ
ニロープに必要な強度、flJ性を確保しながら小径化
を実現でき、上述した各種機器の小型化、高速化に対応
できる。
As described above, according to this embodiment, each outer wire bobbin 20 is attached to the outer peripheral edge of the disk 11 that is rotationally driven by the drive motor 14.
The core wire 2a and the outer wire 2b were twisted together while rotating the disc 11 to produce the twisted wire m2, so the outer wire was The outer wire bobbin 20 is not swung around, and the distance between each outer wire bobbin 20 and the voice 16 can be equalized and shortened, and the amount of rotation of the outer wire 2b can be suppressed accordingly. As a result, it is possible to reduce twisting when twisting the core wire 2a, outer wire 12b, which are made of high-strength ultra-fine wires with a wire diameter of 120 μm or less and a tensile strength of 300 ktzf/1m or more, and to form a mini rope. , it is possible to avoid deterioration of accuracy over time, and also to avoid adverse effects on characteristics such as strength and toughness.Furthermore, it is possible to achieve a smaller diameter while ensuring the strength and flJ properties required for mini ropes, and to miniaturize the various devices mentioned above. , which can handle higher speeds.

なお、上記実施例では撚り線をミニロープに通用した場
合を例にとって説明したが、本発明の撚り線の用途は勿
論これに限られるものではなく、各種の補強用として採
用される場合にも適用できる。
In addition, in the above embodiment, the case where the stranded wire is used as a mini rope was explained as an example, but the use of the stranded wire of the present invention is of course not limited to this, and it can also be applied to cases where it is employed for various reinforcement purposes. can.

ここで、本実施例加工方法により製造された撚り線のね
じれ軽減効果を確認するために行った実験について説明
する。
Here, an experiment conducted to confirm the twist reduction effect of the stranded wire manufactured by the processing method of this example will be described.

この実験は、線径16〜30μm、引張強度520〜4
30 kgf/m”の低炭素二相組織鋼線を採用して上
記実施例方法により、第6図に示す断面形状を有する長
さ1mの撚り線を作成した。そして、第5図に示すよう
に、この撚り線の両端を接近させたときに自然に生じた
ねしれ巻き数を数えて、これをねじれ回数とした(例え
ば第5図(alは0で、第5図(′b)は4回である)
In this experiment, the wire diameter was 16 to 30 μm, and the tensile strength was 520 to 4.
A stranded wire with a length of 1 m and a cross-sectional shape shown in FIG. 6 was created by using a low carbon dual-phase steel wire of 30 kgf/m" by the above-mentioned method. Then, as shown in FIG. Then, when the two ends of the stranded wire were brought close together, the number of twists that naturally occurred was counted, and this was taken as the number of twists (for example, in Figure 5 (al is 0, Figure 5 ('b) is 4). times)
.

なお、比較するために5US304.及び低炭素二相組
織tI4線を採用して従来のドラムによる加工方法によ
り撚り線を作成し、該撚り線のねじれ回数を数えた。
For comparison, 5US304. A stranded wire was made using a tI4 wire with a low carbon two-phase structure using a conventional processing method using a drum, and the number of twists of the stranded wire was counted.

第3図、第4図、及び表はその結Hz示す、この表中、
階1〜11は従来の加工方法により作成した撚り線を示
し、うち隘1〜5は低炭素二相組織1gI線、隘6〜1
1は5US304である。また隘12〜14は本実施例
の加工方法により作成した撚り線を示す、また、撚りピ
ンチRとは、極細線が一周する長さしを撚り線の外径り
で割った値である。
Figures 3 and 4 and the table show the results in Hz; in this table,
Floors 1 to 11 show stranded wires made by conventional processing methods, among which floors 1 to 5 are low carbon two-phase structure 1gI wire, floors 6 to 1
1 is 5US304. Dimensions 12 to 14 indicate the stranded wires produced by the processing method of this example, and the strand pinch R is the value obtained by dividing the length of one round of the ultra-fine wire by the outer diameter of the stranded wire.

