JPH0475673B2 - - Google Patents

Info

Publication number
JPH0475673B2
JPH0475673B2 JP57073106A JP7310682A JPH0475673B2 JP H0475673 B2 JPH0475673 B2 JP H0475673B2 JP 57073106 A JP57073106 A JP 57073106A JP 7310682 A JP7310682 A JP 7310682A JP H0475673 B2 JPH0475673 B2 JP H0475673B2
Authority
JP
Japan
Prior art keywords
hall element
hysteresis
magnetic field
magnetic
detection section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57073106A
Other languages
Japanese (ja)
Other versions
JPS58190082A (en
Inventor
Toshio Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57073106A priority Critical patent/JPS58190082A/en
Publication of JPS58190082A publication Critical patent/JPS58190082A/en
Publication of JPH0475673B2 publication Critical patent/JPH0475673B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices

Landscapes

  • Electronic Switches (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 本発明は磁界に対するヒステリシス特性を有す
るホール素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Hall element having hysteresis characteristics with respect to a magnetic field.

ホール素子は代表的な磁気センサーとして知ら
れており、磁界強度のアナログ的検出のみなら
ず、その出力をコンパレーター等でデイジタル化
することで無接点スイツチとしても応用され、被
測定物にに永久磁石をつけてその動きを検出する
ことによつてタコメーターや変位検出器等に広く
使用されている。
The Hall element is known as a typical magnetic sensor, and is used not only for analog detection of magnetic field strength, but also as a non-contact switch by digitizing the output with a comparator, etc., and permanently attached to the object being measured. It is widely used in tachometers, displacement detectors, etc. by attaching a magnet and detecting its movement.

磁界を検出してスイツチ出力を得る用途の場
合、振動等による磁界強度の変動でスイツチ出力
がオン・オフの間でばたつくのを防ぐため、磁界
強度に対してヒステリシスを持たせることが不可
欠である。従来こうしたヒステリシス特性の設定
は、ホール素子出力を受けるアンプ入力部にヒス
テリシス特性を持たせて行なつていた。この方法
は直接に磁界強度にヒステリシスを設定するもの
ではなく、あくまでも間接的にホール電圧値に対
してヒステリシス電圧を設定するものである。従
つて、ホール電圧やヒステリシス設定電圧は一般
に小さいこともあつて、製作上のばらつきや温度
変化の影響を大きく受け、結果的に設定される磁
界強度のヒステリシス幅は大きくばらついてしま
う。例えば市販のヒステリシス付ホールIC(つま
りホール素子と増幅器およびシユミツトトリガー
回路が一体化されたもの)等では通常50%程度の
誤差を持つている。このため、上記のタコメータ
ーや変位検出器を製作しようとすると信頼性を保
つためには永久磁石との位置設定等に大きな設計
マージンを必要とし、価格、形状等に制約を生じ
ている。
In applications where a switch output is obtained by detecting a magnetic field, it is essential to provide hysteresis to the magnetic field strength to prevent the switch output from fluctuating between on and off due to fluctuations in the magnetic field strength due to vibrations, etc. . Conventionally, such hysteresis characteristics have been set by providing hysteresis characteristics to the amplifier input section that receives the Hall element output. This method does not directly set hysteresis to the magnetic field strength, but only indirectly sets a hysteresis voltage to the Hall voltage value. Therefore, since the Hall voltage and the hysteresis setting voltage are generally small, they are greatly affected by manufacturing variations and temperature changes, and as a result, the hysteresis width of the magnetic field strength that is set varies widely. For example, commercially available Hall ICs with hysteresis (that is, integrated Hall elements, amplifiers, and Schmitt trigger circuits) usually have an error of about 50%. For this reason, when attempting to manufacture the above-mentioned tachometer or displacement detector, a large design margin is required for positioning with the permanent magnet, etc., in order to maintain reliability, which imposes restrictions on price, shape, etc.

本発明の目的は、上記欠点をなくし、磁界強度
に対して直接設定される正確なヒステリシス特性
を持つヒステリシス付ホール素子を提供すること
にあり、一軸異方性を有する中保磁力の磁性体を
半導体ホール素子検出部近傍に配置した構成を有
し、前記磁性体により、前記ホール素子検出部の
面に垂直方向のバイアス磁界を印加することを特
徴とする。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a Hall element with hysteresis that has accurate hysteresis characteristics that are directly set with respect to magnetic field strength, and which uses a magnetic material with medium coercive force and uniaxial anisotropy. It has a configuration in which it is arranged near a semiconductor Hall element detection section, and the magnetic body applies a bias magnetic field in a perpendicular direction to a surface of the Hall element detection section.

