JPH0475430A - Rechargeable power unit - Google Patents

Rechargeable power unit

Info

Publication number
JPH0475430A
JPH0475430A JP18799090A JP18799090A JPH0475430A JP H0475430 A JPH0475430 A JP H0475430A JP 18799090 A JP18799090 A JP 18799090A JP 18799090 A JP18799090 A JP 18799090A JP H0475430 A JPH0475430 A JP H0475430A
Authority
JP
Japan
Prior art keywords
voltage
battery
charging
power supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18799090A
Other languages
Japanese (ja)
Other versions
JP2872365B2 (en
Inventor
Masataka Yamashita
正隆 山下
Akira Yoshino
彰 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18799090A priority Critical patent/JP2872365B2/en
Publication of JPH0475430A publication Critical patent/JPH0475430A/en
Application granted granted Critical
Publication of JP2872365B2 publication Critical patent/JP2872365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To obtain a power having an overdischarge preventing mechanism and an overcharge preventing function by constituting a discharging circuit and a charging circuit of elements incorporating parasitic diodes in a charging power supply comprising a quick charge secondary battery. CONSTITUTION:Upon droppage of battery 3 voltage below a predetermined level due to discharge, output voltage of a control means 5 causes transition of a MOSFET 41 from conducting state to interrupted state thus interrupting a battery 3 discharge circuit. When the battery 3 voltage is recovered due to charging through the parasitic diode 41A of the MOSFET 41, normal (low loss) charging takes place. When the battery 3 voltage exceeds a predetermined level due to charging, output voltage of the control means 5 causes transition of a MOSFET 42 from conducting state to interrupted state thus interrupting a battery 3 charging circuit. When the battery 3 voltage is recovered due to charging through the parasitic diode 42A of the MOSFET 42, normal (low loss) discharge takes place.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は急速充電可能な二次電池を有する充電式の電源
装置に関し、特に、過放電防止機構と、過充電防止機能
とを備えた電源装置に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a rechargeable power supply device having a secondary battery that can be charged quickly, and particularly relates to a power supply device having an over-discharge prevention mechanism and an overcharge prevention function. Regarding equipment.

[従来の技術1 ポータプル機器の発達に伴い、ラジオ、ラジオ付きカセ
ットテープレコーダ、ポータプルVTR。
[Prior Art 1] With the development of portable equipment, radios, cassette tape recorders with radios, and portable VTRs were developed.

ポータプルコンピュータ等の電子機器、携帯電話等の通
信機器、ポータプル電動工具等の動力機器の電源に、−
次電池および二次電池が広く使われるようになっている
。特に、近年、二次電池の使用が著しく増加している。
For the power supply of electronic devices such as portable computers, communication devices such as mobile phones, power devices such as portable power tools, etc.
Rechargeable batteries and secondary batteries are becoming widely used. In particular, the use of secondary batteries has increased significantly in recent years.

一般の二次電池においては、適正な充電条件を越えて過
充電を行うと電解液の分解に伴ってガスが発生する。
In general secondary batteries, when overcharged beyond proper charging conditions, gas is generated as the electrolyte decomposes.

開放型または排出型の電池においては、発生したガスは
逃がすことができるが、この過充電の結果としてその電
極は多少の損傷を受ける。
In open or drained cells, the gas generated is allowed to escape, but the electrodes suffer some damage as a result of this overcharging.

一方、密閉型の電池では、内部でガス圧が高まって爆発
事故を起こす。このため密閉型電池においては過充電に
対して安全弁を設けることによりガス圧の上昇に対処し
ているものがあるが、これらの安全弁を設けた電池にあ
ってはガス抜きを確実に行えない場合も生じるため信頼
性の面で問題があった。さらに、この安全弁の作動によ
り腐食性の高いガスが放出されたときには、電池が組み
込まれた機器を腐食させるという欠点もあった。
On the other hand, in sealed batteries, the gas pressure builds up inside, causing an explosion. For this reason, some sealed batteries are equipped with a safety valve to prevent overcharging in order to cope with the increase in gas pressure. However, with these batteries equipped with a safety valve, gas may not be removed reliably. This caused problems in terms of reliability. Furthermore, when highly corrosive gas is released due to the operation of this safety valve, there is also the drawback that it corrodes equipment in which the battery is installed.

また、過充電が酷い場合には、電池の内部で短絡が起こ
り、電池が破裂に至る場合もあった。
In addition, if overcharging is severe, a short circuit may occur inside the battery, leading to the battery bursting.

それ故、電池が正常な充電条件を越えて充電されるのを
防止する装置が必要となる。
Therefore, a device is needed to prevent batteries from being charged beyond normal charging conditions.

一般に市販されている二次電池では、サーモスタットも
しくは温度フユーズ等を電池に直列に接続し、適切な充
電条件を越えて過充電されたときにはその電池の発熱を
検知し、充電回路を遮断することにより以上のような問
題を解決しようとしている。
Generally, with commercially available secondary batteries, a thermostat or temperature fuse is connected in series with the battery, and when the battery is overcharged beyond the appropriate charging conditions, it detects the heat generation of the battery and shuts off the charging circuit. I am trying to solve the above problems.

[発明が解決しようとする課題j しかしながら、サーモスタットもしくは温度フユーズの
ように過充電の際の発熱を検知し、充電回路を遮断する
ような装置では、その検知時には電池は既に適正な充電
条件を越えて過充電が進行しており、電池の性能の劣化
のみならず、漏液、破裂等の異常状態が発生している場
合が多々あった。
[Problem to be Solved by the Invention] However, with devices such as thermostats or temperature fuses that detect heat generation during overcharging and shut off the charging circuit, by the time this is detected, the battery has already exceeded the proper charging condition. Overcharging was progressing, and not only did battery performance deteriorate, but abnormal conditions such as leakage and rupture often occurred.

また、充電式の電源装置を機器に装着して使用する場合
には、しばしば、電源装置を機器に装着した状態で長期
間放置し、電源装置内の二次電池を完全に放電せしめる
場合があった。
Additionally, when using a rechargeable power supply attached to a device, the power supply is often left attached to the device for a long period of time, which may completely discharge the secondary battery inside the power supply. Ta.

このように、二次電池を完全に放電せしめた場合、多く
の二次電池では性能の劣化が著しく、繰り返しの使用に
耐えない。しかも、多(の機器には、電源装置の過放電
を防止する機器を〜有しておらず、様々な機器で使用さ
れる脱着式の充電式電源装置においては、機器に装着さ
れたままの状態で長期間放置され、電源装置内の電池が
過放電に至ることがしばしば起こっている。
As described above, when a secondary battery is completely discharged, the performance of many secondary batteries deteriorates significantly and cannot withstand repeated use. Moreover, many (many) devices do not have devices to prevent over-discharging of power supplies, and removable rechargeable power supplies used in various devices are It often happens that the battery in the power supply unit is left unused for a long period of time, leading to over-discharge.

特に、非水系二次電池では、一端、過放電に至ると、そ
の後の充電で電池内部で短絡が生じて、性能の劣化ばか
りではなく、破裂に至るというような安全上重大な問題
を引き起こすことがあった。この場合、特に過放電の後
の充電で過充電に至ると、この危険性はさらに高くなる
In particular, with non-aqueous secondary batteries, once over-discharge occurs, a short circuit occurs inside the battery during subsequent charging, causing not only performance deterioration but also serious safety problems such as rupture. was there. In this case, especially if charging after overdischarging leads to overcharging, this risk becomes even higher.

