JPH0475115A - Constant temperature fluid supply device - Google Patents

Constant temperature fluid supply device

Info

Publication number
JPH0475115A
JPH0475115A JP18985890A JP18985890A JPH0475115A JP H0475115 A JPH0475115 A JP H0475115A JP 18985890 A JP18985890 A JP 18985890A JP 18985890 A JP18985890 A JP 18985890A JP H0475115 A JPH0475115 A JP H0475115A
Authority
JP
Japan
Prior art keywords
temperature
heater
constant temperature
supply device
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18985890A
Other languages
Japanese (ja)
Inventor
Tadao Tanaka
忠男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18985890A priority Critical patent/JPH0475115A/en
Publication of JPH0475115A publication Critical patent/JPH0475115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

PURPOSE:To obtain fluid whose exit temperature near to desired constant temperature can be kept by interposing an adjusting passage between a temperature sensor to measure the entry temperature of a pipeline and a heater. CONSTITUTION:The adjusting passage 11 of volume V is interposed between the temperature sensor 15a which measures the entry temperature T1 of the pipeline and the heater 16, and relation between the global proper delay time th of the first temperature sensor 15a and the heater 16 and a flow rate Q in the pipeline is set as V=QXth. Therefore, the fluid with micro mass flow rate DELTAm measuring the temperature T1 by the first sensor 15a can arrive at the position of the heater 16 after the lapse of time th even when the proper delay time th as inevitable physical properties exists, and required heating in accordance with the temperature T1 is received from the heater 16, and the fluid at the desired constant temperature Ts can be discharged. Thereby, it is possible to reduce deviation between the exit temperature To and the constant temperature Ts as possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、一定温度の気体又は液体を供給する定温流
体供給装置に関し、例えば工作機械の主軸に潤滑油を供
給する場合等に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a constant temperature fluid supply device that supplies gas or liquid at a constant temperature, and is used, for example, when supplying lubricating oil to the main shaft of a machine tool. .

〔従来の技術〕[Conventional technology]

第3図は従来例の管路図であって、工作機械で昇温した
潤滑油は吸込口1から冷却室2へ流入する。冷却室2の
中で潤滑油は、図示しない冷凍機の蒸発器3で冷却され
る。冷却室2は、入口4を介してサーミスタ等の温度セ
ンサ5とヒータ6とを備えた微小温度加熱室7に接続さ
れる。出口8から供給される潤滑油の温度Toを所望の
一定温度T5にするために、潤滑油を前記冷却室2で、
−旦Tsよりわずかに低い温度TIまで冷却し、温度セ
ンサ5で温度を計測しなからヒータ6で微小な熱エネル
ギを加えて前記Tsに調節する。ヒータ6はシーズヒー
タ等が使用され、冷凍機の0N−OFF運転をしたりヒ
ータ6の電源を電磁接触器で0N−OFFの時間制御を
して行なわれる。
FIG. 3 is a pipe diagram of a conventional example, in which lubricating oil heated by a machine tool flows into a cooling chamber 2 from a suction port 1. The lubricating oil in the cooling chamber 2 is cooled by an evaporator 3 of a refrigerator (not shown). The cooling chamber 2 is connected via an inlet 4 to a micro-temperature heating chamber 7 equipped with a temperature sensor 5 such as a thermistor and a heater 6. In order to bring the temperature To of the lubricating oil supplied from the outlet 8 to a desired constant temperature T5, the lubricating oil is heated in the cooling chamber 2,
- Once the temperature is cooled to a temperature TI slightly lower than Ts, the temperature is measured by the temperature sensor 5, and then a small amount of thermal energy is applied by the heater 6 to adjust the temperature to Ts. A sheathed heater or the like is used as the heater 6, and the operation is performed by controlling the ON-OFF operation of the refrigerator or by controlling the ON-OFF time of the power source of the heater 6 using an electromagnetic contactor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の従来の技術において、冷凍機は0N−OFF運転
するので前記入口4の潤滑油の温度TIは変動している
。冷凍機をインバータ運転しても、温度Tsと所望の温
度Tsとの差は変動がさけられない。
In the conventional technology described above, since the refrigerator is operated in ON-OFF mode, the temperature TI of the lubricating oil at the inlet 4 fluctuates. Even if the refrigerator is operated by an inverter, the difference between the temperature Ts and the desired temperature Ts cannot be avoided.