各図、及び表からも明らかなように、線径30〜150
 μ鴎、引張強度270〜200蹟f / m ”の5
US304線の場合(隘6〜11)は、いずれもねしれ
回数が6〜0と少なくそれほど問題にはならない。一方
、線径16〜30μmで引張強度520〜430 kr
f/+n”の低炭素二相組織鋼線を従来方法で加工する
と(−1〜5) ねしれ回数は15〜10と増えている
。この実験からも線径が細くなるほど、また引張強度が
大きくなるほどねじれ回数は大きくなることがわかる(
第3図参照)、また、ピッチRとねしれ回数との関係で
は、ピッチが小さいほどねじれ回数は多く、該ピッチが
大きいほどねしれ回数は少ないことがわかる(第4図参
照)。
As is clear from each figure and table, the wire diameter is 30 to 150.
μ seaweed, tensile strength 270-200 f/m”5
In the case of US304 wire (numbers 6 to 11), the number of twists is small, 6 to 0, and is not a big problem. On the other hand, the wire diameter is 16-30 μm and the tensile strength is 520-430 kr.
f/+n" low carbon duplex steel wire is processed using the conventional method (-1 to 5), the number of torsions increases to 15 to 10. This experiment also shows that as the wire diameter becomes thinner, the tensile strength increases. It can be seen that the larger the number of twists, the greater the number of twists (
Also, regarding the relationship between the pitch R and the number of twists, it can be seen that the smaller the pitch, the greater the number of twists, and the larger the pitch, the fewer the number of twists (see FIG. 4).

これに対して、本実施例の加工方法により作成された撚
り線の場合(m12〜14)は、いずれもねしり回数が
6〜2と大幅に低減できており、撚り合わせする際の自
転量を抑制することによる効果が認められる。
On the other hand, in the case of the twisted wires (m12 to 14) created by the processing method of this example, the number of twists was significantly reduced to 6 to 2, and the amount of rotation during twisting was significantly reduced. The effect of suppressing this is recognized.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る高強度極細線の撚り線加工方
法によれば、円板の外周部に極細線が巻回された各ボビ
ンを配設し、該円板を回転させて各ボビンを公転させつ
つ各極細線を集束するようにしたので、各極細線の自転
量を抑制できる分だけねしれを低減でき、撚り線の形状
、精度の経時劣化を回避できるとともに、強度、靭性等
の特性面への悪影響を回避できる効果がある。
As described above, according to the high-strength ultra-fine wire stranding method according to the present invention, each bobbin wound with ultra-fine wire is arranged around the outer periphery of a disk, and the disk is rotated to form each bobbin. Since each ultra-fine wire is converged while rotating, it is possible to reduce torsion by the amount of rotation of each ultra-fine wire, and avoid deterioration of the shape and precision of the stranded wire over time, as well as improve strength, toughness, etc. This has the effect of avoiding adverse effects on the characteristics of

第11st

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例による高強度極細
線の撚り線加工方法を説明するための図であり、第1図
はその概略構成図、第2図はその円板の平面図、第3図
及び第4図はそれぞれ本実施例の効果を確認するために
行った実験結果を示す特性図、第5図+a+及び第5図
(blはそれぞれ実験方法を説明するための図、第6図
(al及び第6図中〕はそれぞれ一般的な撚り線の構造
を示す断面図側面図、第7図は従来の加工方法を示す概
略構成図である、 図において、2は撚り線、2a、2bは高強度極細線、
11は円板、20はボビンである。
FIGS. 1 and 2 are diagrams for explaining a method for processing high-strength ultra-fine wires according to an embodiment of the present invention. FIG. 1 is a schematic configuration diagram thereof, and FIG. The plan view, FIG. 3, and FIG. 4 are characteristic diagrams showing the results of experiments conducted to confirm the effects of this example, and FIG. 5+a+ and FIG. 2 and 6 (al and 6) are a cross-sectional side view showing the structure of a typical stranded wire, and FIG. 7 is a schematic configuration diagram showing a conventional processing method. Twisted wires, 2a and 2b are high-strength ultra-fine wires,
11 is a disc, and 20 is a bobbin.