本発明の目的は以上のような問題を解消するために、充
電式の電源装置において、機器に装着した状態で放置し
た場合に、当該充電式の電源装置内の二次電池の過放電
を防止し、かつ、充電装置が故障したり、専用充電装置
以外の充電装置で充電されたりした場合にも、当該充電
式の電源装置の内の二次電池を過充電から保護し、二次
電池の性能の劣化を防止するとともに、二次電池を過充
電によって危険な状態に至らしめない充電式の電源装置
を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems by preventing over-discharging of the secondary battery in a rechargeable power supply when the rechargeable power supply is left attached to a device. In addition, even if the charging device malfunctions or is charged with a charging device other than the dedicated charging device, the secondary battery in the rechargeable power supply device is protected from overcharging, and the secondary battery is It is an object of the present invention to provide a rechargeable power supply device that prevents deterioration of performance and prevents a secondary battery from becoming dangerous due to overcharging.

[課題を解決するための手段j 以上の目的を達成するために、本発明は、充電可能な電
池と、内部に寄生ダイオードを有する第1および第2の
スイッチ素子が直列接続されたスイッチ手段と、前記電
池の両端電圧を検出して前記スイッチ手段を制御する制
御手段とを備え、前記第1のスイッチ素子はその寄生ダ
イオードの順方向が前記電池の放電方向になるように、
前記第2のスイッチ素子はその寄生ダイオードの順方向
が前記電池の充電方向となるように前記電池に接続され
、前記制御手段は、前記電池の電圧が充電可能電圧の近
傍の第1の電圧より下がったとき前記第1のスイッチ素
子を導通させ、前記電池の電圧が前記充電可能電圧の近
傍であって前記第1の電圧より高い第2の電圧より上が
ったとき前記第1のスイッチ素子を非導通状態にし、前
記電池の電圧が放電可能電圧の近傍の第3の電圧より上
がったとき前記第2のスイッチ素子を導通させ、前記電
池の電圧が前記放電可能電圧の近傍であって前記第3の
電圧よりも低い第4の電圧より下がったとき前記第2の
スイッチ素子を非導通状態にすることを特徴とするもの
である。
[Means for Solving the Problems j] In order to achieve the above object, the present invention provides a switch means in which a rechargeable battery and a first and second switch element each having a parasitic diode therein are connected in series. , control means for detecting the voltage across the battery and controlling the switch means, and the first switch element is configured such that the forward direction of its parasitic diode is in the discharging direction of the battery,
The second switch element is connected to the battery such that the forward direction of its parasitic diode is in the charging direction of the battery, and the control means is configured such that the voltage of the battery is lower than the first voltage near the chargeable voltage. When the battery voltage drops, the first switch element is made conductive, and when the voltage of the battery rises above a second voltage that is near the chargeable voltage and higher than the first voltage, the first switch element is turned off. When the voltage of the battery rises above a third voltage near the dischargeable voltage, the second switch element is made conductive, and when the voltage of the battery is near the dischargeable voltage and the third The second switching element is brought into a non-conducting state when the voltage drops below a fourth voltage lower than the voltage of .

[作 用1 本発明によれば、電池の残容量が放電可能電圧以下に少
なくなったことを、制御手段が検出するとスイッチ手段
を制御して放電回路を遮断し、また、電池の充電が充電
可能電圧以上になったことを、制御手段が検出するとス
イッチ手段を制御して充電回路を遮断する。さらに、ス
イッチ手段を構成するスイッチ素子を、内部に寄生ダイ
オードを有する素子に選びその寄生ダイオードを用いて
放電回路および充電回路を構成することによって回路の
簡素化を図ることができる。
[Function 1] According to the present invention, when the control means detects that the remaining capacity of the battery has decreased below the dischargeable voltage, the control means controls the switch means to cut off the discharge circuit, and the charging of the battery is stopped. When the control means detects that the voltage has exceeded the allowable voltage, the control means controls the switch means to cut off the charging circuit. Furthermore, the circuit can be simplified by selecting the switch element constituting the switch means as an element having a parasitic diode inside and constructing the discharging circuit and the charging circuit using the parasitic diode.

[実施例] 以下、本発明による過充電防止機能と過充電防止機能と
を具備した電源装置の実施例を図面により説明する。
[Example] Hereinafter, an example of a power supply device having an overcharge prevention function and an overcharge prevention function according to the present invention will be described with reference to the drawings.

第1図は本発明の基本的構成を示すブロック図である。FIG. 1 is a block diagram showing the basic configuration of the present invention.

第1図に示すように、負荷もしくは充電器1は、電源装
置2に接続される。電源装置2は、電池3、スイッチ手
段4および制御手段5から構成される。
As shown in FIG. 1, a load or charger 1 is connected to a power supply device 2. As shown in FIG. The power supply device 2 includes a battery 3, a switch means 4, and a control means 5.

ここで、本発明でいう電池とは、単一の電池のみならず
、複数の電池を互いに接続した組電池、短絡等にかかわ
る安全装置、残容量表示等の機能が付加された電池およ
び組電池をも包含する。
Here, the term "battery" as used in the present invention refers to not only a single battery but also an assembled battery in which multiple batteries are connected to each other, a battery with additional functions such as a safety device related to short circuits, a remaining capacity display, etc., and an assembled battery. It also includes.

なお、本発明でいうスイッチ手段を構成するスイッチ素
子としては、電力損失が小さく、かつ、通常の使用状態
での消費電力を小さくするために電圧駆動型のスイッチ
であることが好ましい。この条件を満足するデバイスと
して、電界効果型のトランジスター(FET)が好まし
い条件を備えているが、その中でもデバイスの内部に寄
生ダイオードを有するMOS FETを使用すると回路
を著しく簡略化、および、小型化することができる。
Note that the switch element constituting the switch means in the present invention is preferably a voltage-driven switch in order to reduce power loss and reduce power consumption during normal use. As a device that satisfies this condition, a field effect transistor (FET) has favorable conditions, but among these, using a MOS FET, which has a parasitic diode inside the device, significantly simplifies the circuit and reduces the size. can do.

すなわち、スイッチ素子を2個直列接続して電池に接続
し、この2個のスイッチ素子を各々、過放電防止用の放
電回路の遮断スイッチ(sw”)、および、過充電防止
用の充電回路の遮断スイッチ(3woc)として独立に
使用する。
That is, two switch elements are connected in series and connected to the battery, and these two switch elements are used as a cutoff switch (sw") of a discharging circuit to prevent over-discharge, and a cut-off switch (sw") of a charging circuit to prevent over-charge, respectively. Used independently as a cutoff switch (3woc).

このとき過放電防止用の放電回路の遮断スイッチ(SW
”)は、過放電防止用の放電回路の遮断スイッチ(sw
oo)内部の寄生ダイオードが充電電流が順方向になる
ように、また、過充電防止用の充電回路の遮断スイッチ
(SWoo)は、過充電防止用の充電回路の遮断スイッ
チ(swo C)内部の寄生ダイオードが放電電流に順
方向になるようにして、過放電防止用の放電回路の遮断
スイッチ(swa p )と過充電防止用の充電回路の
遮断スイッチ(SWoc)を直列に接続して二次電池と
接続する。このように接続すれば、スイッチ素子の内部
の寄生ダイオードを電源装置の充電回路または放電回路
の一部として使用することができ、電源装置内の充電回
路および放電回路の一部を省略でき、しかも、従来の電
源装置と同じように2端子の部品として使用することが
できる。ここで、電源装置内の制御手段を外部からコン
トロールするための第3の端子等は必ずしも必要としな
い。
At this time, the cutoff switch (SW) of the discharge circuit for overdischarge prevention
”) is the cutoff switch (sw) of the discharge circuit for overdischarge prevention.
oo) The internal parasitic diode is set so that the charging current is in the forward direction, and the charging circuit cutoff switch (SWoo) for overcharging prevention is connected to the charging circuit cutoff switch (swo C) for overcharging prevention. The discharge circuit cutoff switch (swap) for overdischarge prevention and the charging circuit cutoff switch (SWoc) for overcharge prevention are connected in series so that the parasitic diode is in the forward direction of the discharge current. Connect with battery. By connecting in this way, the parasitic diode inside the switch element can be used as part of the charging circuit or discharging circuit of the power supply, and part of the charging circuit and discharging circuit within the power supply can be omitted. , it can be used as a two-terminal component in the same way as a conventional power supply device. Here, a third terminal or the like for externally controlling the control means within the power supply device is not necessarily required.

