JPH0475176A - Image processor - Google Patents

Image processor

Info

Publication number
JPH0475176A
JPH0475176A JP2190007A JP19000790A JPH0475176A JP H0475176 A JPH0475176 A JP H0475176A JP 2190007 A JP2190007 A JP 2190007A JP 19000790 A JP19000790 A JP 19000790A JP H0475176 A JPH0475176 A JP H0475176A
Authority
JP
Japan
Prior art keywords
value
histogram
image signal
interclass
variance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2190007A
Other languages
Japanese (ja)
Inventor
Yumiko Osame
納 由美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2190007A priority Critical patent/JPH0475176A/en
Publication of JPH0475176A publication Critical patent/JPH0475176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)

Abstract

PURPOSE:To obtain the best ideal binary-coding level by generating the histogram of an image signal, dividing among-class variance values which are obtained by density values by the frequencies of the respective density values, and calculating the binary-coding level according to the maximum value. CONSTITUTION:An among-class variance value arithmetic means 1 calculates the among-class variation values by the respective density values of the input image signal and a histogram generating means 3 detects the frequencies by the density values of the image signal. A dividing means 4 divides the among- class variance values obtained by the among-class variance value arithmetic means 1 by the frequencies of the corresponding density values obtained by the histogram generating means 3. A maximum value detecting means 2 detects the maximum value among corrected among-class variance values outputted by the dividing means 4 and sends it out as the binary-coding level for the image signal. Consequently, the best binary-coding level which nearly matches a binary-coding level obtained by a mode method can be calculated.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は画像処理装置に係り、特に画像認識のために
画像信号を2値化するための2値化レベルを級間分散値
に基づいて決定するに好適な画像処理装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to an image processing device, and in particular to a method for determining a binarization level for binarizing an image signal for image recognition based on an inter-class dispersion value. The present invention relates to an image processing device suitable for making decisions.

[従来の技術] 従来から、画像認識に用いられる画像処理技術の中でも
2値化処理は非常に重要な役割を果しており、判定基準
となる2値化レベルの選択によりて以降の画像処理の成
果が左右されるほどの重要性を有する。一般に、2値化
レベルの決定方法に広く用いられているのは大津判別分
析法と呼ばれている演算方法である。
[Conventional technology] Binarization processing has traditionally played a very important role among the image processing techniques used for image recognition, and the results of subsequent image processing are determined by the selection of the binarization level that serves as the criterion. It is so important that it is influenced by Generally, a calculation method called the Otsu discriminant analysis method is widely used as a method for determining the binarization level.

大津判別分析法とはヒストグラムをある2値化レベルで
2つのグループ(級)に分けた場合に、これら2つに分
けられたグループ間の分散(縁間分散)が最大になるよ
うに2値化レベルを決定してヒストグラムを2分割する
方法である。
What is the Otsu discriminant analysis method? When a histogram is divided into two groups (classes) at a certain binarization level, the binary value is calculated so that the variance between these two divided groups (marginal variance) is maximized. This method determines the conversion level and divides the histogram into two.

ここで仮の2値化レベルで分けたグループ1゜2の頻度
数をμ 、μ 、平均値をMl、M2とすると級間分散
値σ2を求める式は σ  −= μ ・μ (M−M)/(μl十μ2)・ ・ ・ (
1) のようになる。
Here, if the frequencies of groups 1゜2 divided by the temporary binarization level are μ and μ, and the average values are Ml and M2, the formula for calculating the interclass variance value σ2 is σ −= μ ・μ (M−M )/(μl ten μ2)・・・・(
1) It will look like this.

第2図は以上のような観点から構成される装置の画像処
理装置のブロック図であり、特に画像信号の2値化処理
機能をブロック化して示すものである。図において、(
1)は画像信号のグループ間の分散を演算して級間分散
値を導出する紙間分散演算器、(2)は紙間分散演算器
(1)で得た級間分散値の最大値を検出して、その時の
濃度値を2値化レベルとして出力する最大値検出器であ
る。
FIG. 2 is a block diagram of an image processing device constructed from the above-mentioned viewpoint, and particularly shows the image signal binarization processing function in blocks. In the figure, (
1) is an inter-paper variance calculator that calculates the variance between groups of image signals to derive an inter-class variance value, and (2) is an inter-paper variance calculator that calculates the maximum value of the inter-class variance value obtained by the inter-class variance calculator (1). This is a maximum value detector that detects and outputs the density value at that time as a binarized level.

