JPH0475208B2 - - Google Patents

Info

Publication number
JPH0475208B2
JPH0475208B2 JP58226527A JP22652783A JPH0475208B2 JP H0475208 B2 JPH0475208 B2 JP H0475208B2 JP 58226527 A JP58226527 A JP 58226527A JP 22652783 A JP22652783 A JP 22652783A JP H0475208 B2 JPH0475208 B2 JP H0475208B2
Authority
JP
Japan
Prior art keywords
cellulose ether
cellulose
group
aromatic ring
ether containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58226527A
Other languages
Japanese (ja)
Other versions
JPS60136522A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58226527A priority Critical patent/JPS60136522A/en
Publication of JPS60136522A publication Critical patent/JPS60136522A/en
Publication of JPH0475208B2 publication Critical patent/JPH0475208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセルロース誘導体である芳香族環を含
むセルロースエーテルを物質の分離剤として使用
することに関するものである。分離する物質とし
ては通常の低分子化合物以外に特に従来直接分離
することが非常に困難であつた光学異性体を主な
分離の対象とするものである。 一般にラセミ体と光学活性体は異なつた生理活
性を示すことが多く、例えば医薬,農薬等の分野
では、薬害の防止や単位使用量当りの薬効の向上
のために光学異性体の分離を必要とする場合があ
る。従来光学異性体の分離には優先晶出法やジア
ステレオマー法が行われているが、これらの方法
では分離可能な光学異性体の種類が限られてお
り、また長時間を要する場合が多い。従つてクロ
マト法による簡便な分割法の開発が強く望まれて
いる。 クロマト法による光学異性体の分離の研究は以
前より行われている。例えばセルロースまたは一
部のセルロース誘導体はカラムクロマトグラフイ
ー用分離剤として光学分割に用いられている。セ
ルロース誘導体としては結晶系I型に属する微結
晶三酢酸セルロース,カルボキシメチルセルロー
ス等である。しかしながら、これらのセルロース
または一部のセルロース誘導体は分離対象物の範
囲が狭く、分離能力も十分ではない。 本発明者らは鋭意研究の結果、驚くべきことに
芳香族環を含むセルロースエーテルに優れた化合
物分離能と異性体分離能、特に光学異性体分離能
があることを見い出した。 即ち、本発明は下記の一般式(1)で表わされる置
換基を有するセルロースエーテルを主たる構成要
素とする分離剤に係わるものである。
The present invention relates to the use of cellulose ethers containing aromatic rings, which are cellulose derivatives, as separation agents for substances. The substances to be separated are not only ordinary low-molecular compounds, but also optical isomers, which have traditionally been very difficult to separate directly. In general, racemic forms and optically active forms often exhibit different physiological activities. For example, in the fields of medicine and agrochemicals, it is necessary to separate optical isomers in order to prevent drug damage and improve drug efficacy per unit amount used. There are cases where Conventionally, preferential crystallization and diastereomer methods have been used to separate optical isomers, but these methods limit the types of optical isomers that can be separated and often require a long time. . Therefore, there is a strong desire to develop a simple separation method using chromatography. Research on the separation of optical isomers by chromatography has been conducted for some time. For example, cellulose or some cellulose derivatives are used for optical resolution as separation agents for column chromatography. Examples of cellulose derivatives include microcrystalline cellulose triacetate and carboxymethyl cellulose, which belong to type I crystalline system. However, these celluloses or some cellulose derivatives have a narrow range of objects to be separated and do not have sufficient separation ability. As a result of intensive research, the present inventors surprisingly discovered that cellulose ether containing an aromatic ring has excellent compound separation ability and isomer separation ability, particularly optical isomer separation ability. That is, the present invention relates to a separating agent whose main constituent is cellulose ether having a substituent represented by the following general formula (1).

