JPH0475383B2 - - Google Patents

Info

Publication number
JPH0475383B2
JPH0475383B2 JP57183878A JP18387882A JPH0475383B2 JP H0475383 B2 JPH0475383 B2 JP H0475383B2 JP 57183878 A JP57183878 A JP 57183878A JP 18387882 A JP18387882 A JP 18387882A JP H0475383 B2 JPH0475383 B2 JP H0475383B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
fuel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57183878A
Other languages
Japanese (ja)
Other versions
JPS5974352A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18387882A priority Critical patent/JPS5974352A/en
Publication of JPS5974352A publication Critical patent/JPS5974352A/en
Publication of JPH0475383B2 publication Critical patent/JPH0475383B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Description

【発明の詳細な説明】 本発明は、エンジンの排気系に空燃比センサを
設け、該センサの検出信号に基づき空燃比を検出
し、検出された空燃比をもとにエンジンに供給す
る混合気の空燃比を最適な状態にフイードバツク
制御する空燃比の制御方法に関する。
Detailed Description of the Invention The present invention provides an air-fuel ratio sensor in the exhaust system of the engine, detects the air-fuel ratio based on the detection signal of the sensor, and adjusts the air-fuel mixture to be supplied to the engine based on the detected air-fuel ratio. The present invention relates to an air-fuel ratio control method for feedback-controlling the air-fuel ratio to an optimum state.

従来、エンジンの排気ガス成分中の酸素濃度か
ら混合気の空燃比を検出し、この空燃比センサの
検出信号に基づいてエンジンに供給する混合気の
空燃比をフイードバツク制御すると言つたエンジ
ンの数々の空燃比制御方法の中に、エンジンの
様々な運転状態(エンジン状態)に応じて空燃比
を適切に制御するために、読み書き可能な不揮発
性のメモリを設け、該メモリに空燃比補正用の情
報、即ちフイードバツク制御中に空燃比センサに
よつて検出されたデータを積分処理し、その積分
処理結果に応じた値を当該積分処理時点のエンジ
ン状態と対応させてエンジン状態毎の情報として
記憶し、走行中、逐次前記補正用の情報の更新
(学習)を行うと共に、この補正用の情報等に基
づき空燃比を制御し、フイードバツク制御上の問
題点である制御の遅れや、フイードバツク制御を
行うことのできないオープンループ制御時の排気
中有害成分の増加等の問題を解決すると言つた空
燃比の制御方法が挙げられる。
Conventionally, various engines have been developed in which the air-fuel ratio of the air-fuel mixture is detected from the oxygen concentration in the engine's exhaust gas components, and the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled based on the detection signal of the air-fuel ratio sensor. In the air-fuel ratio control method, in order to appropriately control the air-fuel ratio according to various engine operating conditions (engine conditions), a readable and writable non-volatile memory is provided, and information for air-fuel ratio correction is stored in the memory. That is, data detected by the air-fuel ratio sensor during feedback control is integrated, and a value corresponding to the result of the integration is stored as information for each engine state in correspondence with the engine state at the time of the integration processing. While driving, the correction information is sequentially updated (learned), and the air-fuel ratio is controlled based on this correction information, etc., and control delays, which are problems in feedback control, are avoided, and feedback control is performed. One example is an air-fuel ratio control method that solves problems such as an increase in harmful components in exhaust gas during open-loop control, which cannot be controlled.

これらの制御方法においては、フイードバツク
制御の適さない空燃比センサの不活性状態や減速
時等の燃料カツト状態等のエンジン状態の時に
は、フイードバツク制御を行わず、またこのフイ
ードバツク制御の停止時には前記エンジン状態毎
の補正用情報を記憶する処理を中止し、不正確な
データを記憶することによつて発生する制御の乱
れを防ぐようにされていた。
In these control methods, feedback control is not performed during engine conditions such as an inactive state of the air-fuel ratio sensor or a fuel cut state during deceleration that is not suitable for feedback control, and when this feedback control is stopped, the engine state is The process of storing correction information for each time is stopped to prevent control disturbances caused by storing inaccurate data.

しかしながら、単に、オープンループ制御時に
前記記憶処理を行わないと言つた方法では精緻な
制御はできず、例えばオープンループ制御からフ
イードバツク制御に移行した際、空燃比がまだリ
ツチ側に乱れている状態でフイードバツク制御に
よつて空燃比をリーン状態にするためのエンジン
状態毎補正情報を演算しメモリに記憶することか
ら、この時点のエンジン状態毎補正情報に基づい
て以後の空燃比を制御した場合、空燃比は過度に
薄くなるように制御され、エミツシヨンの悪化に
よつて車両の走行がもたつき、良好な運転性を確
保できなくなる恐れがあつた。また、このよう
な、エンジン状態毎補正情報の記憶処理に不適当
な状態は、前述のオープンループ制御からフイー
ドバツク制御へ移行した直後のみならず、オープ
ンループ制御からフイードバツク制御に移行して
所定の時間が経過したフイードバツク制御中であ
つても存在する。即ち、加減速中等では、吸気量
等のデータの変化が大きく過渡的な不正確なデー
タしか得られず、従つてこのような状態でエンジ
ン状態毎補正情報の記憶処理を行うことは適切で
はない。
However, simply not performing the above-mentioned memory processing during open-loop control does not allow for precise control; for example, when transitioning from open-loop control to feedback control, the air-fuel ratio may still be disturbed towards the rich side. Since correction information for each engine state is calculated and stored in memory to bring the air-fuel ratio into a lean state through feedback control, if the air-fuel ratio is subsequently controlled based on the correction information for each engine state at this point, the air-fuel ratio The fuel ratio was controlled to be excessively lean, and there was a risk that the vehicle would run sluggishly due to deterioration in emissions, making it impossible to ensure good drivability. In addition, such a state that is inappropriate for storing correction information for each engine state occurs not only immediately after the above-mentioned open-loop control shifts to feedback control, but also during a predetermined period of time after shifting from open-loop control to feedback control. It exists even during feedback control when the period has elapsed. That is, during acceleration/deceleration, etc., data such as intake air volume changes greatly and only transient and inaccurate data can be obtained, and therefore it is not appropriate to store correction information for each engine state under such conditions. .