以上のような構成において、次にその動作を説明する。The operation of the above configuration will now be described.

先ず、画像信号が紙間分散演算器(1)に入力されるが
、ここで入力画像信号は既にノイズ除去や輝度変換を行
なわれた256階調の濃淡画像であるものとする。紙間
分散演算器(1)では(1)式の演算式に基づく演算を
実行し、各濃度値の級間分散値を求める。次に、この級
間分散値は最大値検出器(2)に送られるが、ここでは
級間分散値の最大値を検索し、その時の濃度値を2値化
レベルとして出力する。
First, an image signal is input to the inter-sheet variance calculator (1), and it is assumed here that the input image signal is a 256-gradation gray image that has already been subjected to noise removal and brightness conversion. The inter-paper dispersion calculator (1) executes calculation based on the arithmetic expression (1) to obtain the inter-class dispersion value of each density value. Next, this interclass variance value is sent to the maximum value detector (2), which searches for the maximum value of the interclass variance value and outputs the density value at that time as a binarized level.

画像信号の2値化処理に関しては、例えば、文献「画像
認識論」 (長足 厳暑、昭和58年2月15日、コロ
ナ社刊、38頁〜45頁)に示されるように、ヒストグ
ラムの2つのピーク間の谷にあたる濃度値を2値化レベ
ルとするモート法をはじめとして様々な方法が知られて
いるが、−船釣に広く用いられている大津判別分析法で
ある。
Regarding binarization processing of image signals, for example, as shown in the document "Image Recognition Theory" (Nagaashi Genshu, February 15, 1980, published by Corona Publishing, pp. 38-45), two histograms are used. Various methods are known, including the moat method, which uses the concentration value in the valley between peaks as a binary level, but - Otsu discriminant analysis method is widely used in boat fishing.

[発明が解決しようとする課題] 従来の画像処理装置は以上のように構成されるのか、大
津判別分析法で得た2値化レベルが必すしもモード法で
得た2値化レベルと一致する訳ではなく、常に最適な2
値化レベルが得られないという解決すべき課題がある。
[Problem to be solved by the invention] Is the conventional image processing device configured as described above? Does the binarization level obtained by the Otsu discriminant analysis method necessarily match the binarization level obtained by the mode method? It is not always the best 2
There is a problem that needs to be solved that a value level cannot be obtained.

この発明は上記のような課題を解決するためになされた
もので、モード法から得られる2値化レベルに略一致し
た最適な2値化レベルを演算できる画像処理装置を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and the object is to obtain an image processing device that can calculate an optimal binarization level that substantially matches the binarization level obtained from the mode method. .

[課題を解決するための手段] 上記目的を達成するために、この発明は入力された画像
信号の各濃度毎の級間分散値を演算する級間分散値演算
手段と、前記画像信号のヒストグラムをとり各濃度毎の
頻度数を検出するヒストグラム生成手段と、前記級間分
散値演算手段の出力である級間分散値を前記ヒストグラ
ム生成手段の出力である対応する濃度値の頻度数て割り
算して補正級間分散値を送出する割算手段と、前記割算
手段の出力である補正級間分散値の最大値に基づいて前
記画像信号に対する2値化レベルを求める最大値検出手
段を備える画像処理装置を提供するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an interclass variance calculation means for calculating an interclass variance value for each density of an input image signal, and a histogram of the image signal. a histogram generating means for detecting the frequency number for each density, and dividing the interclass variance value which is the output of the interclass variance value calculating means by the frequency number of the corresponding density value which is the output of the histogram generating means. and a maximum value detection means for determining a binarization level for the image signal based on the maximum value of the corrected inter-class variance output from the dividing means. A processing device is provided.