【式】 但し、式中Xはアルキル基,ニトロ基,ハロゲ
ン,アミノ基,アルキル置換アミノ基,シアノ
基,ヒドロキシル基又はカルボキシル基であり、
はXの個数を示し、0より5の整数である。n
は1より5の整数であり、好ましくは1である。 本発明に使用される上記の如き芳香族環を含む
セルロースエーテルが優れた光学異性体分離能を
示す明確な理由は明らかではないが、セルロース
の持つ規則的な不斉性とエーテル結合をつくる芳
香族誘導体の芳香族性と剛直性が光学異性体の分
離に大きな影響を与えているものと考えられる。 本発明の芳香族環を含むセルロースエーテル
は、数平均重合度5〜5000であり、好ましくは10
〜1000であり、さらに好ましくは10〜500である。
芳香族環を含むセルロースエーテルの平均置換度
は下式で定義する。 平均置換度=1分子当りのエーテル結合の数/数平均
重合度 本発明の芳香族環を含むセルロースエーテルの
平均置換度は1〜3.4、好ましくは1.8〜3.2であ
る。 芳香族環を含むセルロースエーテルの未反応の
水酸基は、本発明の芳香族環を含むセルロースエ
ーテルの異性体分離能を損なわない範囲で、さら
にエステル化,カルバメート化,エーテル化を行
うことができる。 本発明の芳香族環を含むセルロースエーテルの
合成法は従来公知のセルロースのエーテル化法が
適用できる。即ち一般に塩基の存在下にセルロー
スと脱離基を持つた芳香族誘導体を反応させる方
法によつて得ることができる。例えばN.M.
Bikales,L.Segel,“Cellulose and Cellulose
Derivatives”p.807や朝倉書店“大有機化学”
19,p.93に示された方法である。さらに置換度の
高い芳香族環を含むセルロースエーテルを得る方
法としてはHusemanらによる方法(Makromol.
Chem,1763269(1975))や中野らによる(The
Proceedings of ISWPC 1983,vol.1,33)等が
ある。 クロマト用分離剤は粒状であることが好ましい
ことから、芳香族環を含むセルロースエーテルを
化合物の分離剤として用いるには、芳香族環を含
むセルロースエーテルを破砕するか、ビーズ状に
することが好ましい。粒子の大きさは使用するカ
ラムやプレートの大きさによつて異なるが、1μm
〜10mmであり、好ましくは1μm〜300μmで、粒子
は多孔質であることが好ましい。 さらに分離剤の耐圧能力の向上,溶媒置換によ
る膨潤,収縮の防止,理論段数の向上のために、
芳香族環を含むセルロースエーテルは担体に保持
させることが好ましい。適当な担体の大きさは、
使用するカラムやプレートの大きさにより変る
が、一般に1μm〜10mmであり、好ましくは1μm〜
300μmである。担体は多孔質であることが好まし
く、平均孔径は10Å〜100μmであり、好ましくは
50Å〜50000Åである。芳香族環を含むセルロー
スエーテルを保持させる量は担体に対して1〜
100重量%、好ましくは5〜50重量%である。 芳香族環を含むセルロースエーテルを担体に保
持させる方法は化学的方法でも物理的方法でも良
い。物理的方法としては、芳香族環を含むセルロ
ースエーテルを可溶性の溶剤に溶解させ、担体と
良く混合し、減圧又は加温下、気流により溶剤を
留去させる方法や、芳香族環を含むセルロースエ
ーテルを可溶性の溶剤に溶解させ、担体と良く混
合した後該溶剤と相溶性のない液体中に攪拌,分
散せしめ、該溶剤を拡散させる方法もある。この
ようにして担体に保持したセルロース誘導体を結
晶化する場合には熱処理などの処理を行うことが
できる。また、少量の溶剤を加えて芳香族環を含
むセルロースエーテルを一旦膨潤あるいは溶解せ
しめ、再び溶剤を留去することによりその保持状
態、ひいては分離能を変化せしめることが可能で
ある。 担体としては、多孔質有機担体又は多孔質無機
担体があり、好ましくは多孔質無機担体である。
多孔質無機担体としては適当なものは、ポリスチ
レン,ポリアクリルアミド,ポリアクリレート等
から成る高分子物質があげられる。多孔質無機担
体として適当なものはシリカ,アルミナ,マグネ
シア,酸化チタン,ガラス,ケイ酸塩,カオリン
の如き合成若しくは天然の物質があげられ、芳香
族環を含むセルロースエーテルとの親和性を良く
するために表面処理を行つても良い。表面処理の
方法としては、有機シラン化合物を用いたシラン
化処理やプラズマ重合による表面処理法等があ
る。 本発明の芳香族環を含むセルロースエーテルを
主たる構成要素とする分離剤を化合物分離の目的
に使用するにはクロマト法が好適である。クロマ
ト法としては、カラムクロマト法や薄層クロマト
法が良い。クロマト法に使用する際の展開溶媒と
しては、芳香族環を含むセルロースエーテルを溶
かす溶媒は使用できないが、芳香族環を含むセル
ロースエーテルを化学的方法で担体に結合させた
場合や、芳香族環を含むセルロースエーテルを架
橋した場合には特に制約はない。 本発明の芳香族環を含むセルロースエーテルを
主たる構成要素とする分離剤は、化合物の分離に
有効で、特に従来分離が非常に困難であつた光学
異性体の分割に有効である。分離の対象となる光
学異性体は不斉中心を持つ化合物や分子不斉な化
合物で芳香族環を含むセルロースエーテルによつ
て光学異性体のどちらか一方がより強く保持され
るものである。 以下本発明を実施例によつて詳述するが、本発
明はこれらの実施例に限定されるものではない。
尚、実施例中に表わされる用語の定義は以下の通
りである。 容量比(k′)=〔(対掌体の保
持時間)−(デツドタイム)〕/(デツドタイム) 分離係数(α)=より強く吸着さ
れる対掌体の容量比/より弱く吸着される対掌体の容量
比 分離度(RS)= 2×(より強く吸着される対掌体とより弱く吸着
される対掌体の両ピーク間の距離)/両ピークのバンド
幅の合計 合成例 1 セルロースアセテート〔置換度2.43、粘度平均
重合度170(ジクロルメタン−メタノール9:1の
混合溶媒を溶媒とし、0.2%溶液の還元粘度をも
つて〔η〕と近似し、Km=8.73×10-4を使用し
て、DP=〔η〕/Kmより算出した)、ダイセル
化学工業製〕5.0部を、41.3部の1,4−ジオキ
サン中に投じ、攪拌しつつ外部加温して約10分間
還流(100℃近辺)させて溶解した。その後攪拌
しつつ、36.0部の粉末状の水酸化カリウムを加
え、次に51.7部のベンジルクロリドを徐々に加え
た。ベンジルクロリドの添加後、100℃で8時間
攪拌反応させた。反応終了後、室温まで放冷して
から、反応溶液から生成物をクロロホルムで抽出
した。クロロホルム溶液を約1規定の塩酸水溶液
と水で洗浄後、メタノール中に注加することによ
り、帯黄白色の生成物を析出させた。反応生成物
はメタノールで洗浄後乾燥した。生成物は、置換
度2.9〔元素分析値、C74.75%、H6.54%〕のベン