以下、図面に従つて本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明のヒステリシス付ホール素子の
第1の実施例を示す斜視図である。これは基板
1、これに接着されたホール素子チツプ2、外部
から電流を供給し、ホール電圧を出力するための
4本の電極ピン3、ホール素子チツプ2と電極ピ
ン3を接続するボンデイングワイヤー4、及び一
軸異方性を有する中保磁力の磁性体5とで構成さ
れ、磁性体5は一軸異方性の磁化容易方向6がホ
ール素子検出部7の面に垂直となるようにその近
傍、この例では基板1の裏面に接着したものであ
る。ここで中保磁力とは磁性体の保磁力Hcがホ
ール素子を使おうとする磁界の強度よりも小さ
く、数10Oeから数100Oeであることを意味する。
本発明のヒステリシス付ホール素子の特徴はこの
磁性体5を配置して磁界に対するヒステリシスを
形成することにあり、この動作現理を第1図と第
2図を用いて説明する。一軸異方性の磁性体5の
磁化容易方向の磁化曲線は第2図aのようにな
り、外部磁界の強度Hoが保持力Hcまたは−Hc
の時に磁化反転をする。外部磁界Hoを第1図に
示したホール素子に印加する時、ホール素子検出
部7に印加される有効磁界強度Heは、外部磁
界Hoと、磁性体5の磁化によつて検出部7の面
に垂直な方向に印加される磁界とを合成したもの
であり、外部磁界Hoに対して、第2図bに示す
ようなヒステリシスを持つことになる。但し第2
図bでは実線がこの有効磁界強度Heを表わし、
点線が磁性体5のない場合、つまり外部磁界Ho
そのものを表わしている。ホール素子出力電圧は
検出部7に印加される有効磁界強度Heに比例
するため、第2図cの実線に示す出力曲線のよう
にヒステリシスが形成されることになる。従つ
て、このホール素子出力を例えばゼロレベルでコ
ンパレートをすることで第2図cの点線に示すよ
うに磁界に対するヒステリシス特性を有するスイ
ツチ出力を得ることができる。ここで強調できる
ことは、このヒステリシスの大きな磁性体5の保
磁力Hcによつてのみ決定される点である。この
効果は従来のホール素子によるものと比較するこ
とで一層明らかとなる。すなわち、従来のホール
素子の出力は外部磁界強度に比例し、磁界に対す
るヒステリシスの設定は第3図aに示すようにホ
ール素子出力電圧に対してヒステリシス電圧VH
を設定することで行なつている。このため、ホー
ル素子の温度特性によつて生じる出力変動等で出
力が点線のように減少すると、それに対応してヒ
ステリシス磁界はH1からH2まで増加してしま
う。更に、ヒステリシス設定電圧は一般に数mV
程度の小さな値であるため、ホール素子出力を受
ける電気回路系の製造ばらつきが大きく影響し、
設定ヒステリシス電圧、ひいては対応するヒステ
リシス磁界も大きくばらついてしまう。これは特
に、ホール素子と電気回路系を同一チツプ上に設
けたいわゆるホールICのように製造後の調整が
できない場合には大きな問題である。これに対
し、本発明のヒステリシス付ホール素子では第3
図bに示すように、ホール素子出力電圧が変動し
てもコンパレートするゼロレベルの磁界は磁性体
5の保磁力Hcできまり、全く影響をうけない。
更に、電気回路系の製造ばらつき等によるコンパ
レートレベルのばらつきの影響を受けにくいこと
も第3図bから明らかである。
FIG. 1 is a perspective view showing a first embodiment of the Hall element with hysteresis of the present invention. This consists of a substrate 1, a Hall element chip 2 bonded to it, four electrode pins 3 for supplying current from the outside and outputting a Hall voltage, and bonding wire 4 for connecting the Hall element chip 2 and the electrode pins 3. , and a magnetic body 5 with medium coercive force and uniaxial anisotropy, and the magnetic body 5 is arranged in the vicinity of the Hall element detection part 7 so that the easy magnetization direction 6 of the uniaxial anisotropy is perpendicular to the surface of the Hall element detection part 7. In this example, it is bonded to the back surface of the substrate 1. Here, medium coercive force means that the coercive force Hc of the magnetic material is smaller than the strength of the magnetic field in which the Hall element is used, ranging from several tens of Oe to several hundreds of Oe.
A feature of the Hall element with hysteresis of the present invention is that the magnetic body 5 is arranged to form hysteresis with respect to a magnetic field, and the principle of its operation will be explained using FIGS. 1 and 2. The magnetization curve in the easy magnetization direction of the uniaxially anisotropic magnetic material 5 is as shown in Figure 2a, and the strength Ho of the external magnetic field is the coercive force Hc or -Hc.
Magnetization reversal occurs when . When an external magnetic field Ho is applied to the Hall element shown in FIG. It is a composite of the magnetic field applied in the direction perpendicular to Ho, and has hysteresis as shown in Figure 2b with respect to the external magnetic field Ho. However, the second
In figure b, the solid line represents this effective magnetic field strength He,
The dotted line indicates the case where there is no magnetic material 5, that is, the external magnetic field Ho
It represents itself. Since the Hall element output voltage is proportional to the effective magnetic field strength He applied to the detection section 7, hysteresis is formed as shown in the output curve shown by the solid line in FIG. 2c. Therefore, by comparing the Hall element output with, for example, the zero level, it is possible to obtain a switch output having hysteresis characteristics with respect to the magnetic field as shown by the dotted line in FIG. 2c. What can be emphasized here is that the hysteresis is determined only by the coercive force Hc of the magnetic body 5 with large hysteresis. This effect becomes even clearer when compared with that using a conventional Hall element. In other words, the output of the conventional Hall element is proportional to the external magnetic field strength, and the hysteresis setting for the magnetic field is set by setting the hysteresis voltage V H with respect to the Hall element output voltage as shown in Figure 3a.
This is done by setting . Therefore, when the output decreases as shown by the dotted line due to output fluctuations caused by the temperature characteristics of the Hall element, the hysteresis magnetic field increases from H 1 to H 2 correspondingly. Furthermore, the hysteresis setting voltage is typically a few mV.
Since it is a small value, manufacturing variations in the electric circuit system that receives the Hall element output have a large influence.
The set hysteresis voltage and, by extension, the corresponding hysteresis magnetic field also vary widely. This is a particularly serious problem when adjustments cannot be made after manufacturing, such as in a so-called Hall IC in which a Hall element and an electric circuit are provided on the same chip. On the other hand, in the Hall element with hysteresis of the present invention, the third
As shown in FIG. b, even if the Hall element output voltage fluctuates, the zero-level magnetic field to be compared is determined by the coercive force Hc of the magnetic body 5 and is not affected at all.
Furthermore, it is clear from FIG. 3b that it is less susceptible to variations in the comparator level due to manufacturing variations in the electric circuit system.