また微小温度加熱室7において、ヒータ6が出力する熱
エネルギも0N−OFF制御であって温度調節の偏差は
さけられない。特にサーミスタ等の温度センサ5の検出
遅れ時間、ヒータ6が電力を得て潤滑油に熱エネルギを
伝達するなどの総合の固有遅れ時間が存在するうえに、
温度センサ5とヒータ6とが微小温度加熱室7に同居し
ているので、出口8から供給される潤滑油の温度Toは
所望の一定温度Tsからの偏差を免れない。温度センサ
5をヒータ6の後流に配置してフィードバックしてもT
sが小幅に変化するので、Toを平均的にTsに一致さ
せても変動が免れない。
Further, in the micro-temperature heating chamber 7, the thermal energy output by the heater 6 is also under ON-OFF control, and deviations in temperature control cannot be avoided. In particular, there is a detection delay time of the temperature sensor 5 such as a thermistor, and a comprehensive inherent delay time such as the heater 6 obtaining electric power and transmitting thermal energy to the lubricating oil.
Since the temperature sensor 5 and the heater 6 coexist in the micro-temperature heating chamber 7, the temperature To of the lubricating oil supplied from the outlet 8 inevitably deviates from the desired constant temperature Ts. Even if the temperature sensor 5 is placed downstream of the heater 6 and provides feedback, T
Since s changes over a small range, fluctuations are inevitable even if To is made to match Ts on average.

この発明の目的は、変動する入口温度T1の流体に微小
な熱エネルギを加える際に、出口温度Toと所望の一定
温度Tsとの偏差をできるだけ小さくできる定温流体供
給装置を提供することにある。
An object of the present invention is to provide a constant temperature fluid supply device that can minimize the deviation between the outlet temperature To and a desired constant temperature Ts when applying a small amount of thermal energy to a fluid having a fluctuating inlet temperature T1.

〔課題を解決するための手段〕[Means to solve the problem]

この発明1の定温流体供給装置は、 管路の入口温度T1を計測する第1の温度センサと、そ
の下流のヒータと、流体を所望の一定温度Tsに上昇さ
せる仕事率Wを演算して前記ヒータに出力する仕事率演
算出力回路とからなる定温流体供給装置において、 前記第1の温度センサと前記ヒータとの間に容積Vの調
整流路を介装し、前記第1の温度センサと前記ヒータが
持つ総合の固有遅れ時間thと前記管路を流れる流量Q
に関し、V=QXthとするものである。
The constant temperature fluid supply device of this invention 1 includes a first temperature sensor that measures the inlet temperature T1 of the pipe, a heater downstream thereof, and a power W that increases the fluid to a desired constant temperature Ts. In a constant temperature fluid supply device comprising a power calculation output circuit that outputs output to a heater, an adjustment flow path having a volume V is interposed between the first temperature sensor and the heater, and the first temperature sensor and the The overall inherent delay time th of the heater and the flow rate Q flowing through the pipe
Regarding, V=QXth.

発明2の定温流体供給装置は、発明1において、前記ヒ
ータの下流の出口温度Toを計測する第2の温度センサ
と、前記仕事率演算出力回路の前又は後に接続される遅
延回路と、設定固有遅れ時間thsと真価との設定誤差
時間thdを演算する誤差時間演算回路とを備え、前記
設定誤差時間thdを零とするように前記遅延回路の遅
延時間tbを調節するものである。
The constant temperature fluid supply device of invention 2 is characterized in that in invention 1, a second temperature sensor that measures the downstream outlet temperature To of the heater, a delay circuit connected before or after the power calculation output circuit, and a setting-specific The apparatus includes an error time calculation circuit that calculates a set error time thd between the delay time ths and the true value, and adjusts the delay time tb of the delay circuit so that the set error time thd becomes zero.

発明3の定温流体供給装置は、発明1又は2において、 前記管路の出口に流体混合室を接続するものである。The constant temperature fluid supply device of Invention 3, in Invention 1 or 2, A fluid mixing chamber is connected to the outlet of the pipeline.

発明4の定温流体供給装置は発明1.2又は3において
、 ヒータの下流の出口温度Toを計測する第2の温度セン
サと仕事率演算出力回路との間にフィードハック回路を
介装して前記Toを前記Tsに調整するものである。
The constant temperature fluid supply device of invention 4 is based on invention 1.2 or 3, wherein a feed hack circuit is interposed between the second temperature sensor that measures the downstream outlet temperature To of the heater and the power calculation output circuit. This is to adjust To to the above-mentioned Ts.