ジルセルロースエーテルであり、収率は91%であ
つた。得られたベンジルセルロースエーテルの赤
外吸収スペクトルを第1図に示したが、以下に主
要な吸収帯の波数と帰属を記す。 (波数)〔cm-1〕 (帰属) 3100、3070、3040 フエニルのCH伸縮振動 2900付近ベンジル基及びグリコース骨格C6位の
CH2伸縮振動 1960、1870、1810、1750 モノ置換フエニルの
倍音及び結合音 1610(1585)、1500(1460) フエニルの骨格振
動 1100付近 ピラノース環の骨格振動 740、700 モノ置換フエニルのCH面外変角振
動 合成例 2 シリカビーズ(Merck社製LiChrospher SI
1000)10gを200ml枝付丸底フラスコに入れ、オ
イルバスで120℃,3時間真空乾燥した後N2を入
れた。CaH2を入れて蒸留したトルエンをシリカ
ビーズに100ml加えた。次にジフエニルジメトキ
シシラン(信越化学KBM202)を3ml加えて攪
拌後、120℃で1時間反応させた。さらに3〜5
mlのトルエンを留去後120℃で2時間反応させた。
グラスフイルターで過し、トルエン50mlで3
回,メタノール50mlで3回洗浄し、40℃で1時間
真空乾燥を行つた。 次にシリカビーズ約10gを200ml枝付丸底フラ
スコに入れ、100℃で3時間真空乾燥した後、常
圧に戻し室温になつてからN2を入れた。蒸留し
たトルエン100mlを乾燥したシリカビーズに加え
た。次にトリメチルシリル剤N,O−Bis−(ト
リメチルシリル)アセトアミド1mlを加えて攪拌
し、115℃で3時間反応させた。次にグラスフイ
ルターで過後、トルエンで洗浄をし、約4時間
真空乾燥した。 合成例1で得られたトリベンジルセルロースエ
ーテルを、クロロホルムに溶解し、クロロホルム
の4倍量に当るメタノールを加え可溶部と不溶部
に分けた。可溶部1.2gを塩化メチレン−ベンゼ
ン(5ml−2.5ml)の混合溶媒に溶解させ、該溶
液の6mlをシラン処理したシリカゲル3.2gと混
合し、減圧下で溶媒を留去した。このシリカビー
ズを光学分割用の充填剤とした。 実施例 1 合成例2で得られたトリベンジルセルロースエ
ーテルを担持したシリカビーズを長さ25cm内径
0.46cmのステンレスカラムにスラリー法で充填し
た。高速液体クロマトグラフ機は日本分光工業(株)
製のTRIROTAR−SRを用い、検出器は
UVIDEC−Vを用いた。流速は0.2ml/minで、
溶媒にはエタノールを使用した。種々のラセミ体
を分割した結果を表1に示した。
[Formula] However, in the formula, X is an alkyl group, a nitro group, a halogen, an amino group, an alkyl-substituted amino group, a cyano group, a hydroxyl group, or a carboxyl group,
indicates the number of X, and is an integer from 0 to 5. n
is an integer from 1 to 5, preferably 1. Although it is not clear why the cellulose ether containing an aromatic ring as described above used in the present invention exhibits excellent optical isomer separation ability, the reason is that the regular asymmetry of cellulose and the aromatic properties that form ether bonds It is thought that the aromaticity and rigidity of the group derivatives have a great influence on the separation of optical isomers. The cellulose ether containing an aromatic ring of the present invention has a number average degree of polymerization of 5 to 5,000, preferably 10
-1000, more preferably 10-500.
The average degree of substitution of cellulose ether containing an aromatic ring is defined by the following formula. Average degree of substitution=number of ether bonds per molecule/number average degree of polymerization The average degree of substitution of the cellulose ether containing an aromatic ring of the present invention is 1 to 3.4, preferably 1.8 to 3.2. The unreacted hydroxyl group of the cellulose ether containing an aromatic ring can be further esterified, carbamate-formed, or etherified as long as the isomer separation ability of the cellulose ether containing an aromatic ring of the present invention is not impaired. A conventionally known cellulose etherification method can be applied to the method of synthesizing the cellulose ether containing an aromatic ring of the present invention. That is, it can generally be obtained by a method of reacting cellulose with an aromatic derivative having a leaving group in the presence of a base. For example, NM