次に、第2図に過充電防止機能と過充電防止機能とを具
備した電源装置の一実施例を示す。第2図に示すように
スイッチ手段としては、過放電防土用の放電回路の遮断
スイッチ(sro)として内部寄生ダイオード41Aを
荷するMOS FET41を、過充電防止用の充電回路
の遮断スイッチ(SWOC)として内部寄生ダイオード
42Aを有するMOS FET42を用いる。電池3は
単電池もしくは、直列または並列に接続された組電池か
らなる。
Next, FIG. 2 shows an embodiment of a power supply device equipped with an overcharge prevention function and an overcharge prevention function. As shown in Fig. 2, the switch means includes a MOS FET 41 loaded with an internal parasitic diode 41A as a cutoff switch (sro) of the discharge circuit for overdischarge protection, and a cutoff switch (SWOC) of the charging circuit for overcharge prevention. ) is used as a MOS FET 42 having an internal parasitic diode 42A. The battery 3 consists of a single cell or an assembled battery connected in series or parallel.

制御手段5は、コンパレータと基準電圧回路等から構成
することが可能であり、第2図に示す回路図のように電
源入力と信号入力を兼ねる反転入力端(V−)を電池3
の負極端子に、非反転入力端(■や)を電池3の正極端
子に接続する。制卸手段5は、過放電防止用の放電回路
の遮断スイッチ(SW”)への出力(yooQut)を
MOS FET41のゲートに供給し、過充電防止用の
充電回路の遮断スイッチ(Swoc)ヘノ出力(V”、
、t)ヲMO5FET42 (7)ケ−) !、:供給
する。
The control means 5 can be composed of a comparator, a reference voltage circuit, etc., and as shown in the circuit diagram shown in FIG.
Connect the non-inverting input terminal (■) to the negative terminal of the battery 3 and the positive terminal of the battery 3. The control means 5 supplies the output (yooQut) to the cutoff switch (SW") of the discharging circuit for overdischarge prevention to the gate of the MOS FET 41, and outputs the cutoff switch (SW") of the charging circuit for overcharge prevention to the gate of the MOS FET 41. (V",
, t) MO5FET42 (7)K)! , : supply.

電池3の負極はMOS FET42のドレインに接続し
、MOS FET42のソースはMOS FET41の
ソースに接続し、MOS FET41のトレインは電源
装置2の負極端子7に接続し、電池3の正極は電源装置
2の正極端子6に接続する。なお、MOS FET41
とMOSFET42は極性を変えなければ、位置を入れ
替えても差し支えない。
The negative terminal of the battery 3 is connected to the drain of the MOS FET 42, the source of the MOS FET 42 is connected to the source of the MOS FET 41, the train of the MOS FET 41 is connected to the negative terminal 7 of the power supply 2, and the positive terminal of the battery 3 is connected to the drain of the power supply 2. Connect to the positive terminal 6 of the In addition, MOS FET41
and MOSFET42 may be interchanged in position as long as the polarity is not changed.

制御手段5の呂カバターンの例を第3図に示す。第3図
の(a)および(b)に過放電防止用の放電回路の遮断
スイッチ(SWoo)への出力(VODa、、)のパタ
ーンの例を示す。また、第3図の(c) 8よび(d)
に過充電防止用の充電回路の遮断スイッ5− (SWo
c)ヘノ圧力(■0c、、ut)ツバターンの例を示す
An example of the back cover turn of the control means 5 is shown in FIG. FIGS. 3(a) and 3(b) show examples of patterns of outputs (VODa, . . . ) to the cutoff switch (SWoo) of the discharge circuit for overdischarge prevention. Also, (c) 8 and (d) in Figure 3
The charging circuit cutoff switch 5- (SWo
c) Heno pressure (■0c,,ut) An example of tube turn is shown.

第3図に示すように、制御手段5の2つの圧力(yo口
aut、 VoCout)は、オン時(V”out t
oil +V”out toil )においては、共に
MOS FETのゲートカットオフ電圧(■61゜1.
))よりも高く、しかも、制御手段5の2つの出力(■
00゜Lltl Vocaut)は、オフ時(yoo。
As shown in FIG.
oil +V”out toil), the gate cutoff voltage of the MOS FET (■61°1.
)), and the two outputs of the control means 5 (■
00°Lltl Vocaut) is off (yoo.

ut+offl+ ”°out +6ffl )におい
ては、共にMOS FET(7)ゲートカットオフ電圧
(V、s (。tt+ )よりも低いことが必要である
。しかし、過放電防止用の放電回路の遮断スイッチ(s
wan)へのオン時の出力電圧(voo。、、。。l)
は、第3図の(a)または(b)のどちらの出力形式で
あっても差し支えない。また同様に、過充電防止用の充
電回路の遮断スイッチ(SWoc)へのオン時の出力電
圧(V0cout+ofi+ )は、第3図の(cl 
または(d)のどちらの出力形式であっても差し支えな
い。
ut+offl+ ”°out +6ffl), both need to be lower than the MOS FET (7) gate cutoff voltage (V, s (.tt+). However, the cutoff switch (s
output voltage when on (voo.,...l) to wan)
The output format shown in FIG. 3 (a) or (b) may be used. Similarly, the output voltage (V0cout+ofi+) when the cutoff switch (SWoc) of the charging circuit for overcharging prevention is turned on is (cl
or (d), either of the output formats is acceptable.

以上の構成によれば、電池3の両端電圧がある一定の電
圧(第3区におけるvOD。1.)以下になると、過放
電防止用の放電回路の遮断スイッチ(SwOJへの制御
手段5の出力電圧(yooo、t)がVOm16ft+
以上から■。t 。ff+ 以下ニなり、MOS FE
T41が導通状態から遮断状態になって電、03の放電
回路を遮断する。
According to the above configuration, when the voltage across the battery 3 becomes less than a certain voltage (vOD in the third section. Voltage (yooo, t) is VOm16ft+
From the above ■. t. ff+ and below, MOS FE
T41 changes from a conductive state to a cutoff state and cuts off the discharge circuit of 03.

そして、MOS FET41の寄生ダイオード41Aを
介した充電によって電池3の両端電圧が前記yOD、1
、よりも高い電圧(第3図における■ODo、)以上に
なると、過放電防止用の放電回路の遮断スイッチ(SW
oo)への制御手段5の出力電圧がオフ状態からオン状
態になり、MOS FET41が遮断状態から導通状態
になり、通常の(低損失の)充電が行われる。
Then, by charging via the parasitic diode 41A of the MOS FET 41, the voltage across the battery 3 increases to the above yOD, 1
When the voltage exceeds , (■ODo in Figure 3), the discharge circuit cutoff switch (SW
The output voltage of the control means 5 to oo) changes from the off state to the on state, the MOS FET 41 changes from the cutoff state to the conduction state, and normal (low loss) charging is performed.