Claims (1)

【特許請求の範囲】[Claims] (1)線径120μm以下、強度300kgf/mm^
2以上の高強度極細線を複数本撚り合わせて撚り線加工
する方法において、円形部材の外周部に上記各極細線が
巻回されたボビンを複数配置し、上記円板を回転させる
ことによって各ボビンを公転させつつ各ボビンからの極
細線を集束させて撚り線化することを特徴とする高強度
極細線の撚り線加工方法。
(1) Wire diameter 120μm or less, strength 300kgf/mm^
In a method of stranding two or more high-strength ultra-fine wires by twisting them together, a plurality of bobbins each having each of the above-mentioned ultra-fine wires wound thereon are arranged around the outer circumference of a circular member, and each of the above-mentioned ultra-fine wires is twisted by rotating the disc. A high-strength ultra-fine wire stranding method characterized by converging the ultra-fine wires from each bobbin into strands while rotating the bobbin.
JP18664890A 1990-07-13 1990-07-13 Twisting method for high-strength ultrafine wire Pending JPH0475733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18664890A JPH0475733A (en) 1990-07-13 1990-07-13 Twisting method for high-strength ultrafine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18664890A JPH0475733A (en) 1990-07-13 1990-07-13 Twisting method for high-strength ultrafine wire

Publications (1)

Publication Number Publication Date
JPH0475733A true JPH0475733A (en) 1992-03-10

Family

ID=16192259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18664890A Pending JPH0475733A (en) 1990-07-13 1990-07-13 Twisting method for high-strength ultrafine wire

Country Status (1)

Country Link
JP (1) JPH0475733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8136337B2 (en) 2009-12-23 2012-03-20 Albert Jackson Wire twisting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8136337B2 (en) 2009-12-23 2012-03-20 Albert Jackson Wire twisting device

Similar Documents

Publication Publication Date Title
JP3686451B2 (en) Steel cord manufacturing method
US5303498A (en) Fishing line
JP2000355889A (en) Steel cord for reinforcing rubber product and method and apparatus for producing the cord
CA1290995C (en) Apparatus and process of manufacturing a metal cord
JPH0475733A (en) Twisting method for high-strength ultrafine wire
EP1676000B1 (en) Method and device for manufacturing a wire cord
JPS62282088A (en) Method and apparatus for producing steel cord
JP2702074B2 (en) Hard-to-rotate wire rope
JPH08209567A (en) Metal cord, its production and composite material of the cord with rubber
JP5004287B2 (en) Twisted wire machine and method for producing stranded wire using the same
JPH07166485A (en) Production of metal cord and apparatus therefor
JP5759098B2 (en) Steel strand manufacturing method and apparatus
JPH0770962A (en) Wire rope
JPH0995879A (en) Slightly rotatable wire rope having high strength
JPH09137392A (en) Metallic cord, its production and rubber composite using the same cord
JP2002060163A (en) Fiber rope for elevator
JP2000073286A (en) Method and apparatus for producing steel cord
JPH01201592A (en) High-strength steel wire and steel cord for reinforcement of rubber product
JPH08171828A (en) Two-way rotary-type stranding apparatus
EP0770726B1 (en) Multi-strand steel cord
JPH0737455A (en) Manufacture of stranded metal wire
JP2587423Y2 (en) Twice twisted wire machine
JPS5841638A (en) Twice twisted wire twisting machine
CN115162037A (en) Fatigue-resistant steel wire rope for cantilever belt and manufacturing method thereof
JPH08141679A (en) Formation of metallic wiry material and apparatus thereof