本発明は、上述の点に鑑みなされたもので、空
燃比フイードバツクの制御の応答遅れを補償し、
フイードバツク制御、オープンループ制御のいず
れにあつても常に適切な空燃比を維持できる空燃
比の制御方法を提供することを目的としている。
かかる目的は、空燃比センサによりエンジンの排
気ガス成分からエンジンに供給された混合気の空
燃比を検出し、該検出結果に基づき混合気の空燃
比を補正するフイードバツク制御と並んで実行さ
れ、前記空燃比センサの検出信号に応じて読み書
き可能な不揮発性メモリ内に記憶されているエン
ジン状態補正情報を更新し、前記メモリ内のエン
ジン状態補正情報に基づいて混合気の空燃比の補
正を行う空燃比制御方法において、 エンジンの運転状態が前記エンジン状態補正情
報の更新に適した所定範囲にあるか否かを判別
し、 エンジンの運転状態がこの所定範囲内に入つて
から、前記空燃比センサの検出信号が空燃比のリ
ツチを表す状態とリーンを表す状態とを所定回数
反転変化したか否かを判別し、 エンジンの運転状態が前記所定範囲外と判別さ
れた間、および前記所定範囲内に入つてから前記
空燃比センサの検出信号の前記反転変化が所定回
数未満であると判別された間は、前記エンジン状
態補正情報の更新を停止することを特徴とする空
燃比制御方法によつて達成される。
The present invention has been made in view of the above points, and compensates for response delay in air-fuel ratio feedback control.
It is an object of the present invention to provide an air-fuel ratio control method that can always maintain an appropriate air-fuel ratio in both feedback control and open-loop control.
This purpose is performed in parallel with the feedback control in which the air-fuel ratio of the air-fuel mixture supplied to the engine is detected from the exhaust gas components of the engine by the air-fuel ratio sensor, and the air-fuel ratio of the air-fuel mixture is corrected based on the detection result. An air-fuel ratio controller that updates engine condition correction information stored in a readable and writable nonvolatile memory in response to a detection signal from an air-fuel ratio sensor, and corrects the air-fuel ratio of the air-fuel mixture based on the engine condition correction information in the memory. In the fuel ratio control method, it is determined whether the operating state of the engine is within a predetermined range suitable for updating the engine state correction information, and after the operating state of the engine falls within the predetermined range, the air-fuel ratio sensor is adjusted. It is determined whether the detection signal has reversely changed between a state representing a rich air-fuel ratio and a state representing a lean air-fuel ratio a predetermined number of times, and the engine operating state is determined to be outside the predetermined range and within the predetermined range. Achieved by an air-fuel ratio control method characterized in that updating of the engine state correction information is stopped while it is determined that the inversion change of the detection signal of the air-fuel ratio sensor is less than a predetermined number of times after the air-fuel ratio sensor is turned on. be done.

以下、本発明の実施例を挙げ、これを図面に基
づいて説明する。
Hereinafter, examples of the present invention will be given and explained based on the drawings.

第1図はエンジン部の構成を示し、エンジン1
1は自動車に搭載される公知の四サイクル火花点
火式六気筒エンジンであり、燃焼用空気をエアク
リーナ12、吸気管13、及びスロツトル弁14
を順次介して吸入する。また、燃料は図示しない
燃料系からエンジン11の各気筒に対応して設け
られた電磁式燃料噴射弁15a〜15fを介して
供給される。爆発後の排気ガスは、排気マニホー
ルド16に接続した排気管17、及び三元触媒コ
ンバータ18等を経て大気に放出される。
Figure 1 shows the configuration of the engine section. Engine 1
Reference numeral 1 designates a known four-stroke spark ignition six-cylinder engine installed in an automobile, in which combustion air is passed through an air cleaner 12, an intake pipe 13, and a throttle valve 14.
inhaled sequentially. Further, fuel is supplied from a fuel system (not shown) through electromagnetic fuel injection valves 15a to 15f provided corresponding to each cylinder of the engine 11. The exhaust gas after the explosion is released into the atmosphere through an exhaust pipe 17 connected to the exhaust manifold 16, a three-way catalytic converter 18, and the like.

吸気管13には、エンジン11に吸入される吸
気量を検出しその吸気量に応じたアナログ電圧を
出力するポテンシヨメータ式の吸気量センサ19
と、吸気の温度を検出し、その吸気温に応じたア
ナログ電圧を出力するサーミスタ式の吸気温セン
サ20が設置されている。
The intake pipe 13 includes a potentiometer-type intake air amount sensor 19 that detects the amount of intake air taken into the engine 11 and outputs an analog voltage according to the amount of intake air.
A thermistor-type intake temperature sensor 20 is installed that detects the temperature of intake air and outputs an analog voltage according to the intake air temperature.

又、エンジン11には、その冷却水温を検出
し、冷却水温に応じたアナログ電圧を出力するサ
ーミスタ式の水温センサ21が設置され、排気マ
ニホールド16には排気ガス中の残留酸素濃度に
応じて空燃比を検出する空燃比センサ22が設置
され、空燃比センサ22は、空燃比が理論空燃比
より小さな(リツチ)とき1V程度(高レベル)、
理論空燃比より大きな(リーン)ときに0.1V程
度(低レベル)の電圧信号を出力する。23はエ
ンジンの回転速度(回転数)を検出する回転速度
センサであり、例えば、図示していない点火コイ
ルの一次側端子から点火パルス信号を検出してエ
ンジン回転速度に応じた周波数をもつ回転速度信
号とすることができる。尚、上記各センサ19〜
23からの検出信号は制御回路24に送られ、制
御回路24では各検出信号に基づいて燃料噴射量
を演算し、電磁式燃料噴射弁15a〜15fの開
弁時間を制御しエンジンの燃料噴射量を制御する
ことによつて空燃比を制御する。
The engine 11 is also equipped with a thermistor-type water temperature sensor 21 that detects its cooling water temperature and outputs an analog voltage according to the cooling water temperature. An air-fuel ratio sensor 22 is installed to detect the fuel ratio, and the air-fuel ratio sensor 22 outputs a voltage of about 1 V (high level) when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio (rich).
Outputs a voltage signal of approximately 0.1V (low level) when the air-fuel ratio is greater than the stoichiometric air-fuel ratio (lean). 23 is a rotational speed sensor that detects the rotational speed (rotational speed) of the engine; for example, it detects an ignition pulse signal from the primary terminal of an ignition coil (not shown) and detects the rotational speed with a frequency corresponding to the engine rotational speed. It can be a signal. In addition, each of the above-mentioned sensors 19~
The detection signals from 23 are sent to the control circuit 24, and the control circuit 24 calculates the fuel injection amount based on each detection signal, controls the opening time of the electromagnetic fuel injection valves 15a to 15f, and adjusts the fuel injection amount of the engine. The air-fuel ratio is controlled by controlling the