同様に、電池3の両端電圧がある一定の電圧(第3図に
おける■0coef)以上になると、過充電防止用の充
電回路の遮断スイッチ(SW”)への制御手段5の出力
電圧がVoc(off1以上からV”ostott以下
になり、MOS FET42が導通状態から遮断状態に
なって電池3の充電回路を遮断する。
Similarly, when the voltage across the battery 3 exceeds a certain voltage (■0coef in Fig. 3), the output voltage of the control means 5 to the cutoff switch (SW'') of the charging circuit for overcharging prevention changes to Voc( Off1 or more becomes V''ostott or less, and the MOS FET 42 changes from a conductive state to a cutoff state, thereby cutting off the charging circuit for the battery 3.

そして、MOS FET42の寄生ダイオード42Aを
介した放電によって電池3の両端電圧が前記V0C6f
fよりも低い電圧(第3図におけるyoc6゜)以下に
なると、過充電防止用の充電回路の遮断スイッチfsW
0c)への電圧検知手段5の出力電圧がオフ状態からオ
ン状態になり、MOS FET42が遮断状態から導通
状態になり、通常の(低損失の)放電が行われる。
Then, due to discharge through the parasitic diode 42A of the MOS FET 42, the voltage across the battery 3 becomes the voltage V0C6f.
When the voltage becomes lower than f (yoc6° in Fig. 3), the cutoff switch fsW of the charging circuit for overcharging prevention is activated.
The output voltage of the voltage detection means 5 to 0c) changes from the off state to the on state, the MOS FET 42 changes from the cutoff state to the conduction state, and a normal (low loss) discharge is performed.

ところで、放電可能電圧をVt、ow、充電可能電圧を
VH+ghとし、後述するヒステリシスの大きさを考慮
するとy V0Dott≦V1.OW< V”Q。< 
Vt4 + Kh+ ■LOW〈voco、、〈■14
11.≦■0c0.fトナルヨウニ設定スレば、通常、
MOS FET41とMOS FET42が同時に、遮
断状態となることはない。
By the way, assuming that the dischargeable voltage is Vt, ow and the chargeable voltage is VH+gh, and considering the magnitude of hysteresis to be described later, yV0Dott≦V1. OW<V”Q.<
Vt4 + Kh+ ■LOW〈voco,〈■14
11. ≦■0c0. If there is a setting thread, usually,
MOS FET 41 and MOS FET 42 are never in a cutoff state at the same time.

なお、第2図および第3図に示したスイッチ素子の位置
と制御手段の出カバターンは、N−チャンネル型のMO
S FETに対応するものであって、他のスイッチ素子
を用いる場合には、そのスイッチ素子の特性に応じた配
置と制御手段の出カバターンを選ぶ必要がある。
Note that the positions of the switch elements and the output turns of the control means shown in FIGS. 2 and 3 are based on the N-channel type MO
When using another switch element that corresponds to the S FET, it is necessary to select the arrangement and output pattern of the control means depending on the characteristics of the switch element.

ここで、充電回路および放電回路の遮断スイ・ソチとし
て使用するMOS FETを検討した結果、MOSFE
Tとしては、ドレイン・ソース間のオン抵抗(Ro=+
。。、)が小さいものほど好ましく、ドレイン・ソース
間のオン抵抗(RD、t。。))は電源装置内の電池の
内部抵抗と同程度、もしくは、それよりも小さいことが
必要であることがわかった。もちろん、MOS FET
は並列に使用しても差し支えなく、この場合は、MOS
 FETのドレイン・ソース間のオン抵抗(R−+。n
+)の合成抵抗値が電源装置内の電池の内部抵抗と同程
度、もしくは、それよりも小さいことが必要である。
Here, as a result of examining MOS FETs used as cutoff switches for charging and discharging circuits, we found that MOSFE
T is the on-resistance between drain and source (Ro=+
. . , ) is preferable, and it has been found that the on-resistance (RD, t...) between the drain and source needs to be equal to or smaller than the internal resistance of the battery in the power supply. Ta. Of course, MOS FET
can be used in parallel; in this case, MOS
On-resistance between drain and source of FET (R-+.n
It is necessary that the combined resistance value of +) be equal to or smaller than the internal resistance of the battery in the power supply device.

MOS FETのドレイン・ソース間のオン抵抗(RD
s+。。))が電源装置内の電池の内部抵抗に比べて大
きい場合は、MOS FETによる電力損失が太き(な
るばかりではなく、その結果、電源装置内の温度偏差が
著しく大きくなり好ましくない。
On-resistance between drain and source of MOS FET (RD
s+. . )) is larger than the internal resistance of the battery in the power supply device, the power loss due to the MOS FET becomes large (not only does this result in a significantly large temperature deviation in the power supply device, which is undesirable).

なお、スイッチ素子としては、内部に寄生ダイオードを
有するデバイスであれば内部に寄生ダイオードを有する
MOS FETと同じように寄生ダイオードを充電回路
もしくは放電回路の一部として使用することによってM
OS FETと同様に電源装置内の回路を簡略化するこ
とができる。
Note that if the switch element is a device that has a parasitic diode inside, it can be
Similar to the OS FET, the circuit within the power supply device can be simplified.

さらに、制御手段は、2つの独立した出力を何し、その
1つは過放電防止用の放電回路の遮断スイッチ(swo
l+)の入力に接続し、他方は過充電防止用の充電回路
の遮断スイッチ(SW”)の入力に接続する。
Further, the control means has two independent outputs, one of which is a discharge circuit cutoff switch (swo) for overdischarge prevention.
l+), and the other is connected to the input of a charging circuit cutoff switch (SW") for overcharging prevention.

そして、過放電防止用の放電回路の遮断スイ・ンチ(S
l!”)への制御手段の出力(vOD。ut)は、過放
電検出電圧(■00゜ff)すなわち過放電防止用の放
電回路の遮断スイッチ(SWOll)をオフする検知電
圧よりも高いリセット電圧(voo。、)を有すること
が必要であり、ヒステリシスの大きさ(Voo。。
Then, turn off the discharge circuit cutoff switch (S) to prevent overdischarge.
l! The output (vOD.ut) of the control means to the overdischarge detection voltage (■00°ff), that is, the reset voltage ( voo.,) and the magnitude of the hysteresis (Voo..).

VODot+’)は0.05V 〜5.0V程度ア6コ
トカ好マLい。
VODot+') is about 0.05V to 5.0V.

0、05Vよりも小さなヒステリシスでは、放電電流の
遮断による電池端子間電圧の回復によって、再びリセッ
ト電圧(■0D0゜)を越えてしまい、その結果、過放
電防止用の放電回路の遮断スイッチ(SW0f′)がオ
ンして、電源装置は断続的に放電を行うことになるので
、ヒステリシスが小さすぎるのは好ましくない。
If the hysteresis is smaller than 0.05V, the voltage between the battery terminals recovers by cutting off the discharge current and exceeds the reset voltage (■0D0°) again.As a result, the cutoff switch (SW0f) of the discharge circuit for overdischarge prevention ') will turn on and the power supply will discharge intermittently, so it is undesirable for the hysteresis to be too small.

一方、ヒステリシスが5.0■よりも大きな場合は、電
源装置が放電遮断状態から充電に入った場合、電源装置
内の電池の電圧がリセット電圧(yoo。。)を越えず
、過放電防止用の放電回路の遮断スイッチ(3woo)
への制御手段の出力(■00゜ut)がリセットされな
いので、過放電防止用の放電回路の遮断スイッチ(sw
”)がオフ状態のまま、充電電流は過放電防止用の遮断
スイチ(swoD)の寄生ダイオードのみを流れるので
、過放電防止用の遮断スイッチ(SW”)での電力損失
が大きい状態が続く。
On the other hand, if the hysteresis is larger than 5.0■, when the power supply starts charging from the discharge cutoff state, the voltage of the battery in the power supply does not exceed the reset voltage (yoo..), which prevents overdischarge. Discharge circuit cutoff switch (3woo)
Since the output (■00°ut) of the control means to the
Since the charging current flows only through the parasitic diode of the over-discharge prevention cut-off switch (SW'') while the switch remains off, the power loss in the over-discharge prevention cut-off switch (SW'') continues to be large.