磁性体は必要とするヒステリシスの大きさに応
じた保磁力Hcのものを選べばよく、これによる
磁界強度はホール素子検出部との距離、及び磁性
体の厚さで調整できる。一般には距離が小さい
程、また厚さが大きい程磁界強度が大きくなり、
第2図cに示したヒステリシス出力の上下のひら
きを大きくできるので、回路のばらつきに対する
余裕度をより大きくできる。しかし、局所的に大
きく変化する磁界中で使用する場合、磁性体5全
体を同時に磁化反転させるためにその厚さはなる
べく小さく、また検出部との距離はより近い方が
よい。第1の実施例では単に磁性体5を接着する
だけでよく、容易に製造できるという利点がある
が、上記の点を考慮すれば次に示す第2の実施例
の構成も有用である。
The magnetic material may be selected to have a coercive force Hc that corresponds to the required magnitude of hysteresis, and the magnetic field strength resulting from this can be adjusted by adjusting the distance from the Hall element detection section and the thickness of the magnetic material. In general, the smaller the distance and the larger the thickness, the greater the magnetic field strength.
Since the vertical spread of the hysteresis output shown in FIG. 2c can be increased, margin against circuit variations can be increased. However, when used in a magnetic field that locally changes significantly, the thickness of the magnetic body 5 should be as small as possible in order to simultaneously reverse the magnetization of the entire magnetic body 5, and the distance to the detection section should be as short as possible. The first embodiment has the advantage that it is easy to manufacture since it is only necessary to adhere the magnetic material 5, but if the above points are taken into account, the configuration of the second embodiment described below is also useful.