第2図は上記制御回路24の構成を示し、10
0は燃料噴射量を演算するマイクロプロセツサ
(MPU)である。101は回転数カウンタであ
り、回転速度センサ23からの信号を入力してこ
の検出信号のパルス数をカウントして回転速度デ
ータをつくると共に、エンジン回転に同期して割
り込み制御部102に対し割り込み指令信号を送
る。割り込み制御部102は前記割り込み指令信
号を受けるとコモンバスCBを通じてマイクロプ
ロセツサ100に割り込み信号を出力するように
動作する。103はデジタル入力ポートであり、
空燃比センサ22からの空燃比信号やスタータス
イツチ25からのスタータ信号のデジタル信号を
入力してマイクロプロセツサ100に伝達する。
104はアナログマルチプレクサとA−D変換器
からなるアナログ入力ポートで、吸気量センサ1
9、吸気温センサ20、冷却水温センサ21から
の各検出信号をA−D変換して、順次そのデータ
をマイクロプロセツサ100に取り込ませる機能
をもつ。105は電源回路であり、後述する
RAM107に対しバツテリ26から直接、常に
電源を供給する。また、バツテリ26はキースイ
ツチ27を介して他の電源回路106にも供給さ
れ、この電源回路106はRAM107以外の回
路や機器に電源を供給する。従つて、このRAM
107はプログラム動作中一時使用される一時記
憶ユニツトであるが、キースイツチ27に関係な
く常時電源が印加され、キースイツチ27をオフ
にしてエンジンの運転を停止しても、その記憶内
容が消失しない不揮発性メモリを構成する。尚、
後述する補正量K2及びK3はこのRAM107に記
憶される。108はプログラムや各種の定数等を
記憶する読み出し専用メモリ(ROM)である。
109はレジスタを含む燃料噴射時間制御用カウ
ンタで、ダウンカウンタにより構成され、マイク
ロプロセツサ100で演算された電磁式燃料噴射
弁15a〜15fの開弁時間、つまり、燃料噴射
量を表わすデジタル信号を、実際の噴射弁の開弁
時間を与えるパルス時間幅(デユーテイ比)のパ
ルス信号に変換する。110は開弁用のパルス信
号を受けて電磁式燃料噴射弁15a〜15fを駆
動する電力増幅器、111は経過時間を測定して
マイクロプロセツサ100に伝達するタイマーで
ある。
FIG. 2 shows the configuration of the control circuit 24, with 10
0 is a microprocessor (MPU) that calculates the fuel injection amount. Reference numeral 101 denotes a rotation number counter, which inputs the signal from the rotation speed sensor 23 and counts the number of pulses of this detection signal to create rotation speed data, and also issues an interrupt command to the interrupt control unit 102 in synchronization with the engine rotation. send a signal. When the interrupt control section 102 receives the interrupt command signal, it operates to output an interrupt signal to the microprocessor 100 through the common bus CB. 103 is a digital input port;
Digital signals such as an air-fuel ratio signal from the air-fuel ratio sensor 22 and a starter signal from the starter switch 25 are input and transmitted to the microprocessor 100.
104 is an analog input port consisting of an analog multiplexer and an A-D converter;
9. It has a function of converting each detection signal from the intake temperature sensor 20 and the cooling water temperature sensor 21 from analog to digital and sequentially importing the data into the microprocessor 100. 105 is a power supply circuit, which will be described later.
Power is always supplied directly to the RAM 107 from the battery 26. The battery 26 is also supplied to another power supply circuit 106 via a key switch 27, and this power supply circuit 106 supplies power to circuits and devices other than the RAM 107. Therefore, this RAM
Reference numeral 107 is a temporary storage unit that is used temporarily during program operation, but it is a non-volatile unit that is always powered on regardless of the key switch 27 and whose memory contents do not disappear even if the key switch 27 is turned off and the engine operation is stopped. Configure memory. still,
Correction amounts K 2 and K 3 , which will be described later, are stored in this RAM 107. A read-only memory (ROM) 108 stores programs, various constants, and the like.
Reference numeral 109 denotes a fuel injection time control counter including a register, which is composed of a down counter and receives a digital signal representing the opening time of the electromagnetic fuel injection valves 15a to 15f calculated by the microprocessor 100, that is, the fuel injection amount. , it is converted into a pulse signal with a pulse time width (duty ratio) that gives the actual opening time of the injection valve. 110 is a power amplifier that receives a valve opening pulse signal and drives the electromagnetic fuel injection valves 15a to 15f; 111 is a timer that measures elapsed time and transmits it to the microprocessor 100;

即ち、回転数カウンタ101は、回転速度セン
サ28の検出信号により、例えば、エンジン1回
転につき、1回、エンジン回転数を測定し、その
測定の終了時に割り込み制御部102に割り込み
指令信号を供給する。割り込み制御部102はそ
の割り込み指令によつて割り込み信号を発生し、
マイクロプロセツサ100に燃料噴射量の演算を
行う割り込み処理ルーチンを実行させる。
That is, the rotational speed counter 101 measures the engine rotational speed, for example, once per engine rotation based on the detection signal of the rotational speed sensor 28, and supplies an interrupt command signal to the interrupt control unit 102 at the end of the measurement. . The interrupt control unit 102 generates an interrupt signal according to the interrupt command,
The microprocessor 100 is caused to execute an interrupt processing routine for calculating the fuel injection amount.

第3図は、空燃比制御を行うマイクロプロセツ
サ100の制御プログラムの概略フローチヤート
を示し、このフローチヤートによつて制御回路2
4全体の動作を説明する。
FIG. 3 shows a schematic flowchart of a control program of the microprocessor 100 that performs air-fuel ratio control.
4. The overall operation will be explained.