Bikales, L. Segel, “Cellulose and Cellulose
Derivatives” p.807 and Asakura Shoten “Large Organic Chemistry”
19, p.93. Furthermore, as a method for obtaining cellulose ethers containing highly substituted aromatic rings, there is a method by Huseman et al. (Makromol.
Chem, 176 3269 (1975)) and Nakano et al.
Proceedings of ISWPC 1983, vol.1, 33). Since the separation agent for chromatography is preferably in the form of particles, in order to use cellulose ether containing an aromatic ring as a separation agent for compounds, it is preferable to crush the cellulose ether containing an aromatic ring or make it into beads. . The particle size varies depending on the column and plate size used, but is approximately 1 μm.
~10 mm, preferably 1 μm to 300 μm, and the particles are preferably porous. Furthermore, in order to improve the pressure resistance of the separation agent, prevent swelling and shrinkage due to solvent substitution, and increase the number of theoretical plates,
The cellulose ether containing an aromatic ring is preferably supported on a carrier. The appropriate carrier size is
Although it varies depending on the size of the column and plate used, it is generally 1 μm to 10 mm, preferably 1 μm to 10 mm.
It is 300 μm. The carrier is preferably porous, with an average pore size of 10 Å to 100 μm, preferably
It is 50 Å to 50000 Å. The amount of cellulose ether containing an aromatic ring to be retained is 1 to 1 to the carrier.
100% by weight, preferably 5-50% by weight. The cellulose ether containing an aromatic ring may be retained on a carrier by either a chemical method or a physical method. Physical methods include dissolving cellulose ether containing aromatic rings in a soluble solvent, mixing well with a carrier, and distilling off the solvent with an air stream under reduced pressure or heating; There is also a method of dissolving the compound in a soluble solvent, thoroughly mixing it with a carrier, and then stirring and dispersing it in a liquid that is incompatible with the solvent to diffuse the solvent. When crystallizing the cellulose derivative held on the carrier in this manner, a treatment such as heat treatment can be performed. Furthermore, by adding a small amount of solvent to once swell or dissolve the cellulose ether containing an aromatic ring, and then distilling off the solvent again, it is possible to change the retention state and thus the separation ability. The carrier may be a porous organic carrier or a porous inorganic carrier, preferably a porous inorganic carrier.
Suitable porous inorganic carriers include polymeric substances such as polystyrene, polyacrylamide, polyacrylate, and the like. Suitable porous inorganic carriers include synthetic or natural materials such as silica, alumina, magnesia, titanium oxide, glass, silicates, and kaolin, which have good compatibility with cellulose ethers containing aromatic rings. Surface treatment may be performed for this purpose. Examples of surface treatment methods include