第4図は本発明の第2の実施例を示す断面図で
ある。これは基板11、ホール素子チツプ12、
電極ピン13、ボンデイングワイヤー14、及び
ホール素子検出部17の上に直接成膜された、膜
面に垂直な方向を磁化容易方向16とする一軸異
方性を有した中保磁力の垂直磁化膜15で構成さ
れる。第1の実施例との差は基板1に接着された
磁性体5が、検出部17上に形成された垂直磁化
膜15になつている点である。この構成では検出
部17と垂直磁化膜15との距離は殆んどなく、
また垂直磁化膜の膜厚も小さく、例えば距離は
1μm以下、膜厚は1μmか数μm程度といつたもの
にできる。これにより、第1の実施例について説
明したのと同じく正確なヒステリシスが形成され
るのに加えて、局所的に大きく変化する磁界中で
も正確に動作し、また形状的により小形化できる
という利点を持つ。
FIG. 4 is a sectional view showing a second embodiment of the present invention. This includes a substrate 11, a Hall element chip 12,
A perpendicularly magnetized film with medium coercive force and uniaxial anisotropy with the easy magnetization direction 16 perpendicular to the film surface, which is directly formed on the electrode pins 13, bonding wires 14, and Hall element detection section 17. Consists of 15. The difference from the first embodiment is that the magnetic material 5 bonded to the substrate 1 is a perpendicularly magnetized film 15 formed on the detection section 17. In this configuration, there is almost no distance between the detection unit 17 and the perpendicular magnetization film 15,
Also, the thickness of the perpendicular magnetization film is small, for example, the distance is
The film thickness can be 1 μm or less, and the film thickness can be about 1 μm or several μm. As a result, in addition to forming accurate hysteresis as explained in the first embodiment, it also has the advantage of operating accurately even in a magnetic field that varies greatly locally, and also being able to be made smaller in size. .

以上の実施例において、ホール素子は通常の
InSbやGaAsないしはSi等が適している。更に、
磁性体としては数10Oeから数100Oe程度のHcを
有する一軸異方性のものであればよく、Baフエ
ライトやCo合金等が適しており、必要とするHc
に応じて選択すればよい。また垂直磁化膜として
はCo−Cr合金膜や希土類−Fe,Co膜が適してお
り、ホール素子形成後のウエハ−上に蒸着やスパ
ツタリング等によつて成膜し、エツチング加工し
て形成することができる。
In the above embodiments, the Hall element is a normal
InSb, GaAs, Si, etc. are suitable. Furthermore,
The magnetic material may be a uniaxially anisotropic material with an Hc of several 10 Oe to several 100 Oe, and Ba ferrite, Co alloy, etc. are suitable, and the required Hc
You can choose accordingly. Co-Cr alloy films and rare earth-Fe, Co films are suitable for the perpendicular magnetization film, and are formed by depositing, sputtering, etc. on the wafer after the Hall elements have been formed, and then etching the film. I can do it.

以上説明した様に、本発明によれば一軸異方性
を有する中保磁力の磁性体をホール素子検出部近
傍に配置し、この磁性体によつてホール素子検出
部の面に垂直方向の直流バイアス磁界を印加する
ことにより、磁界強度に対して直接的に設定され
る正確なヒステリシス特性をもつヒステリシス付
ホール素子を提供することができる。
As explained above, according to the present invention, a magnetic body with medium coercive force having uniaxial anisotropy is placed near the Hall element detection section, and this magnetic body causes direct current to flow perpendicular to the surface of the Hall element detection section. By applying a bias magnetic field, it is possible to provide a Hall element with hysteresis that has accurate hysteresis characteristics that are directly set with respect to the magnetic field strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示した斜視
図、第2図a,b,及びcはその動作原理を説明
した図、第3図a及びbは従来のホール素子との
差を説明した図であり、第4図は第2の実施例を
示した断面図である。 図において、1及び11は基板、2及び12は
ホール素子チツプ、3及び13は電極ピン、4及
び14はボンデイングワイヤー、5は磁性体、1
5は垂直磁化膜、6及び16は磁化容易軸方向で
あり、7及び17はホール素子検出部である。
FIG. 1 is a perspective view showing the first embodiment of the present invention, FIGS. 2 a, b, and c are diagrams explaining the principle of operation, and FIGS. 3 a and b show differences from conventional Hall elements. FIG. 4 is a cross-sectional view showing the second embodiment. In the figure, 1 and 11 are substrates, 2 and 12 are Hall element chips, 3 and 13 are electrode pins, 4 and 14 are bonding wires, 5 is a magnetic material, 1
5 is a perpendicular magnetization film, 6 and 16 are easy axis directions of magnetization, and 7 and 17 are Hall element detection sections.