先ず、キースイツチ27並びにスタータスイツ
チ25がオンされ、エンジンが始動すると、第1
ステツプ120から起動指令が発生され、メインル
ーチンの演算処理が開始される。そして、ステツ
プ121にて初期化が実行され、次に、ステツプ122
において、吸気温センサ20によつて検出された
吸気温度のデータと水温センサ21によつて検出
された冷却水温度のデータがアナログ入力ポート
104を介してマイクロプロセツサ100に取り
込まれる。そして、ステツプ123に進み、ステツ
プ122で取り込んだエンジンの吸気温度と冷却水
温度のデータから、冷間時の燃料増量や吸気上昇
時の燃料減量制御を行うための第1の補正量K1
が演算され、RAM107に格納される。続い
て、ステツプ124では、空燃比センサ22からの
空燃比検出信号をデジタル入力ポート103を介
して入力し、タイマー111による経過時間の関
数として空燃比センサ22の検出信号を積分処理
した第2の補正量K2を算出し、これをRAM10
7に格納する。この補正量K2は、空燃比のフイ
ードバツク制御を行うために、空燃比センサ22
からの空燃比データに基づいて演算処理され、フ
イードバツク制御時に燃料噴射量の補正値として
使用される。
First, the key switch 27 and starter switch 25 are turned on to start the engine.
A start command is generated from step 120, and the main routine arithmetic processing is started. Then, initialization is executed in step 121, and then step 122
At this point, data on the intake air temperature detected by the intake air temperature sensor 20 and data on the cooling water temperature detected by the water temperature sensor 21 are taken into the microprocessor 100 via the analog input port 104. Then, the process proceeds to step 123, and from the data of the engine intake air temperature and cooling water temperature taken in step 122, a first correction amount K 1 is determined for controlling the increase in fuel during cold conditions and the decrease in fuel when the intake air rises.
is calculated and stored in the RAM 107. Subsequently, in step 124, the air-fuel ratio detection signal from the air-fuel ratio sensor 22 is inputted via the digital input port 103, and a second integral processing of the detection signal of the air-fuel ratio sensor 22 is performed as a function of the elapsed time by the timer 111. Calculate the correction amount K 2 and transfer it to RAM10
Store in 7. This correction amount K2 is determined by the air-fuel ratio sensor 22 in order to perform feedback control of the air-fuel ratio.
The calculation process is performed based on the air-fuel ratio data from the air-fuel ratio data, and is used as a correction value for the fuel injection amount during feedback control.

第4図はこの補正量K2を積分処理して増減さ
れる処理ステツプ124の詳細なフローチヤートを
示している。先ず、ステツプ400では、空燃比セ
ンサ22の活性状態となつているか否か、並び
に、減速時の燃料カツトが行われていない時等の
所定の条件を満足する運転状態にあつて空燃比の
フイードバツク制御を行い得るか否かが判定さ
れ、フイードバツク制御ができない時には
「YES」の判定となつてステツプ406に進み、補
正量K2を「1」とする。一方、エンジンの運転
状態からフイードバツク制御が可能となつて、フ
イードバツク制御が行われる場合には、「NO」
の判定となつて、次にステツプ401に進む。ステ
ツプ401ではタイマー111によつて測定する経
過時間が単位時間Δt1が過ぎたか否かを判定し、
過ぎていなければ、補正量K2の演算を行わずに
この処理ステツプ124を終了する。一方、経過時
間がΔt1を経過していると、「YES」の判定とな
つてステツプ402に進み、空燃比センサ22によ
つて検出された空燃比がリツチか否かの判定が行
われる。ここで、検出された空燃比がリツチであ
れば「YES」の判定となつてステツプ403に進
み、前回のサイクルで算出した補正量K2から
ΔK2を減じ、ステツプ405に進んで、新しい補正
量K2をRAM107に格納する。ステツプ402に
おいて、空燃比がリーンであれば、ステツプ404
に進み、補正量K2にΔK2を加え、ステツプ405に
進んで新しい補正量K2をRAMに格納する。この
ようにして、補正量K2は空燃比に応じて増減
(積分)される。なお、公知のごとく、この積分
処理に加えて、空燃比センサ22の出力が反転し
た時には、補正量K2を所定値だけ増減(スキツ
プ)させて比例分を付加しても良い。
FIG. 4 shows a detailed flowchart of the processing step 124 in which the correction amount K2 is increased or decreased by integral processing. First, in step 400, it is determined whether the air-fuel ratio sensor 22 is activated or not, and the feedback of the air-fuel ratio is determined in an operating state that satisfies predetermined conditions such as when fuel cut-off during deceleration is not performed. It is determined whether or not control can be performed, and if feedback control is not possible, the determination is ``YES'' and the process proceeds to step 406, where the correction amount K2 is set to ``1''. On the other hand, if feedback control becomes possible based on the engine operating condition and is performed, select "NO".
Then, the process proceeds to step 401. In step 401, it is determined whether or not the elapsed time measured by the timer 111 has exceeded the unit time Δt1 .
If it has not passed, this processing step 124 is ended without calculating the correction amount K2 . On the other hand, if the elapsed time has exceeded Δt1 , the determination is ``YES'' and the process proceeds to step 402, where it is determined whether the air-fuel ratio detected by the air-fuel ratio sensor 22 is rich. Here, if the detected air-fuel ratio is rich, the judgment is "YES" and the process proceeds to step 403, where ΔK 2 is subtracted from the correction amount K 2 calculated in the previous cycle, and the process proceeds to step 405, where a new correction is made. The quantity K 2 is stored in RAM 107 . If the air/fuel ratio is lean in step 402, step 404
The process proceeds to step 405, where ΔK2 is added to the correction amount K2 , and the process proceeds to step 405, where the new correction amount K2 is stored in the RAM. In this way, the correction amount K2 is increased or decreased (integrated) according to the air-fuel ratio. As is well known, in addition to this integral processing, when the output of the air-fuel ratio sensor 22 is reversed, the correction amount K2 may be increased or decreased by a predetermined value (skip) to add a proportional amount.