〔作用〕[Effect]

第1図を参照しながら説明する。 This will be explained with reference to FIG.

発明1において、まず仕事率演算出力回路21が仕事率
Wを出力する条件を説明する。
In invention 1, the conditions under which the power calculation output circuit 21 outputs the power W will be explained first.

入口温度Tsの流体が流量Qで流入する時、比重をγと
すれば、微小時間Δtにおける微小質量Δmは次式(1
)で与えられる。
When a fluid with an inlet temperature Ts flows in at a flow rate Q, if the specific gravity is γ, the minute mass Δm at a minute time Δt is calculated by the following equation (1
) is given by

Δ゛m=γQ・Δt         ・・・(1)6
mの流体をΔtの時間で温度T1から所望の一定温度T
sまでに上昇させるのに必要な熱エネルギは仕事率をW
とすれば、流体の比熱をCとして c  (’rs  −TI  )  Δm+=W・ Δ
t−−・(2)であり、式(2)に式(1)を代入して
両辺をΔtで割れば、 c (Ts −TI )yQ=W     ・・−13
)流体の比熱C1比重γ及び流量Q並びにヒータ16の
電気抵抗は既知であるから、温度T1を計測すれば式(
3)に基き仕事率演算出口回路21で所望の一定温度T
sとする仕事率W、一般には電圧が演算されヒータ16
に出力できる。
Δ゛m=γQ・Δt...(1)6
m fluid from temperature T1 to desired constant temperature T in time Δt
The thermal energy required to raise the power to s is the power W
If the specific heat of the fluid is C, then c ('rs -TI) Δm+=W・Δ
t-- (2), and by substituting equation (1) into equation (2) and dividing both sides by Δt, we get c (Ts -TI)yQ=W...-13
) Since the specific heat C1 and specific gravity γ of the fluid, the flow rate Q, and the electrical resistance of the heater 16 are known, if the temperature T1 is measured, the formula (
3), the desired constant temperature T is determined by the power calculation exit circuit 21.
The power W, generally the voltage, is calculated and the heater 16
It can be output to

次に第1の温度センサ15aが入口温度T1の流体に曝
されてその温度を検出してから前記ヒータ16が前記熱
エネルギを放出して出口流体に伝わるまでにはセンサや
ヒータの固有の時定数や流体に基く固有遅れ時間t1が
存在する。これは例えばシーズヒータの場合では、電気
抵抗体の熱容量、この電気抵抗体と外管との間の絶縁物
及び外管の伝熱抵抗及び熱容量、外管と流体との間の伝
熱抵抗等によるものである。
Next, after the first temperature sensor 15a is exposed to the fluid at the inlet temperature T1 and the temperature is detected, until the heater 16 releases the thermal energy and transmits it to the outlet fluid, it takes a specific time period for the sensor and the heater. There is an inherent delay time t1 based on constants and fluids. For example, in the case of a sheathed heater, this includes the heat capacity of the electric resistor, the heat transfer resistance and heat capacity of the insulator and outer tube between the electric resistor and the outer tube, the heat transfer resistance between the outer tube and the fluid, etc. This is due to

ところで第1の温度センサ15aとヒータ16との間に
容積Vの調整流路11を設け、前記t6及び流量Qとの
間に次式(4)の関係があるように前記調整流路11を
配置する。
By the way, an adjustment flow path 11 having a volume V is provided between the first temperature sensor 15a and the heater 16, and the adjustment flow path 11 is set so that the relationship between t6 and the flow rate Q is expressed by the following equation (4). Deploy.

V = Q −tk           ・・・(4
)したがって、物性として必然的に存在する前述の固有
遅れ時間t7があっても、第1の温度センサ15aでT
sの温度を計測された微小質量流量Δ−の流体はthの
時間後に丁度、ヒータ16の位置にまで到達し、ヒータ
16からTIに対応する必要な加熱を受けることになる
V = Q - tk ... (4
) Therefore, even if there is the above-mentioned inherent delay time t7 that inevitably exists as a physical property, the first temperature sensor 15a
The fluid having a minute mass flow rate Δ- whose temperature is measured reaches exactly the position of the heater 16 after a time th, and receives the necessary heating corresponding to TI from the heater 16.