silanization using an organic silane compound and surface treatment using plasma polymerization. A chromatographic method is suitable for using the separating agent of the present invention whose main constituent is cellulose ether containing an aromatic ring for the purpose of separating compounds. As the chromatographic method, column chromatography and thin layer chromatography are preferred. Solvents that dissolve cellulose ether containing aromatic rings cannot be used as a developing solvent when used in chromatography, but when cellulose ether containing aromatic rings is bonded to a carrier by a chemical method, or There are no particular restrictions when the cellulose ether containing is crosslinked. The separating agent of the present invention whose main component is cellulose ether containing an aromatic ring is effective in separating compounds, and is particularly effective in resolving optical isomers, which have been extremely difficult to separate in the past. The optical isomers to be separated are compounds with an asymmetric center or molecularly asymmetric compounds, and one of the optical isomers is more strongly retained by cellulose ether containing an aromatic ring. EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples.
The definitions of terms used in the examples are as follows. Capacity ratio (k') = [(retention time of enantiomer) - (dead time)] / (dead time) Separation coefficient (α) = Capacity ratio of more strongly adsorbed enantiomer / weaker adsorbed enantiomer Volume ratio of the bodies Separation degree (R S ) = 2 × (distance between the two peaks of the more strongly adsorbed enantiomer and the more weakly adsorbed enantiomer) / sum of the band widths of both peaks Synthesis example 1 Cellulose Acetate [substitution degree 2.43, viscosity average polymerization degree 170 (dichloromethane-methanol 9:1 mixed solvent is used as solvent, approximated as [η] with reduced viscosity of 0.2% solution, Km = 8.73 × 10 -4 is used) (calculated from DP=[η]/Km), manufactured by Daicel Chemical Industries), was poured into 41.3 parts of 1,4-dioxane, heated externally with stirring, and refluxed for about 10 minutes (100 ℃) and dissolved. Thereafter, while stirring, 36.0 parts of powdered potassium hydroxide was added, and then 51.7 parts of benzyl chloride were gradually added. After the addition of benzyl chloride, the mixture was stirred and reacted at 100°C for 8 hours. After the reaction was completed, the reaction solution was allowed to cool to room temperature, and then the product was extracted from the reaction solution with chloroform. The chloroform solution was washed with about 1N aqueous hydrochloric acid and water, and then poured into methanol to precipitate a yellowish white product. The reaction product was washed with methanol and then dried. The product was benzyl cellulose ether with a degree of substitution of 2.9 [elemental analysis values, C74.75%, H6.54%], and the yield was 91%. The infrared absorption spectrum of the obtained benzyl cellulose ether is shown in FIG. 1, and the wave numbers and assignments of the main absorption bands are described below. (Wave number) [cm -1 ] (Attribution) 3100, 3070, 3040 CH stretching vibration of phenyl around 2900 benzyl group and glycose skeleton C 6 position