Claims (1)

【特許請求の範囲】 1 一軸異方性を有する中保磁力の磁性体を半導
体ホール素子検出部近傍に配置し、前記磁性体に
より前記ホール素子検出部の面に垂直方向のバイ
アス磁界を印加することを特徴とするヒステリシ
ス付ホール素子。 2 磁性体が、半導体ホール素子検出部上に成膜
された、面に垂直方向に磁化容易方向とする垂直
磁化膜であることを特徴とする特許請求の範囲第
1項に記載のヒステリシス付ホール素子。 3 垂直磁化膜がCo−Cr合金であることを特徴
とする特許請求の範囲第2項に記載のヒステリシ
ス付ホール素子。
[Claims] 1. A magnetic body with medium coercive force having uniaxial anisotropy is placed near a semiconductor Hall element detection section, and a bias magnetic field in a perpendicular direction is applied to a surface of the Hall element detection section by the magnetic body. A Hall element with hysteresis characterized by the following. 2. A hole with hysteresis according to claim 1, wherein the magnetic material is a perpendicular magnetization film formed on the semiconductor Hall element detection part and whose easy magnetization direction is perpendicular to the surface. element. 3. The Hall element with hysteresis according to claim 2, wherein the perpendicular magnetization film is a Co-Cr alloy.
JP57073106A 1982-04-30 1982-04-30 Hall element with hysteresis Granted JPS58190082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073106A JPS58190082A (en) 1982-04-30 1982-04-30 Hall element with hysteresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073106A JPS58190082A (en) 1982-04-30 1982-04-30 Hall element with hysteresis

Publications (2)

Publication Number Publication Date
JPS58190082A JPS58190082A (en) 1983-11-05
JPH0475673B2 true JPH0475673B2 (en) 1992-12-01

Family

ID=13508710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073106A Granted JPS58190082A (en) 1982-04-30 1982-04-30 Hall element with hysteresis

Country Status (1)

Country Link
JP (1) JPS58190082A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539124B1 (en) * 2015-06-10 2023-06-01 삼성전기주식회사 Camera Module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721883A (en) * 1980-07-14 1982-02-04 Sharp Corp Magnetic reluctance effect element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721883A (en) * 1980-07-14 1982-02-04 Sharp Corp Magnetic reluctance effect element

Also Published As

Publication number Publication date
JPS58190082A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
US10254103B2 (en) Arrangements for magnetic field sensors that act as tooth detectors
US8884606B2 (en) Inverted magnetic isolator
US7642773B2 (en) Magnetic sensor, production method thereof, rotation detection device, and position detection device
US4283679A (en) Rotational direction detection device for a motor or the like
EP3726236A2 (en) Current sensor having a flux concentrator for redirecting a magnetic field through two magnetic field sensing elements
JP3093813B2 (en) Magnetic sensor
JP3260921B2 (en) Movable body displacement detection device
US10497859B2 (en) Two-dimensional magnetic field sensor with a single integrated magnetic field concentrator
JP2000180524A (en) Magnetic field sensor
JPH0475673B2 (en)
US6239595B1 (en) Magnetic field sensing element
WO2015158247A1 (en) Low-flying height in-plane magnetic image recognition sensor chip
Dibbern Sensors based on the magnetoresistive effect
JP5426839B2 (en) Manufacturing method of magnetic sensor
CA1242485A (en) Magnetic field sensor
US11022464B2 (en) Back-biased magnetic field sensor having one or more magnetoresistance elements
Ueda et al. AC bias type magnetoresistive sensor
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JPH09231517A (en) Magnetic reluctance sensor
JPS58190083A (en) Hall element switch with hysteresis
JPH04282481A (en) Magnetoelectric converter
JP3360171B2 (en) Magnetic impedance head module
US20230384399A1 (en) Magnetic system for counting rotations having nincreased stability against magnetic interference fields
Schott et al. Modern CMOS Hall sensors with integrated magnetic concentrators
JPH08297814A (en) Magneto-resistance effect element