第3図のフローチヤートでは次にステツプ125
でエンジン状態毎補正情報である補正量K3が算
出されるが、第5図はこの補正量K3算出の演算
処理ステツプの詳細フローチヤートを示してい
る。ここで、補正量K3は、算出した基本燃料噴
射量が、空燃比のフイードバツク制御を行わなく
とも、現在エンジンが要求するところの燃料噴射
量とできるだけ一致するように、継続的に修正す
ることにより、フイードバツク制御が十分機能し
ない機関過渡時の応答性を高め、部品の継時変化
や特性変化を良好に補償し、並びに、オープンル
ープ制御時にも空燃比を目標空燃比にでるだけ近
づけるようにするために算出され、基本噴射量の
補正に使用される。
In the flowchart shown in Figure 3, step 125 is next.
The correction amount K3 , which is the correction information for each engine condition, is calculated in the step shown in FIG. Here, the correction amount K3 is to be continuously corrected so that the calculated basic fuel injection amount matches the fuel injection amount currently requested by the engine as much as possible without performing air-fuel ratio feedback control. This improves responsiveness during engine transients when feedback control does not function adequately, satisfactorily compensates for changes in parts and characteristics over time, and also allows the air-fuel ratio to be as close to the target air-fuel ratio as possible during open-loop control. It is calculated to correct the basic injection amount.

補正量K3の演算処理ステツプ125では、先ず、
ステツプ500において、補正量K3の演算を行うか
否かの判定が行われる。この判定ステツプ500は
本実施例の要部となるものである。ここでステツ
プ500の処理について詳述する。
In the calculation processing step 125 of the correction amount K3 , first,
In step 500, it is determined whether or not to calculate the correction amount K3 . This determination step 500 is the main part of this embodiment. The processing at step 500 will now be described in detail.

第6図に示すフローチヤートのように、検出さ
れた各機関データに応じてエンジン状態補正情報
としての補正量K3の更新に適した状態か否かの
判定が行われる。即ち、先ず、判定ステツプ510
において、水温センサ21から検出した冷却水温
THWが所定の設定水温THW1〜THW2(本実施
例では70℃〜120℃)内にあるか否かが判定され、
該水温THWが設定水温の範囲内であれば
「YES」の判定となつて、次にステツプ520に進
み、水温THWが設定水温の範囲外であれば
「NO」の判定となつて、第5図のステツプ500の
判定は「NO」となり、補正量K3の演算を行わず
にステツプ125の処理を終了する。ステツプ520で
は、回転速度センサ23から検出されるエンジン
回転数Nと所定の設定回転数の範囲N1〜N2(本
実施例では500rpm〜6000rpm)内にあるか否か
が判定され、エンジン回転数Nが設定回転数の範
囲外にある場合には「NO」の判定となつて、補
正量K3の演算を行わずにステツプ125の処理を終
了する。一方、エンジン回転数Nが設定回転数の
範囲内にある場合には「YES」の判定となつて、
ステツプ530に進む。ステツプ530では、吸気量セ
ンサ19から検出されたエンジンの吸気量Qが所
定の設定吸気量の範囲Q1〜Q2(本実施例では3
m3/min〜100m3/min)内にあるか否かが判定
され、吸気量Qが設定吸気量の範囲外にある場合
には「NO」の判定となつて、補正量K3の演算を
行わずにステツプ125の処理を終了する。一方、
エンジンの吸気量Qが設定吸気量範囲内にある場
合には、「YES」の判定となつて、ステツプ540
に進む。この判定ステツプ540では、前回のサイ
クルにおいて演算された燃料噴射時間Tが所定の
設定値の範囲T1〜T2(本実施例では1.5msec〜10
msec)内であるか否かの判定が行われ、燃料噴
射時間Tが設定値T1とT2の範囲外にある場合に
は「NO」の判定となつて、補正量K3の演算を行
わずにステツプ125の処理を終了する。一方、燃
料噴射時間Tが設定値T1、T2の間にあれば、
「YES」の判定となつてステツプ550に進む。こ
のステツプ550では、上記ステツプ510〜540の処
理によりエンジン11の運転状態が所定範囲内に
入つたと判定された後、空燃比センサ22からの
検出信号が空燃比のリツチを表す状態(高レベ
ル)とリーンを表す状態(低レベル)とを所定回
数(n)反転変化するまでの間、補正量K3の更
新演算処理の実行を遅延させるために、上記ステ
ツプ510〜540の処理以後、例えば、第7図に示す
如きフイードバツク制御によつて生ずる補正量
K2の波(第4図の処理に加えて、空燃比センサ
22の出力反転時に増減されるスキツプ)がn回
経過したか否かが判定され、経過していなければ
「NO」の判定となつて補正量K3の演算を行わな
い。しかし、スキツプをn回行つた後「YES」
の判定が出されると、補正量K3の演算が行われ
ることになり、第5図の判定ステツプ500からス
テツプ501に進む。尚、このn回のスキツプ数、
即ち空燃比センサ22からの検出信号の反転回数
(本実施例においては4回)は過渡時に補正量が
増量側又は減量側に大きくずれた際、正常な値に
安定するまでの時間として決められる、また各設
定範囲の上、下限の値は車種によつて異なる値と
される。
As shown in the flowchart shown in FIG. 6, it is determined whether or not the state is suitable for updating the correction amount K3 as engine state correction information in accordance with the detected engine data. That is, first, determination step 510
, the cooling water temperature detected from the water temperature sensor 21
It is determined whether THW is within a predetermined set water temperature THW 1 to THW 2 (70°C to 120°C in this example),
If the water temperature THW is within the range of the set water temperature, the determination is ``YES'' and the process proceeds to step 520, and if the water temperature THW is outside the range of the set water temperature, the determination is ``NO'' and the fifth step is performed. The determination at step 500 in the figure is "NO", and the process at step 125 ends without calculating the correction amount K3 . In step 520, it is determined whether the engine rotation speed N detected by the rotation speed sensor 23 is within the range N 1 to N 2 (500 rpm to 6000 rpm in this embodiment) of the predetermined set rotation speed, and the engine rotation speed is determined. If the number N is outside the set rotational speed range, the determination is "NO" and the process of step 125 is ended without calculating the correction amount K3 . On the other hand, if the engine speed N is within the set speed range, the determination is "YES".
Proceed to step 530. In step 530, the intake air amount Q of the engine detected by the intake air amount sensor 19 falls within a predetermined set intake air amount range Q 1 to Q 2 (in this embodiment, 3
m 3 /min to 100 m 3 /min), and if the intake air amount Q is outside the range of the set intake air amount, the judgment is "NO" and the correction amount K 3 is calculated. The process of step 125 is ended without performing this step. on the other hand,
If the intake air amount Q of the engine is within the set intake air amount range, the determination is ``YES'' and step 540 is performed.
Proceed to. In this determination step 540, it is determined that the fuel injection time T calculated in the previous cycle is within a predetermined setting value range T 1 to T 2 (1.5 msec to 10 msec in this embodiment).
msec), and if the fuel injection time T is outside the range of set values T1 and T2 , the determination is "NO" and the calculation of the correction amount K3 is performed. The process of step 125 is ended without performing this step. On the other hand, if the fuel injection time T is between the set values T 1 and T 2 ,
If the determination is "YES", the process proceeds to step 550. In this step 550, after it is determined that the operating state of the engine 11 is within a predetermined range by the processing in steps 510 to 540, the detection signal from the air-fuel ratio sensor 22 indicates a rich air-fuel ratio (high level). ) and the state representing lean (low level) are reversed a predetermined number of times (n). In order to delay the execution of the calculation process for updating the correction amount K3 , for example, after the processing in steps 510 to 540, , the amount of correction caused by feedback control as shown in FIG.
It is determined whether or not the K2 wave (in addition to the process shown in FIG. 4, the skip is increased or decreased when the output of the air-fuel ratio sensor 22 is reversed) has passed n times, and if it has not passed, the determination is "NO". Therefore, the correction amount K3 is not calculated. However, after skipping n times, "YES"
When the determination is made, the correction amount K3 is calculated, and the process proceeds from determination step 500 to step 501 in FIG. In addition, this number of skips n times,
In other words, the number of times the detection signal from the air-fuel ratio sensor 22 is reversed (four times in this embodiment) is determined as the time it takes to stabilize to a normal value when the correction amount deviates significantly to the increasing or decreasing side during a transient period. , and the upper and lower limits of each setting range are different depending on the vehicle type.