CH 2 stretching vibrations 1960, 1870, 1810, 1750 Overtones and bond tones of mono-substituted phenyl 1610 (1585), 1500 (1460) Skeletal vibration of phenyl around 1100 Skeletal vibration of pyranose ring 740, 700 CH out-of-plane variation of mono-substituted phenyl Angular vibration synthesis example 2 Silica beads (Merck LiChrospher SI
1000) was placed in a 200 ml round bottom flask with arms, vacuum dried in an oil bath at 120°C for 3 hours, and then filled with N 2 . 100 ml of toluene distilled with CaH 2 was added to the silica beads. Next, 3 ml of diphenyldimethoxysilane (Shin-Etsu Chemical KBM202) was added, stirred, and reacted at 120°C for 1 hour. 3-5 more
After distilling off ml of toluene, the mixture was reacted at 120°C for 2 hours.
Pass through a glass filter and add 50ml of toluene.
The sample was washed three times with 50 ml of methanol and vacuum dried at 40°C for 1 hour. Next, approximately 10 g of silica beads were placed in a 200 ml round bottom flask with side arms, and after vacuum drying at 100° C. for 3 hours, the pressure was returned to normal pressure and after the temperature reached room temperature, N 2 was added. 100ml of distilled toluene was added to the dried silica beads. Next, 1 ml of trimethylsilyl agent N,O-Bis-(trimethylsilyl)acetamide was added, stirred, and reacted at 115°C for 3 hours. Next, it was filtered through a glass filter, washed with toluene, and vacuum dried for about 4 hours. Tribenzylcellulose ether obtained in Synthesis Example 1 was dissolved in chloroform, and methanol in an amount four times that of chloroform was added to separate the solution into a soluble portion and an insoluble portion. 1.2 g of the soluble portion was dissolved in a mixed solvent of methylene chloride and benzene (5 ml - 2.5 ml), 6 ml of this solution was mixed with 3.2 g of silane-treated silica gel, and the solvent was distilled off under reduced pressure. These silica beads were used as a filler for optical resolution. Example 1 Silica beads supporting tribenzyl cellulose ether obtained in Synthesis Example 2 were prepared with a length of 25 cm and an inner diameter of 25 cm.
It was packed into a 0.46 cm stainless steel column using the slurry method. The high-performance liquid chromatography machine is manufactured by JASCO Corporation.
The detector is TRIROTAR-SR manufactured by
UVIDEC-V was used. The flow rate was 0.2ml/min.
Ethanol was used as the solvent. Table 1 shows the results of resolution of various racemates.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合成例1で得られたベンジルセルロー
スエーテルの赤外吸収スペクトルである。
FIG. 1 is an infrared absorption spectrum of benzyl cellulose ether obtained in Synthesis Example 1.