C作用] 上記手段において、この発明の画像処理装置は、級間分
散値演算手段により入力された画像信号の各濃度毎の級
間分散値を演算すると共にヒストグラム生成手段により
前記画像信号の各濃度毎の頻度数を検出し、割算手段で
前記級間分散値演算手段で得られた級間分散値を前記ヒ
ストグラム生成手段で得られた対応する濃度値の頻度数
で割り算して補正級間分散値を求め、最大値検出手段に
より前記割算手段の出力である補正級間分散値の最大値
を検出し前記画像信号に対する2値化レベルとして送出
する。
C Effect] In the above means, the image processing apparatus of the present invention calculates the interclass variance value for each density of the input image signal by the interclass variance calculation means, and calculates the interclass variance value for each density of the image signal by the histogram generation means. The frequency number for each density value is detected by the dividing means, and the inter-class variance value obtained by the inter-class variance calculation means is divided by the frequency number of the corresponding density value obtained by the histogram generating means to calculate the corrected class interval. A dispersion value is determined, and the maximum value of the corrected interclass dispersion value, which is the output of the dividing means, is detected by the maximum value detection means and sent as a binarization level for the image signal.

[実施例] 以下、図面を参照しながらこの発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る画像処理装置のブロ
ック図である。図において、(3)は入力画像信号のヒ
ストグラムをとり各濃度値毎の頻度数を出力するヒスト
グラム生成器、(4)は紙間分散演算器(1)の出力信
号である画像信号のグループ間の分散を演算して得られ
た各濃度値毎の級間分散値をヒストグラム生成器(3)
の出力であるヒストグラムの各濃度毎の頻度数で割って
最大値検出器(2)に送出する割算器、(5)はヒスト
グラム生成器(3)の出力を平滑化して割算器(4)に
与える平滑化機能部、(6)はヒストグラム生成器(3
)の出力をA側の端子を通じて割算器(4)に与えるか
、B側の端子を通じて平滑化機能部(5)に与えるかを
選択する切替器、(7)はヒストグラム生成器(3)、
割算器(4)、平滑化機能部(5)、切替器(6)から
構成され縁間分散演算器(1)で演算された級間分散値
の補正を行なう補正機能部である。
FIG. 1 is a block diagram of an image processing apparatus according to an embodiment of the present invention. In the figure, (3) is a histogram generator that takes a histogram of the input image signal and outputs the frequency number for each density value, and (4) is the output signal of the paper variance calculator (1) between groups of image signals. The histogram generator (3) calculates the interclass variance value for each density value obtained by calculating the variance of
The divider (5) smoothes the output of the histogram generator (3) and sends it to the maximum value detector (2). ), and (6) is the histogram generator (3
) is a switch that selects whether to give the output to the divider (4) through the A-side terminal or to the smoothing function section (5) through the B-side terminal, and (7) is the histogram generator (3). ,
This correction function section is composed of a divider (4), a smoothing function section (5), and a switch (6), and performs correction of the interclass dispersion value calculated by the edge dispersion calculation unit (1).

以上のような構成において、次にその動作を説明する。The operation of the above configuration will now be described.

先ず、入力された画像信号はヒストグラム生成器(3)
と縁間分散演算器(1)に入力される。
First, the input image signal is sent to a histogram generator (3).
is input to the edge-to-edge dispersion calculator (1).

ただし、この時点で画像信号はノイズ除去や輝度変換か
行なわれた256階調の濃淡画像とされているものとす
る。ヒストグラム生成器(3)では画像信号からその濃
度値のヒストグラムを生成して切替器(6)からそのA
側端子を通じて割算器(4)に送出する。一方、縁間分
散演算器(1)では各濃度値ごとに級間分散値を算出し
てこれを割算器(4)に送る。割算器(4)では縁間分
散演算器(1)から送られてきた各濃度値の級間分散値
をヒストグラム生成器(3)から送られてきたヒストグ
ラムの前記濃度値の頻度数で割る。この動作を数式で表
わすと以下のようになる。
However, at this point, it is assumed that the image signal is a 256-level grayscale image that has been subjected to noise removal and brightness conversion. The histogram generator (3) generates a histogram of the density value from the image signal, and the switch (6)
It is sent to the divider (4) through the side terminal. On the other hand, the edge dispersion calculator (1) calculates the interclass dispersion value for each density value and sends it to the divider (4). A divider (4) divides the interclass variance value of each density value sent from the edge variance calculator (1) by the frequency number of the density value of the histogram sent from the histogram generator (3). . This operation can be expressed numerically as follows.