このように、エンジンの運転が所定範囲の水
温、所定範囲のエンジン回転数、及び所定範囲の
吸気量で行われ、更に、前回の燃料噴射時間が所
定の範囲内にある時はエンジンの運転状態が過渡
状態にはなく、かつ、空燃比センサ22の出力に
応じた補正量K3の更新に適した定常状態に切り
換つた後、n回のスキツプによる所定の遅延時間
経過後に補正量K3の更新演算が再開される。従
つて、エンジンの燃焼状態が極めて不安定となる
過渡状態ではこの補正量K3の演算処理は行われ
ず、しかも、過渡状態から安定状態に切換つた後
に所定の遅延時間を経過したならば補正量K3
更新演算処理が行われるから、例えば出力増量時
等に異常に低い補正量を算出してRAM107に
格納し、この補正量K3を使つてリーンに片寄つ
た燃料噴射制御を行うと言つた不都合を防止して
いる。
In this way, when the engine is operated at a predetermined range of water temperature, a predetermined engine speed range, and a predetermined intake air amount, and furthermore, when the previous fuel injection time is within a predetermined range, the engine operating state is not in a transient state and has switched to a steady state suitable for updating the correction amount K 3 according to the output of the air-fuel ratio sensor 22, and after a predetermined delay time due to n skips has elapsed, the correction amount K 3 The update operation is restarted. Therefore, in a transient state where the combustion state of the engine is extremely unstable, calculation processing of this correction amount K3 is not performed, and furthermore, if a predetermined delay time has elapsed after switching from a transient state to a stable state, the correction amount K3 is not calculated. Since K 3 update calculation processing is performed, for example, when increasing the output, an abnormally low correction amount is calculated and stored in the RAM 107, and this correction amount K 3 is used to perform lean fuel injection control. This prevents the inconvenience of ivy.

上述したような処理にて補正量K3の演算が許
可され、第5図の判定ステツプ501に入ると、こ
こでステツプ124で空燃比センサ22の出力から
算出されRAM107に格納された補正量K2が、
K2>1、K2=1、あるいはK2<1であるかの判
定が行われ、K2=1の場合には増減補正せずに
本ルーチンの処理を終了する。K2<1の場合に
は、減量側に補正すべくステツプ502に進んで例
えばその時のエンジン回転数Nmに対応する補正
量K3mから今回の補正量ΔK3が減算され、一方、
K2>1の場合には、増量側に補正すべくステツ
プ503に進んで補正量K3mに今回の補正量ΔK3
加算される。そして、次に、ステツプ504に進み、
減算され又は加算された補正量K3mがRAM10
7に格納され、補正量K3の演算ステツプ125を終
了し、再びステツプ122に戻る。
The calculation of the correction amount K3 is permitted in the process described above, and when the judgment step 501 shown in FIG. 2 is
A determination is made as to whether K 2 >1, K 2 =1, or K 2 <1, and if K 2 =1, the process of this routine is ended without performing any increase/decrease correction. If K 2 <1, the process proceeds to step 502 to make a correction toward the reduction side, where the current correction amount ΔK 3 is subtracted, for example, from the correction amount K 3 m corresponding to the engine speed Nm at that time;
If K 2 >1, the process proceeds to step 503 to increase the amount of correction, and the current correction amount ΔK 3 is added to the correction amount K 3 m. Then, proceed to step 504,
The subtracted or added correction amount K 3 m is RAM10
7, the calculation step 125 of the correction amount K3 is completed, and the process returns to step 122 again.

尚、補正量K3は、上記したようにエンジン回
転数Nの値に逐次対応して記憶させても良いが、
メモリの量が大きくなるのでエンジン回転数を例
えば、100rpm毎のブロツク単位に対応させて記
憶させても良い。また、補正量K3を吸気量Qに
対応して記憶させても良く、エンジン回転数Nと
吸気量Qの両者に対応して記憶させても良く、そ
の他エンジンの運転状態を表わす種々のパラメー
タに対応して記憶させても良い。
Incidentally, the correction amount K3 may be stored in correspondence with the value of the engine rotation speed N as described above, but
Since the amount of memory becomes large, the engine speed may be stored in blocks of 100 rpm, for example. Further, the correction amount K3 may be stored in correspondence with the intake air amount Q, or may be stored in correspondence with both the engine speed N and the intake air amount Q, or various other parameters representing the operating state of the engine. It may also be stored in correspondence with.