Claims (1)

【特許請求の範囲】 1 下記の一般式(1)で表わされる置換基を有する
セルロースエーテルを主たる構成要素とする分離
剤。 但し、式中Xはアルキル基,ニトロ基,ハロゲ
ン,アミノ基,アルキル置換アミノ基,シアノ
基,ヒドロキシル基又はカルボキシル基であり、
はXの個数を示し、は0〜5の整数であり、
nは1〜5の整数である。
[Scope of Claims] 1. A separating agent whose main component is cellulose ether having a substituent represented by the following general formula (1). However, in the formula, X is an alkyl group, nitro group, halogen, amino group, alkyl-substituted amino group, cyano group, hydroxyl group or carboxyl group,
represents the number of X, is an integer from 0 to 5,
n is an integer from 1 to 5.
JP58226527A 1983-11-30 1983-11-30 Separating agent Granted JPS60136522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226527A JPS60136522A (en) 1983-11-30 1983-11-30 Separating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226527A JPS60136522A (en) 1983-11-30 1983-11-30 Separating agent

Publications (2)

Publication Number Publication Date
JPS60136522A JPS60136522A (en) 1985-07-20
JPH0475208B2 true JPH0475208B2 (en) 1992-11-30

Family

ID=16846524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226527A Granted JPS60136522A (en) 1983-11-30 1983-11-30 Separating agent

Country Status (1)

Country Link
JP (1) JPS60136522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223637A1 (en) 2009-02-25 2010-09-01 Newfrey LLC Fastening assembly for securing a floor mat to a carpet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052460A1 (en) * 2013-10-09 2015-04-16 Ucl Business Plc Chromatography medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223637A1 (en) 2009-02-25 2010-09-01 Newfrey LLC Fastening assembly for securing a floor mat to a carpet

Also Published As

Publication number Publication date
JPS60136522A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
JPS6312850B2 (en)
JPH0475213B2 (en)
JPH054377B2 (en)
US4912205A (en) Alkyl-substituted phenylcarbamate derivative of polysaccharide
JPS60226830A (en) Separating agent consisting of 1,3-glucan
EP0436722A1 (en) Polysaccharide derivatives and separating agent
JPS63178101A (en) Alkyl-substituted phenylcarbamate derivative of polysaccharide
JP3272354B2 (en) Novel polysaccharide derivatives and separating agents
USRE34457E (en) Separating agent
JPH0430376B2 (en)
US4714555A (en) Agent for separation
JP2841546B2 (en) Packing material for liquid chromatography
JPH0475208B2 (en)
JPH0442371B2 (en)
JP3148032B2 (en) Substituted aromatic carbamate derivatives of polysaccharides and separating agents
JP3041116B2 (en) Separating agent
JPS60226833A (en) Separating agent consisting of aromatic ester derivative of polysaccharide
JP3051782B2 (en) Separating agents comprising alkoxy-substituted aromatic carbamate derivatives of cellulose
JP2669554B2 (en) Novel polysaccharide derivatives and separating agents
JPH01203402A (en) Polysaccharide carbamate derivative
JP2828770B2 (en) Phenylalkyl carbamate derivative of polysaccharide and separating agent
JP3059013B2 (en) Trialkylsilyl-substituted aromatic carbamate derivatives of polysaccharides and separating agents
JPH05148163A (en) Separating agent
JPS61254604A (en) Polysaccharide aromatic carbamate derivative
JP2597618B2 (en) Optical splitting method