σh  (i)−σ (i)/H(i)・・・(2)但
し、σ  (i)は濃度値iの補正級間分散値、σ2は
濃度値iの級間分散値、H(i)はヒストグラムにおけ
る濃度値iの頻度数である。以上のようにして得られた
補正級間分散値は最大値検出器(2)に送られ、ここで
最大値の検出が行なわれる。そして、最大値となる級間
分散値の濃度値を2値化レベルとしてaカする。
σh (i) - σ (i) / H (i) (2) where σ (i) is the corrected interclass dispersion value of concentration value i, σ2 is the interclass dispersion value of concentration value i, H( i) is the frequency of density value i in the histogram. The corrected interclass dispersion value obtained as described above is sent to the maximum value detector (2), where the maximum value is detected. Then, the density value of the interclass variance value that is the maximum value is set as the binarization level.

なお、上記動作では切替器(6)の切り替えがA側に切
り替わっている場合を説明したが、次に切替器(6)を
B側に切り替えた場合の動作について説明する。
In addition, in the above operation, the case where the switch (6) is switched to the A side has been explained, but next, the operation when the switch (6) is switched to the B side will be explained.

ヒストグラム生成器(3)で入力画像のヒストグラムを
とり、得られた各濃度値毎の頻度数を切替器(6)を通
じて平滑化機能部(5)に与えると、ここでは第3図(
a)の説明図に示すような各濃度毎の頻度数を表わすヒ
ストグラムの平滑化を行ない、第3図(b)の説明図に
示すような細かい凸凹のならされた平滑ヒストグラムが
得られる。この平滑ヒストグラムは割算器(4)に与え
られるが、ここでは縁間分散演算器(1)から送られて
きた各濃度値の級間分散値を平滑化機能部(5)から送
られてきた平滑ヒストグラムの各濃度値の頻度数で割り
算する。この動作を数式て表わすと以下のようになる。
The histogram generator (3) takes a histogram of the input image, and the obtained frequency number for each density value is given to the smoothing function unit (5) through the switch (6).
By smoothing the histogram representing the number of frequencies for each density as shown in the explanatory diagram of FIG. 3(b), a smoothed histogram with fine irregularities smoothed out as shown in the explanatory diagram of FIG. This smoothed histogram is given to the divider (4), where the interclass variance value of each density value sent from the edge variance calculator (1) is sent from the smoothing function unit (5). Divide by the frequency of each density value in the smoothed histogram. This operation can be expressed mathematically as follows.

σha  (i)−σ2(i)/H(i)・・・ (2
) 但し、σ  (i)は濃度値五の補正級間分散値、a σ2は濃度値iの級間分散値、H(i)は平滑ヒストグ
ラムにおける濃度値iの頻度数である。
σha (i)-σ2(i)/H(i)... (2
) where σ (i) is the corrected interclass variance value of density value 5, aσ2 is the interclass variance value of density value i, and H(i) is the frequency number of density value i in the smoothed histogram.

以上のようにして得られた補正級間分散値は最大値検出
器(2)に送られ、ここで最大値の検出が行なわれる。
The corrected interclass dispersion value obtained as described above is sent to the maximum value detector (2), where the maximum value is detected.

そして、最大値となる級間分散値の濃度値を2値化レベ
ルとして出力する。
Then, the density value of the interclass variance value that is the maximum value is output as a binarization level.