そして上記のように、メインルーチンのステツ
プ122からステツプ125が繰り返し実行される間、
割り込み制御部102からマイクロプロセツサ1
00に割り込み信号が入力されると、第3図に示
す如く、直ちにステツプ130から開始されるイン
タラプトルーチンが実行される。ここでは、先
ず、ステツプ131にて回転数カウンタ101から
のエンジン回転数Nを表わす信号を取り込み、更
に、ステツプ132に進んで、吸気量センサ19か
らアナログ入力ポート104を介して送られる吸
気量Qを表わす信号を取り込み、次のステツプ
133でこれらの回転数Nと吸気量Qのデータを
RAM107内所定のエリアに格納する。そし
て、ステツプ134に進み、上記のステツプ133にて
格納した回転数Nと吸気量Qを使つて基本燃料噴
射量tをt=F×Q/N、(ここでFは定数)の式か ら算出し、次のステツプ135にて、メインルーチ
ンで算出した3つの補正量K1、K2やその時のエ
ンジン状態に対応する補正量K3をRAM107か
ら読み出し基本燃料噴射量tを補正する演算式T
=t×K1×K2×K3から補正後の燃料噴射量Tを
算出する。このようにして算出された燃料噴射量
Tはステツプ136にてカウンタ109に燃料噴射
時間としてセツトされ、ここでセツトされた燃料
噴射時間は噴射信号としてカウンタ109から電
力増幅部110を介して各噴射弁15a〜15f
に所定のタイミングで印加され、制御された噴射
量(時間)に従つて燃料噴射が行われる。そし
て、ステツプ137にてメインルーチンに復帰し、
割り込み処理で中断したときのステツプに戻つて
再びメインルーチンが実行され、オープンループ
制御ではエンジンの運転状態に合つた空燃比制御
が、フイードバツク制御では理論空燃比に近づけ
る空燃比制御が行われる。
As mentioned above, while steps 122 to 125 of the main routine are repeatedly executed,
From the interrupt control unit 102 to the microprocessor 1
When an interrupt signal is input to 00, an interrupt routine starting from step 130 is immediately executed, as shown in FIG. Here, first, in step 131, a signal representing the engine speed N is fetched from the rotation speed counter 101, and then the process proceeds to step 132, where the intake air amount Q is sent from the intake air amount sensor 19 via the analog input port 104. Acquire the signal representing the next step.
133, these rotation speed N and intake air amount Q data are
It is stored in a predetermined area within the RAM 107. Then, proceed to step 134, and calculate the basic fuel injection amount t from the formula t=F×Q/N (where F is a constant) using the rotational speed N and intake air amount Q stored in step 133 above. Then, in the next step 135, the three correction amounts K 1 and K 2 calculated in the main routine and the correction amount K 3 corresponding to the engine condition at that time are read out from the RAM 107 and an arithmetic expression T is used to correct the basic fuel injection amount t.
The corrected fuel injection amount T is calculated from =t×K 1 ×K 2 ×K 3 . The fuel injection amount T calculated in this way is set as a fuel injection time in the counter 109 in step 136, and the fuel injection time set here is sent from the counter 109 as an injection signal to each injection via the power amplifying section 110. Valve 15a-15f
is applied at a predetermined timing, and fuel injection is performed according to a controlled injection amount (time). Then, return to the main routine at step 137,
The main routine is executed again by returning to the step at which it was interrupted due to the interrupt process, and in open loop control, air-fuel ratio control is performed that matches the operating state of the engine, and in feedback control, air-fuel ratio control is performed to bring it closer to the stoichiometric air-fuel ratio.

以上説明したように、本発明の空燃比制御方法
によれば、フイードバツク制御中であつても、エ
ンジンの運転状態がエンジン状態補正情報の更新
に適した所定範囲にないとき、及び所定範囲に入
つてからも空燃比センサの検出信号が空燃比のリ
ツチを表す状態とリーンを表す状態とを所定回数
反転変化するまでの間は、空燃比センサ検出信号
に基づくエンジン状態補正情報の更新処理を中止
し、エンジンの運転状態が所定範囲となり、空燃
比センサの検出信号が空燃比のリツチを表す状態
とリーンを表す状態とを所定回数反転変化した後
に、エンジン状態補正情報の更新処理を行うよう
にしたから、エンジンの過渡運転時等、空燃比の
乱れた状態においてエンジン状態補正情報を更新
記憶することがない。
As explained above, according to the air-fuel ratio control method of the present invention, even during feedback control, when the engine operating state is not within the predetermined range suitable for updating the engine state correction information, and when the engine operating state is within the predetermined range, Until the detection signal of the air-fuel ratio sensor changes between the rich and lean air-fuel ratio states a predetermined number of times, the process of updating the engine state correction information based on the air-fuel ratio sensor detection signal will be stopped. However, after the engine operating state falls within a predetermined range and the detection signal of the air-fuel ratio sensor changes inversely between a rich air-fuel ratio state and a lean air-fuel ratio state a predetermined number of times, the engine state correction information is updated. Therefore, the engine state correction information is not updated and stored when the air-fuel ratio is disturbed, such as during transient operation of the engine.