従って、ヒステリシスが大きすぎるのは好ましくな(、
充電開始による電池電圧の上昇によって、ただちに過放
電防止用の遮断スイッチ(SWoD)への制御手段の出
力(voDout)がリセットされる程度のヒステリシ
スの大きさでなければならない。
Therefore, it is undesirable for the hysteresis to be too large (,
The hysteresis must be large enough to immediately reset the output (voDout) of the control means to the overdischarge prevention cutoff switch (SWoD) as the battery voltage increases due to the start of charging.

以上を考慮すると、ヒステリシスの大きさは0.05V
〜5.0■程度あることが好ましい。
Considering the above, the magnitude of hysteresis is 0.05V
It is preferable that it is about 5.0 .

同様に、過充電防止用の充電回路の遮断スイッチ(SW
oD)への制御手段の出力(■00゜ut)は、過充電
検出電圧(v0c=rr)すなわち過充電防止用の充電
回路の遮断スイッチ(SWoc)をオフする検知電圧よ
りも低いリセット電圧(Voc、、)を有することが必
要であり、ヒステリシスの大きさ(Vocate −V
ocon)は0.05V 〜5.0V程度アルコトが好
マシい。
Similarly, the charging circuit cutoff switch (SW) is used to prevent overcharging.
The output of the control means (■00゜ut) to oD) is a reset voltage (■00゜ut) lower than the overcharge detection voltage (v0c=rr), that is, the detection voltage that turns off the cutoff switch (SWoc) of the charging circuit for overcharge prevention. ), and the magnitude of hysteresis (Vocate −V
ocon) is better at about 0.05V to 5.0V.

0.05Vよりも小さなヒステリシスでは、充電電流の
遮断による電池端子間電圧の低下によって、再びリセッ
ト電圧(Voc、わ)を下回ってしまい、その結果、過
充電防止用の充電回路の遮断スイッチ(SWoe)がオ
ンして、電源装置は断続的に充電が継続されてしまうの
で、ヒステリシスが小さすぎるのは好ましくない。
If the hysteresis is smaller than 0.05V, the voltage between the battery terminals decreases due to the cutoff of the charging current, which causes the voltage to drop below the reset voltage (Voc, wa) again. ) is turned on and the power supply continues to be charged intermittently, so it is undesirable for the hysteresis to be too small.

一方、ヒステリシスが5,0■よりも大きな場合は、電
源装置が充電遮断状態から放電に入った場合、電源装置
内の電池の電圧がリセット電圧(VOCQ、)を下回ら
ず、過充電防止用の充電回路の遮断スイッチ(SWoc
)への制御手段の出力(voeout)がリセットされ
ないので、過充電防止用の充電回路の遮断スイッチ(S
woe)がオフ状態のまま、放電電流は過充電防止用の
遮断スイッチ(swo c )の寄生ダイオードのみを
流れるので、過充電防止用の遮断スイッチ(SWOC)
での電力損失が大きい状態が続(。従って、ヒステリシ
スが大きすぎるのは好ましくなく、放電開始による電池
電圧の低下によって、ただちに過充電防止用の遮断スイ
ッチ(swOc)への電圧検知手段の出力(voo。u
t)がリセットされる程度のヒステリシスの大きさでな
ければならない。以上を考慮すると、ヒステリシスの大
きさはo、 osv〜5.Ov程度あることが好ましい
On the other hand, if the hysteresis is larger than 5.0■, when the power supply enters discharge from the charging cutoff state, the voltage of the battery in the power supply does not fall below the reset voltage (VOCQ,), and the Charging circuit cutoff switch (SWoc)
) is not reset, the charging circuit cutoff switch (S
woe) remains off, the discharge current flows only through the parasitic diode of the overcharge prevention cutoff switch (SWOC), so the overcharge prevention cutoff switch (SWOC)
Therefore, it is undesirable for the hysteresis to be too large, and as the battery voltage drops due to the start of discharging, the output of the voltage detection means to the overcharge prevention cutoff switch (swOc) will continue (. voo.u
The hysteresis must be large enough to reset t). Considering the above, the magnitude of hysteresis is o, osv ~ 5. It is preferable to have about Ov.

なお、電池3の使用電圧範囲が、VLOW≦■≦vs+
gnであるとすると、通常、V”Off≦VLOW<■
QD、、。<v、、、h、 v、。、 <v”。。< 
V++gn ≦V0c0rtと設定することが必要であ
る。
In addition, the working voltage range of battery 3 is VLOW≦■≦vs+
gn, normally V”Off≦VLOW<■
QD... <v,,,h,v,. , <v”..<
It is necessary to set V++gn≦V0c0rt.

ところで、制御手段として使用する電子回路は、バイポ
ーラIC,MOS IC,CMOS IC,Bi−MO
S IC1および、パイグリッドIC等で構成すること
ができるが、消費電流が小さいほうが好ましく、少なく
とも、充電式の電源装置内の二次電池の自己放電電流よ
りも小さいことが望ましい。特に、脱着可能な充電式の
電源装置では、充電した状態で電池を保存した場合、使
用しないで放置しているだけで、充電式の電源装置の残
存容量が著しく短期間になくなってしまうのでは実用に
は堪え難い。
By the way, electronic circuits used as control means include bipolar IC, MOS IC, CMOS IC, Bi-MO
Although it can be configured with an S IC1, a pie grid IC, etc., it is preferable that the current consumption is small, and it is desirable that the current consumption is at least smaller than the self-discharge current of the secondary battery in the rechargeable power supply device. In particular, with a removable rechargeable power supply, if you store the battery in a charged state, the remaining capacity of the rechargeable power supply may run out in a very short period of time if you leave it unused. It is unbearable for practical use.

つぎに、電池3として特開昭62−90863号の二次
電池を使用した場合について具体的に説明する。以下は
、電池3として二次電池を2個直列に組み合わせた場合
について詳述する。
Next, a case where the secondary battery disclosed in Japanese Patent Application Laid-Open No. 62-90863 is used as the battery 3 will be specifically explained. Below, a case where two secondary batteries are combined in series as the battery 3 will be explained in detail.

電池の標準的な動作電圧範囲は、■セルあたり2.75
V〜4,2■であり、電池を2個直列に組み合わせた場
合は、5.5V〜8.4■になる。
The standard operating voltage range of batteries is ■2.75 per cell.
V~4.2■, and when two batteries are combined in series, it becomes 5.5V~8.4■.

本例ではビデオムービーの電源用として2.0Ahの容
量を有する電源装置を試作した。試作した電源装置ば9
0mmX 46mmX 26mmの大きさを有し、0.
15Ω〜0.30Ωの内部抵抗を持つ。なお、電池3の
単セルの内部抵抗は、0.02Ω〜0.08Ωであり、
25℃での自己放電電流は200μA程度である。
In this example, a power supply device with a capacity of 2.0 Ah was prototyped as a power source for a video movie. Prototype power supply unit 9
It has a size of 0 mm x 46 mm x 26 mm, and 0.
It has an internal resistance of 15Ω to 0.30Ω. In addition, the internal resistance of the single cell of the battery 3 is 0.02Ω to 0.08Ω,
The self-discharge current at 25° C. is about 200 μA.