このように、ヒストグラムを平滑化することにより、濃
度値毎の頻度の細かい凸凹をならし、得られる補正級間
分散値をより安定なものとし、理想的な2値化レベルに
近付けることができる。
By smoothing the histogram in this way, it is possible to smooth out small irregularities in the frequency of each density value, make the obtained corrected interclass dispersion value more stable, and bring it closer to the ideal binarization level. .

第4図(a)、(b)は以上のような処理の結果得られ
た2種類の濃度分布に対する処理結果の説明図である。
FIGS. 4(a) and 4(b) are explanatory diagrams of processing results for two types of density distributions obtained as a result of the above processing.

図において、pはヒストグラム生成器(3)で得られた
ヒストグラム、qは縁間分散演算器(1)で演算された
級間分散値、rは補正機能部(7)の作用によって補正
された級間分散値であり、iの値はそれぞれの濃度値の
最大値を表わしている。ちなみに、図面では横軸にO〜
255の濃度値、縦軸には濃度値の最大値を1とした場
合の比率を示している。第4図(a)、(b)に示した
例では理想的な2値化レベルはいずれも1−175であ
り、従って級間分散値の最大値がそれぞれ1−116と
1−126であるのに対して、補正級間分散値の最大値
は1−176と1−173であるので、明らかに補正級
間分散値のほうが理想値に近いことが分かる。
In the figure, p is the histogram obtained by the histogram generator (3), q is the interclass variance value calculated by the edge variance calculator (1), and r is the value corrected by the action of the correction function unit (7). It is an interclass dispersion value, and the value of i represents the maximum value of each density value. By the way, in the drawing, the horizontal axis is O~
255 density values, and the vertical axis shows the ratio when the maximum density value is 1. In the examples shown in Figures 4(a) and (b), the ideal binarization levels are both 1-175, and therefore the maximum interclass variance values are 1-116 and 1-126, respectively. On the other hand, the maximum values of the corrected interclass dispersion value are 1-176 and 1-173, so it is clear that the corrected interclass dispersion value is closer to the ideal value.

以上のようにして得られた2値化レベルを用いて画像信
号を2値化することにより、形状認識や文字認識、自動
点検、監視、工業計測等のあらゆる分野の画像処理に応
用することができる。
By binarizing the image signal using the binarization level obtained as described above, it can be applied to image processing in all fields such as shape recognition, character recognition, automatic inspection, monitoring, industrial measurement, etc. can.

[発明の効果] 以上のように、この発明によれば、画像信号のヒストグ
ラムをとり各濃度値毎に得られた級間分散値をそれぞれ
の濃度毎の頻度数で割り算することにより補正級間分散
値を求め、この最大値に基づいて2値化レベルを算出す
ることにより、最適で理想的な2値化レベルを得られる
効果かある。
[Effects of the Invention] As described above, according to the present invention, by taking a histogram of an image signal and dividing the interclass variance value obtained for each density value by the frequency number for each density value, the corrected class variance is calculated. By finding the variance value and calculating the binarization level based on this maximum value, it is possible to obtain an optimal and ideal binarization level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る画像処理装置のブロ
ック図、第2図は従来の画像処理装置のブロック図、第
3図は第1図の構成におけるヒストグラムと平滑ヒスト
グラムの説明図、第4図(a)、(b)は2種類の濃度
分布に対する処理結果の説明図である。 図において、(1)は縁間分散演算器、(2)は最大値
検出器、(3)はヒストグラム生成器、(4)は割算器
、(5)は平滑化機能部、(6)は切替器、(7)は補
正機能部である。 なお、図中、同一符号は同一、又は相当部分を示す。 代理人 弁理士 吉 1)研 二 (外2名) f疋來の画($処理装置の)゛ロック図第2図 4」 3 蓋郵光 6、補正の対象 明細書の特許請求の範囲及び発明の詳細な説明の欄。 7、補正の対象 手 続 補 正 書 (自発) 平成3年1月180
FIG. 1 is a block diagram of an image processing device according to an embodiment of the present invention, FIG. 2 is a block diagram of a conventional image processing device, and FIG. 3 is an explanatory diagram of a histogram and a smoothing histogram in the configuration of FIG. 1. FIGS. 4(a) and 4(b) are explanatory diagrams of processing results for two types of concentration distributions. In the figure, (1) is an edge variance calculator, (2) is a maximum value detector, (3) is a histogram generator, (4) is a divider, (5) is a smoothing function unit, and (6) is a switch, and (7) is a correction function section. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Patent Attorney Yoshi 1) Kenji (and 2 others) Lock diagram (of the $ processing device) in Figure 2, Figure 4 3. Cover 6, scope of claims of the specification subject to amendment Column for detailed description of the invention. 7. Amendment to procedures subject to amendment (voluntary) January 1991 180