その為、従来のように過渡状態の乱れた空燃比
センサ検出信号に基づくエンジン状態毎補正情報
に基づいて空燃比が制御され空燃比が過度に薄く
なるように制御されてエミツシヨンが悪化すると
言つたこともなく、フイードバツク制御時、オー
プンループ制御時のいずれにおいても応答性良く
適正空燃比に制御することができ、良好な運転性
を確保できる。また本発明方法では、エンジンの
運転状態がエンジン状態補正情報の更新に適した
所定範囲となつた後、エンジン状態補正情報の更
新処理を行うまでの遅延期間を、空燃比検出信号
の反転回数により設定しているため、エンジン上
来の補正情報の更新処理を空燃比が安定した時点
で速やか開始することができる。つまりエンジン
が過渡運転後、定常運転に入り、フイードバツク
制御によつて空燃比が安定するまでの時間は、エ
ンジンの運転状態周囲環境等により変化するが、
本発明では上記更新処理の開始タイミングを、時
間ではなく、空燃比検出信号の反転回数から設定
しているため、空燃比が安定していないにもかか
わらず更新処理を開始してしまうとか、逆に空燃
比が安定したにもかかわらず更新処理が開始され
ないといつたことはなく、上記更新処理を最適な
タイミングで開始することができる。
Therefore, as in the past, the air-fuel ratio was controlled based on correction information for each engine state based on the air-fuel ratio sensor detection signal with a disturbed transient state, and the air-fuel ratio was controlled to become excessively lean, resulting in poor emissions. Without this, the air-fuel ratio can be controlled to an appropriate air-fuel ratio with good responsiveness during both feedback control and open-loop control, and good drivability can be ensured. Furthermore, in the method of the present invention, the delay period from when the engine operating state reaches a predetermined range suitable for updating the engine state correction information to when the engine state correction information is updated is determined by the number of inversions of the air-fuel ratio detection signal. Since this setting is made, it is possible to start updating the engine's inherent correction information as soon as the air-fuel ratio becomes stable. In other words, the time it takes for the engine to enter steady operation after transient operation and for the air-fuel ratio to stabilize through feedback control varies depending on the engine operating condition, surrounding environment, etc.
In the present invention, the start timing of the update process is set based on the number of inversions of the air-fuel ratio detection signal, rather than the time, so it is possible to start the update process even though the air-fuel ratio is not stable, or vice versa. There is no case where the update process is not started even though the air-fuel ratio has stabilized, and the update process can be started at an optimal timing.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図はエンジン
部の概略構成図、第2図は制御回路のブロツク
図、第3図は空燃比制御全体の動作を示すフロー
チヤート、第4図は補正量K2の演算を処理を示
すフローチヤート、第5図は補正量K3の演算処
理を示すフローチヤート、第6図は補正量K3
演算を行うか否かの判定処理を示すフローチヤー
ト、第7図は補正量の変動を示す説明図である。 11……エンジン、22……空燃比センサ、2
3……回転速センサ、24……制御回路、100
……マイクロプロセツサ、107……RAM(不
揮発性メモリ)。
The figures show an embodiment of the present invention, in which Fig. 1 is a schematic configuration diagram of the engine section, Fig. 2 is a block diagram of the control circuit, Fig. 3 is a flowchart showing the overall operation of air-fuel ratio control, and Fig. 4 is a flowchart showing the overall operation of air-fuel ratio control. A flowchart showing the calculation process of the correction amount K2 , FIG. 5 a flowchart showing the calculation process of the correction amount K3 , and FIG. 6 a flowchart showing the process of determining whether to calculate the correction amount K3 . FIG. 7 is an explanatory diagram showing variations in the amount of correction. 11...Engine, 22...Air-fuel ratio sensor, 2
3...Rotational speed sensor, 24...Control circuit, 100
...Microprocessor, 107...RAM (non-volatile memory).

Claims (1)

【特許請求の範囲】 1 空燃比センサによりエンジンの排気ガス成分
からエンジンに供給された混合気の空燃比を検出
し、該検出結果に基づき混合気の空燃比を補正す
るフイードバツク制御と並んで実行され、前記空
燃比センサの検出信号に応じて読み書き可能な不
揮発性メモリ内に記憶されているエンジン状態補
正情報を更新し、前記メモリ内のエンジン状態補
正情報に基づいて混合気の空燃比の補正を行う空
燃比制御方法において、 エンジンの運転状態が前記エンジン状態補正情
報の更新に適した所定範囲にあるか否かを判別
し、 エンジンの運転状態がこの所定範囲内に入つて
から、前記空燃比センサの検出信号が空燃比のリ
ツチを表す状態とリーンを表す状態とを所定回数
反転変化したか否かを判別し、 エンジンの運転状態が前記所定範囲外と判別さ
れた間、および前記所定範囲内に入つてから前記
空燃比センサの検出信号の前記反転変化が所定回
数未満であると判別された間は、前記エンジン状
態補正情報の更新を停止する ことを特徴とする空燃比制御方法。
[Claims] 1. Executed in parallel with feedback control in which an air-fuel ratio sensor detects the air-fuel ratio of the air-fuel mixture supplied to the engine from engine exhaust gas components, and corrects the air-fuel ratio of the air-fuel mixture based on the detection result. and updates engine condition correction information stored in a readable/writable non-volatile memory according to the detection signal of the air-fuel ratio sensor, and corrects the air-fuel ratio of the air-fuel mixture based on the engine condition correction information in the memory. In an air-fuel ratio control method that performs It is determined whether or not the detection signal of the fuel ratio sensor has reversely changed between a state representing a rich air-fuel ratio and a state representing a lean air-fuel ratio for a predetermined number of times. An air-fuel ratio control method characterized in that updating of the engine state correction information is stopped while it is determined that the inversion change of the detection signal of the air-fuel ratio sensor is less than a predetermined number of times after entering the range.
JP18387882A 1982-10-19 1982-10-19 Control method of air-fuel ratio Granted JPS5974352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18387882A JPS5974352A (en) 1982-10-19 1982-10-19 Control method of air-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18387882A JPS5974352A (en) 1982-10-19 1982-10-19 Control method of air-fuel ratio

Publications (2)

Publication Number Publication Date
JPS5974352A JPS5974352A (en) 1984-04-26
JPH0475383B2 true JPH0475383B2 (en) 1992-11-30

Family

ID=16143407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18387882A Granted JPS5974352A (en) 1982-10-19 1982-10-19 Control method of air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS5974352A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200059A (en) * 1982-05-17 1983-11-21 Mitsubishi Electric Corp Air-fuel ratio controller of internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200059A (en) * 1982-05-17 1983-11-21 Mitsubishi Electric Corp Air-fuel ratio controller of internal-combustion engine

Also Published As

Publication number Publication date
JPS5974352A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US4348727A (en) Air-fuel ratio control apparatus
US4430976A (en) Method for controlling air/fuel ratio in internal combustion engines
US4365299A (en) Method and apparatus for controlling air/fuel ratio in internal combustion engines
JP3590239B2 (en) Fuel injection control device for direct injection gasoline engine
JPS6231178B2 (en)
US4321903A (en) Method of feedback controlling air-fuel ratio
JPH0214976B2 (en)
JPS6346254B2 (en)
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JPH0452384B2 (en)
JPS6313013B2 (en)
JPH0475383B2 (en)
JPH051373B2 (en)
JPH0437260B2 (en)
JPH0115690B2 (en)
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPH04353267A (en) Ignition timing controller for engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JPS6360217B2 (en)
JPH0248728B2 (en)
JPH041180B2 (en)
JP2500946Y2 (en) Electronically controlled fuel supply system for internal combustion engine
JPS6035148A (en) Air-fuel ratio control device
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JP2917417B2 (en) Engine control device