ここで、電池3は単セルの端子間の電圧が約0.5v以
下になると、通常のサイクル劣化より大きな性能の低下
を引き起こすばかりではなく、セル内部短絡の要因が発
生する。従って、電池を2個直列に組み合わせた場合は
、電源装置の電圧が少なくとも1v以下にならないよう
にすることが安全上必要である。
Here, in the battery 3, when the voltage between the terminals of the single cell becomes about 0.5 V or less, not only does the performance deteriorate more than normal cycle deterioration, but also a cause of an internal cell short circuit occurs. Therefore, when two batteries are combined in series, it is necessary for safety to ensure that the voltage of the power supply device does not fall below at least 1V.

また、電池3は単セルの端子間の電圧が約4.5■以上
になると、通常のサイクル劣化より大きな性能の低下を
引き起こすばかりではなく、安全上好ましくない。さら
に、4.8■を越えると異常発熱を引き起こし、危険な
状態になる。従って、電池を2個直列に組み合わせた場
合は、充電時に電源装置の電圧が少な(とも9.0■以
上にならないようにすることが安全上必要である。
Furthermore, when the voltage between the terminals of the battery 3 exceeds about 4.5 .ANG., it not only causes a greater deterioration in performance than normal cycle deterioration, but is also unfavorable from a safety standpoint. Furthermore, if it exceeds 4.8■, abnormal heat generation will occur, resulting in a dangerous situation. Therefore, when two batteries are combined in series, it is necessary for safety to ensure that the voltage of the power supply device during charging does not exceed 9.0 µ.

ここで使用するスイッチ素子としては例えば2SK12
86(NEC)、 23に1136(三菱) 、 2S
K1137(三菱)。
For example, the switch element used here is 2SK12.
86 (NEC), 23 to 1136 (Mitsubishi), 2S
K1137 (Mitsubishi).

2SKl114(東芝)等のMOS FETを使用すれ
ば、MOSFETのドレイン・ソース間のオン抵抗(R
o(。。1)は、0.04Ω〜0,12Ωにすることが
できる。もちろん、より定格の大きなMOS FETを
使用すれば、さらに、MOS FETのドレイン・ソー
ス間のオン抵抗(Rns+o。;)を小さくすることが
可能である。
If you use a MOS FET such as 2SKl114 (Toshiba), the on-resistance (R
o(..1) can be between 0.04Ω and 0.12Ω. Of course, by using a MOS FET with a higher rating, it is possible to further reduce the on-resistance (Rns+o) between the drain and source of the MOS FET.

また、制御手段5はコンパレータと基準電圧回路等を用
い、過放電防止用の検出回路と過充電防止用の検出回路
を、各々、シュミット回路で構成すればよい。このよう
な回路で、放電遮断電圧(voo、rf)を5.2V 
〜5.5Vニ、充電遮断電圧(vocorr)を8.5
V〜8.8■に設定する。さらに、制御手段5はCMO
S IC等で構成すれば、電圧検知手段5の平均消費電
流を、100μ八以下に抑えるのは容易である。また、
電源装置を外部で短絡した場合、MOS FETの遮断
状態時の電源装置の外部回路にリークする電流(Ios
−)は1.0μ八以下である。
Further, the control means 5 may use a comparator, a reference voltage circuit, etc., and the detection circuit for overdischarge prevention and the detection circuit for overcharge prevention may each be constituted by a Schmitt circuit. In such a circuit, the discharge cutoff voltage (voo, rf) is set to 5.2V.
~5.5V, charge cutoff voltage (vocorr) 8.5
Set to V~8.8■. Furthermore, the control means 5 is a CMO
If it is constructed using an SIC or the like, it is easy to suppress the average current consumption of the voltage detection means 5 to 100μ8 or less. Also,
If the power supply is short-circuited externally, the current leaking to the external circuit of the power supply when the MOS FET is cut off (Ios
-) is 1.0μ8 or less.

以上のような構成にすれば、この電源装置の動作電圧域
(5,5V〜8.4V)では、単に、電池を2個直列に
接続した場合と全(同じように使用することが可能であ
り、MOS FETにおける電力損失は、電源装置の電
力容量の5%以下程度に抑えることができる。
With the above configuration, within the operating voltage range of this power supply (5.5V to 8.4V), it can be used in the same way as when two batteries are connected in series. Therefore, the power loss in the MOS FET can be suppressed to about 5% or less of the power capacity of the power supply device.

ここで、電源装置の外部端子間に5Ωの抵抗器を1週間
接続し、電源装置内の電池を放電させ、その前後の容量
を従来の電池と比較するというテストの方法で過放電に
対する効果の評価を行った。
Here, we tested the effect on overdischarge by connecting a 5Ω resistor between the external terminals of the power supply for one week, discharging the battery inside the power supply, and comparing the capacity before and after with a conventional battery. We conducted an evaluation.

その結果、従来、二次電池を単に2個直列に接続した場
合には、5%〜80%の容量の低下が認められていたが
、試作した電源装置では全く容量の低下はなかった。ま
た、電源装置と従来の電池を放電させた後に、1ケ月間
ビデオムービーに装置したままの状態で放置した場合に
も、従来の二次電池を単に2個直列に接続した場合には
、2%〜50%の容量の低下が認められていたが、試作
した電源装置では全(容量の低下は認められなかった。
As a result, conventionally, when two secondary batteries were simply connected in series, a decrease in capacity of 5% to 80% was observed, but in the prototype power supply device, there was no decrease in capacity at all. Furthermore, even if the power supply unit and conventional batteries are left unused for a month after being discharged, if two conventional secondary batteries are simply connected in series, % to 50% decrease in capacity was observed, but no decrease in capacity was observed in the prototype power supply device.

さらに、電源装置2が正常な充電条件(充電電流は2A
以下で、かつ、電源装置2の端子間電圧が8.4v以下
の定電圧充電)を越えて充電が行われた場合には、この
電源装置2内の電池3の端子間電圧が充電遮断電圧(v
oCort)を越えれば、ただちに、充電回路が遮断さ
れて、電源装置2内の電池3が危険な状態に至るのを未
然に防止できる。
Furthermore, if the power supply device 2 is under normal charging conditions (charging current is 2A)
(and the voltage between the terminals of the power supply device 2 is 8.4V or less), when charging is performed, the voltage between the terminals of the battery 3 in this power supply device 2 is the charging cutoff voltage. (v
oCort), the charging circuit is immediately cut off and the battery 3 in the power supply device 2 can be prevented from reaching a dangerous state.

例えば、二次電池を2個直列に接続した組電池とこの電
源装置2を、2.OAの定電流充電を行った場合で比較
すれば、電池を2個直列に接続した組電池では、端子間
の電圧が9.6vを越えたあたりから異常発熱を始め、
ついには破裂に至る。特に、−旦、過放電された後に過
充電に至った場合、9.6■よりも低い電圧で異常発熱
し、突然破裂する場合がある。
For example, if a battery pack in which two secondary batteries are connected in series and this power supply device 2 are used, 2. Comparing the case of constant current charging of OA, a battery pack with two batteries connected in series starts to generate abnormal heat when the voltage between the terminals exceeds 9.6V.
Eventually it will rupture. In particular, if the battery is overcharged after being overdischarged, it may generate abnormal heat at a voltage lower than 9.6cm and suddenly burst.