Claims (1)

【特許請求の範囲】[Claims] 入力された画像信号の各濃度毎の級間分散値を演算する
級間分散値演算手段と、前記画像信号の各濃度毎の頻度
数を検出するヒストグラム生成手段と、前記級間分散値
演算手段の出力を前記ヒストグラム生成手段の出力で割
り算して補正級間分散値を送出する割算手段と、前記割
算手段の出力の最大値から前記画像信号に対する2値化
レベルを求める最大値検出手段を備えることを特徴とす
る画像処理装置。
interclass variance calculation means for calculating the interclass variance for each density of the input image signal; histogram generation means for detecting the frequency number for each density of the image signal; and the interclass variance calculation means dividing means for dividing the output of the histogram by the output of the histogram generating means and sending out a corrected interclass dispersion value; and maximum value detecting means for determining the binarization level for the image signal from the maximum value of the output of the dividing means. An image processing device comprising:
JP2190007A 1990-07-17 1990-07-17 Image processor Pending JPH0475176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190007A JPH0475176A (en) 1990-07-17 1990-07-17 Image processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190007A JPH0475176A (en) 1990-07-17 1990-07-17 Image processor

Publications (1)

Publication Number Publication Date
JPH0475176A true JPH0475176A (en) 1992-03-10

Family

ID=16250829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190007A Pending JPH0475176A (en) 1990-07-17 1990-07-17 Image processor

Country Status (1)

Country Link
JP (1) JPH0475176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587984B1 (en) 1997-03-18 2003-07-01 Nippon Columbia Co., Ltd. Distortion detecting device, distortion correcting device, and distortion correcting method for digital audio signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587984B1 (en) 1997-03-18 2003-07-01 Nippon Columbia Co., Ltd. Distortion detecting device, distortion correcting device, and distortion correcting method for digital audio signal

Similar Documents

Publication Publication Date Title
EP0392701A3 (en) Image reduction apparatus
KR960030072A (en) Pitch Recognition Method for Strings / Percussion Instruments
EP0382466A3 (en) Methods and apparatus for optically determining the acceptability of products
JP3594477B2 (en) Abnormal noise inspection device
JPH0475176A (en) Image processor
JP3002325B2 (en) Surface inspection equipment
KR910014869A (en) Voice signal processing device
US20020169383A1 (en) Myocardial infarct detecting, sizing and locating
EP0848335A1 (en) Method and apparatus for QRS detection
JP2004349846A (en) Outlier detecting method
JPH0217832B2 (en)
Pesu et al. Wavelet packet based respiratory sound classification
JP2671818B2 (en) Image processing device
JPS5491009A (en) Audio recognition unit
JP2548386B2 (en) License plate usage code recognition method
JPH0474951A (en) Method and apparatus for inspection
Zeng et al. An improved canny edge detector against impulsive noise based on CIELAB space
JPH09101197A (en) Model discrimination method using helicopter sound and device therefor
JPS61225976A (en) Binary-coding system for picture signal
JPH0531087A (en) Vpc wave-form detection system
Bourjandi Image segmentation using thresholding by local fuzzy entropy-based competitive fuzzy edge detection
JPH06242038A (en) Gas identifying system
JP2608702B2 (en) Speech section detection method in speech recognition
JPH0587909A (en) Active sonar apparatus
JPS63238679A (en) Input recognizing device