ところが、この電源装置2では電源装置2内の電池3の
端子間電圧が充電遮断電圧(vocotr)を越えれば
、ただちに、充電回路が遮断されるので危険な状態を未
然に防ぐことができる。すなわち、通常の充電に比べれ
ば、特性の劣化は数%大きくなる場合もあるが、破裂等
の危険な状態は回避され、その後も安全に使用できる。
However, in this power supply device 2, if the voltage between the terminals of the battery 3 in the power supply device 2 exceeds the charging cutoff voltage (vocotr), the charging circuit is immediately shut off, so a dangerous situation can be prevented. That is, compared to normal charging, the deterioration of characteristics may be several percent greater, but dangerous conditions such as explosion are avoided, and the battery can be used safely thereafter.

特に本発明に係る脱着可能な充電式の電源装置において
は、どのような装置で、どのような使用のされ方をした
場合でも、当該電源装置内の二次電池の過放電を防止し
、かつ、専用充電装置以外の充電装置で充電された場合
においても、当該電源装置内の二次電池の過充電を防止
することができる。
In particular, in the removable rechargeable power supply device according to the present invention, no matter what kind of device it is and how it is used, over-discharging of the secondary battery in the power supply device can be prevented, and Even when the battery is charged with a charging device other than the dedicated charging device, overcharging of the secondary battery in the power supply device can be prevented.

[発明の効果1 以上説明したように本発明によれば、非常に簡単な構成
で、通常の二次電池と全く同じように使用でき、しかも
、正常な放電条件を越えて電池が過放電される以前に電
源装置の放電回路を遮断して電池を過放電から保護し、
がっ、正常な充電条件を越えて電池が過充電される以前
に、電源装置の充電回路を遮断して電池を過充電から保
護することができて、過放電および過充電による危険や
特性の劣化の虞をなくすることができる。
[Advantageous Effects of the Invention 1] As explained above, according to the present invention, it has a very simple structure and can be used in exactly the same way as a normal secondary battery. To protect the battery from over-discharge, shut off the discharge circuit of the power supply before
However, before the battery is overcharged beyond normal charging conditions, the charging circuit of the power supply device can be cut off to protect the battery from overcharging, thereby reducing the danger and characteristics of overdischarging and overcharging. It is possible to eliminate the risk of deterioration.

【図面の簡単な説明】 第1図は本発明の基本的構成を示すブロック図、 第2図は本発明の一実施例の回路図、 第3図(a) 、 (b) 、 (c) 、 (d)は
制御手段の出カバターンの例を示す図である。 1・・・負荷または充電器、 2・・・電源装置、 3・・・電池、 4・・・スイッチ手段、 5・・・制御手段、 6・・・正極端子、 7・・・負極端子、 41.42・・・MOS FET 。 41A、 42A・・・寄生ダイオード。 (a) (c) 第3図 (b)
[Brief Description of the Drawings] Fig. 1 is a block diagram showing the basic configuration of the present invention, Fig. 2 is a circuit diagram of an embodiment of the present invention, Fig. 3 (a), (b), (c) , (d) is a diagram showing an example of an output pattern of the control means. DESCRIPTION OF SYMBOLS 1...Load or charger, 2...Power supply device, 3...Battery, 4...Switch means, 5...Control means, 6...Positive terminal, 7...Negative terminal, 41.42...MOS FET. 41A, 42A...parasitic diode. (a) (c) Figure 3 (b)

Claims (1)

【特許請求の範囲】 1)充電可能な電池と、内部に寄生ダイオードを有する
第1および第2のスイッチ素子が直列接続されたスイッ
チ手段と、前記電池の両端電圧を検出して前記スイッチ
手段を制御する制御手段とを備え、 前記第1のスイッチ素子はその寄生ダイオードの順方向
が前記電池の放電方向になるように、前記第2のスイッ
チ素子はその寄生ダイオードの順方向が前記電池の充電
方向となるように前記電池に接続され、 前記制御手段は、前記電池の電圧が充電可能電圧の近傍
の第1の電圧より下がったとき前記第1のスイッチ素子
を導通させ、前記電池の電圧が前記充電可能電圧の近傍
であって前記第1の電圧より高い第2の電圧より上がっ
たとき前記第1のスイッチ素子を非導通状態にし、前記
電池の電圧が放電可能電圧の近傍の第3の電圧より上が
ったとき前記第2のスイッチ素子を導通させ、前記電池
の電圧が前記放電可能電圧の近傍であって前記第3の電
圧よりも低い第4の電圧より下がったとき前記第2のス
イッチ素子を非導通状態にすることを特徴とする充電式
の電源装置。
[Claims] 1) A switch means including a rechargeable battery and a first and second switch element each having a parasitic diode connected in series; and a control means for controlling the first switch element such that the forward direction of its parasitic diode is in the discharging direction of the battery, and the second switch element is configured such that the forward direction of its parasitic diode is in the charging direction of the battery. The control means is connected to the battery so that the voltage of the battery becomes conductive when the voltage of the battery falls below a first voltage in the vicinity of a chargeable voltage, and the control means conducts the first switch element so that the voltage of the battery When the voltage of the battery rises above a second voltage that is near the chargeable voltage and higher than the first voltage, the first switch element is made non-conductive, and the voltage of the battery is set to a third voltage that is near the dischargeable voltage. When the voltage of the battery is higher than the voltage, the second switch element is made conductive, and when the voltage of the battery is lower than the fourth voltage, which is near the dischargeable voltage and lower than the third voltage, the second switch element is turned on. A rechargeable power supply device characterized by making an element non-conductive.
JP18799090A 1990-07-18 1990-07-18 Rechargeable power supply Expired - Lifetime JP2872365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18799090A JP2872365B2 (en) 1990-07-18 1990-07-18 Rechargeable power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18799090A JP2872365B2 (en) 1990-07-18 1990-07-18 Rechargeable power supply

Publications (2)

Publication Number Publication Date
JPH0475430A true JPH0475430A (en) 1992-03-10
JP2872365B2 JP2872365B2 (en) 1999-03-17

Family

ID=16215695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18799090A Expired - Lifetime JP2872365B2 (en) 1990-07-18 1990-07-18 Rechargeable power supply

Country Status (1)

Country Link
JP (1) JP2872365B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276682A (en) * 1992-03-26 1993-10-22 Nippon Motorola Ltd Charge controller for battery
JPH0865907A (en) * 1994-08-22 1996-03-08 Fuji Elelctrochem Co Ltd Current detecting circuit and overcharge preventive device
EP0760547A2 (en) * 1995-08-25 1997-03-05 Nec Corporation Battery pack with a lithium ion secondary battery
JPH09266634A (en) * 1996-03-28 1997-10-07 Sanyo Electric Co Ltd Protection circuit of secondary battery
US5789900A (en) * 1994-12-05 1998-08-04 Fuji Photo Film Co., Ltd. Device for protecting a secondary battery from overcharge and overdischarge
CN1063590C (en) * 1995-04-03 2001-03-21 精工电子工业株式会社 Charge and discharge control circuit
US6222346B1 (en) 1999-08-18 2001-04-24 Matsushita Electric Industrial Co., Ltd. Battery protection device
EP1107344A1 (en) * 1999-05-17 2001-06-13 Matsushita Electric Industrial Co., Ltd. Circuit and device for protecting secondary battery
CN1088275C (en) * 1996-06-14 2002-07-24 精工电子工业株式会社 Charge/discharge control circuit and charging type power-supply unit
US6437541B1 (en) * 2001-01-05 2002-08-20 Seiko Instruments Inc. Battery state monitoring circuit and battery device
US6563292B2 (en) 2000-12-26 2003-05-13 Ricoh Company, Ltd. Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating
JP2006281405A (en) * 2005-04-04 2006-10-19 Hitachi Koki Co Ltd Cordless power tool
JP2007520180A (en) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク Secondary battery, power tool, charger, and protection method, protection circuit, and protection device for battery pack adapted to provide protection from battery pack failure conditions
JP2007330069A (en) * 2006-06-09 2007-12-20 Ntt Facilities Inc Battery management system
JP2008160930A (en) * 2006-12-21 2008-07-10 Seiko Instruments Inc Charging-type power supply device and semiconductor device
EP1708553A3 (en) * 2005-03-28 2008-07-23 Mitsumi Electric Co., Ltd. Secondary battery protecting module and lead mounting method
US7589502B2 (en) 2006-01-18 2009-09-15 Seiko Instruments Inc. Charge and discharge control circuit with variable switching delay time function and charging-type supply device using the control circuit
JP2010206974A (en) * 2009-03-04 2010-09-16 Nec Computertechno Ltd Power supply system and operating method thereof
US7952330B2 (en) 2005-04-20 2011-05-31 Panasonic Corporation Secondary battery protection circuit, battery pack and thermosensitive protection switch device
US7969116B2 (en) 2005-04-04 2011-06-28 Hitachi Koki Co., Ltd. Power pack and cordless power tool having the same
US8203309B2 (en) 2007-10-19 2012-06-19 Panasonic Corporation Battery pack, and battery system
US9397370B2 (en) 1999-06-25 2016-07-19 The Board Of Trustees Of The University Of Illinois Single and multiple cell battery with built-in controller
JP2022001012A (en) * 2020-06-17 2022-01-04 ショット日本株式会社 Protection circuit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064541A (en) * 1999-10-22 2011-05-18 泰科电子有限公司 Device and method for protection of chargeable element
US6340880B1 (en) 1999-11-11 2002-01-22 Mitsumi Electric Co., Ltd. Method of protecting a chargeable electric cell
JP3844063B2 (en) 2002-02-01 2006-11-08 ミツミ電機株式会社 Secondary battery protection circuit
JP4186052B2 (en) 2003-03-26 2008-11-26 ミツミ電機株式会社 Battery pack with charge control function

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276682A (en) * 1992-03-26 1993-10-22 Nippon Motorola Ltd Charge controller for battery
JPH0865907A (en) * 1994-08-22 1996-03-08 Fuji Elelctrochem Co Ltd Current detecting circuit and overcharge preventive device
US5789900A (en) * 1994-12-05 1998-08-04 Fuji Photo Film Co., Ltd. Device for protecting a secondary battery from overcharge and overdischarge
CN1063590C (en) * 1995-04-03 2001-03-21 精工电子工业株式会社 Charge and discharge control circuit
EP0760547B1 (en) * 1995-08-25 2001-12-19 Nec Corporation Battery pack with a lithium ion secondary battery
EP0760547A2 (en) * 1995-08-25 1997-03-05 Nec Corporation Battery pack with a lithium ion secondary battery
JPH09266634A (en) * 1996-03-28 1997-10-07 Sanyo Electric Co Ltd Protection circuit of secondary battery
CN1088275C (en) * 1996-06-14 2002-07-24 精工电子工业株式会社 Charge/discharge control circuit and charging type power-supply unit
EP1107344A1 (en) * 1999-05-17 2001-06-13 Matsushita Electric Industrial Co., Ltd. Circuit and device for protecting secondary battery
EP1107344A4 (en) * 1999-05-17 2007-08-15 Matsushita Electric Ind Co Ltd Circuit and device for protecting secondary battery
US9397370B2 (en) 1999-06-25 2016-07-19 The Board Of Trustees Of The University Of Illinois Single and multiple cell battery with built-in controller
US6222346B1 (en) 1999-08-18 2001-04-24 Matsushita Electric Industrial Co., Ltd. Battery protection device
US6563292B2 (en) 2000-12-26 2003-05-13 Ricoh Company, Ltd. Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating
US6768289B2 (en) 2000-12-26 2004-07-27 Ricoh Company, Ltd. Charge/discharge protection circuit with latch circuit for protecting a charge control FET from overheating in a portable device
US6437541B1 (en) * 2001-01-05 2002-08-20 Seiko Instruments Inc. Battery state monitoring circuit and battery device
JP2007520180A (en) * 2003-10-14 2007-07-19 ブラック アンド デッカー インク Secondary battery, power tool, charger, and protection method, protection circuit, and protection device for battery pack adapted to provide protection from battery pack failure conditions
EP1708553A3 (en) * 2005-03-28 2008-07-23 Mitsumi Electric Co., Ltd. Secondary battery protecting module and lead mounting method
US8305768B2 (en) 2005-03-28 2012-11-06 Mitsumi Electric Co., Ltd. Secondary battery protecting module and lead mounting method
US7969116B2 (en) 2005-04-04 2011-06-28 Hitachi Koki Co., Ltd. Power pack and cordless power tool having the same
JP2006281405A (en) * 2005-04-04 2006-10-19 Hitachi Koki Co Ltd Cordless power tool
US7952330B2 (en) 2005-04-20 2011-05-31 Panasonic Corporation Secondary battery protection circuit, battery pack and thermosensitive protection switch device
US7589502B2 (en) 2006-01-18 2009-09-15 Seiko Instruments Inc. Charge and discharge control circuit with variable switching delay time function and charging-type supply device using the control circuit
TWI403072B (en) * 2006-01-18 2013-07-21 Seiko Instr Inc Charging and discharging control circuit and charging type power supply device
JP2007330069A (en) * 2006-06-09 2007-12-20 Ntt Facilities Inc Battery management system
JP4546445B2 (en) * 2006-12-21 2010-09-15 セイコーインスツル株式会社 Rechargeable power supply device and semiconductor device
JP2008160930A (en) * 2006-12-21 2008-07-10 Seiko Instruments Inc Charging-type power supply device and semiconductor device
US8203309B2 (en) 2007-10-19 2012-06-19 Panasonic Corporation Battery pack, and battery system
JP2010206974A (en) * 2009-03-04 2010-09-16 Nec Computertechno Ltd Power supply system and operating method thereof
JP2022001012A (en) * 2020-06-17 2022-01-04 ショット日本株式会社 Protection circuit

Also Published As

Publication number Publication date
JP2872365B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JP2872365B2 (en) Rechargeable power supply
KR101213480B1 (en) Battery protecting circuit and controlling method of the same
TWI411185B (en) Apparatus and method for protecting battery pack by detecting destruction of sense resistor in battery pack
KR101975395B1 (en) Battery pack, and controlling method of the same
JP4186052B2 (en) Battery pack with charge control function
US20070210759A1 (en) Charge/discharge protection circuit and power-supply unit
KR101264740B1 (en) Battery protection circuit and controlling method thereof
JPH04331425A (en) Overcharge preventing device and overdischarge preventing device
WO2002003525A1 (en) Charger, battery pack, and charging system using the charger and battery pack
JP2008029067A (en) Battery pack comprising protective circuit for secondary battery
US8665572B2 (en) Battery charge/discharge protection circuit
JPH08196042A (en) Charging and discharging protection unit for secondary battery
JPH06276696A (en) Over-discharge protective circuit of secondary battery
JP3294754B2 (en) Secondary battery protection circuit
JPH08265985A (en) Charging method for pack battery
JP3622243B2 (en) Charge / discharge protection device for secondary battery
JP2925241B2 (en) Rechargeable battery device
JP2005130664A (en) Battery pack
JPH07105986A (en) Battery pack
KR100781794B1 (en) Battery Protection Circuit
JPH10290530A (en) Secondary battery protective circuit
JP2000069689A (en) Battery pack device
JP2006121827A (en) Protection circuit for secondary battery
JPH08237872A (en) Charge or discharge protective apparatus for secondary cell
JP3420672B2 (en) Secondary battery protection circuit

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12