結局、温度T1が変動する流体が入口4に流れ込み、ヒ
ータ16にやむを得ない遅れtlがあっても、ヒータ1
6は常にねらいを定めた微小流体を捕捉して必要な仕事
率Wの加熱を行い、所望の一定温度Tsの流体を吐き出
す。
After all, even if the fluid whose temperature T1 fluctuates flows into the inlet 4 and there is an unavoidable delay tl in the heater 16, the heater 1
6 always captures a targeted microfluid, heats it with the necessary power W, and discharges the fluid at a desired constant temperature Ts.

なお、ここでヒータの上流の温度T1で制御するのでい
わゆるフィードビフォワであり、タイミングを合せるの
が目的であって、仕事率Wが適正であるかどうか、すな
わちToが確実にTSになる保証はない。
In addition, since the control is performed using the temperature T1 upstream of the heater, it is a so-called feed-before, and the purpose is to match the timing, and to ensure that the power W is appropriate, that is, To is definitely TS. There isn't.

発明2は、もし発明1において式(4)に基き設定した
設定固有遅れ時間tkiと現実の真の固有遅れ時間t。
Invention 2 is based on the set intrinsic delay time tki set based on equation (4) in Invention 1 and the actual true intrinsic delay time t.

との間に設定誤差時間thdが存在する場合にこれを自
動的に調節するものであるe  jhdが存在するとT
1が変動する流体には前記の差が位相差となって凹凸の
波動となって現れる。センサ、ヒータ等の時定数も正確
には把握できないし、把握したとしてもQ又■、特にQ
の変動があれば発明1の式(4)の原理は活用されない
When there is a setting error time thd between
In a fluid where 1 is fluctuating, the above-mentioned difference becomes a phase difference and appears as uneven waves. It is not possible to accurately determine the time constants of sensors, heaters, etc., and even if they were known, Q and ■, especially Q
If there is a variation in , the principle of equation (4) of Invention 1 will not be utilized.

第2図は図(a)が流路の流れを示し、−点鎖線で示す
真値に対しQ、V又はjhaの把握に誤差又は変動があ
って設定固有遅れ時間thIが実線で示すものであった
とすると、A点にあるヒータ16のgだけ手前のB点に
微小質量流量Δ−が到達した時にZヒータ16はB点で
6mの温度に対応した放熱が行なわれてしまう。ths
が過大か、■が大きいか、Qが小さい場合等である。
In Figure 2, Figure (a) shows the flow in the flow path, and there is an error or variation in grasping Q, V, or jha with respect to the true value shown by the - dotted chain line, and the set specific delay time thI is shown by the solid line. If so, when the minute mass flow rate Δ- reaches point B, which is g in front of the heater 16 at point A, the Z heater 16 will radiate heat corresponding to the temperature of 6 m at point B. ths
is excessive, ■ is large, Q is small, etc.

図(b)から(e)までは図(a)に対応させて適宜な
時間における前記放熱の早まりの経過を示し、まず図(
b)では定常温度Tsが流入し、必要な加熱Wがヒータ
A点で行なわれて定常温度To  (Tsをねらった)
で出口から流出する。図(c)は前記T!にΔTだけ高
い流体が入口に到達した時を示し、すでに流れ去った流
体は図(b)と同様にヒータA点でToの加熱がされる
。図(d)は図(a)で説明したように前記Ts+ΔT
の微小質量流量Δ蒙がB点に来た時にA点でヒータが早
まって反応し、−ΔTだけ低く加熱する状況を示す。図
(a)のビークΔTがA点でヒータから受ける加熱は本
来のT+ +ΔTでなくT1とみなされての加熱が行な
われ、図(e)のTo+ΔTとなって現れる。その後流
iの距離に前述のTo−ΔTが存在する。したがって図
(e)で第2の温度センサ15bがTo−ΔTとTo+
ΔTとを計測する。図では距離iとして示されるが、ヒ
ータはこれに対応する時間を検出する。この図(e)の
iに対応する時間と図(a)のgに対応する時間とは、
それぞれの管路部分の平均断面積の比に反比例する関係
を考慮して、iに対応する時間からgに対応する時間が
計算でき、thが計算できる。これらを誤差時間演算回
路23が演算する。
Figures (b) to (e) show the progression of the heat dissipation at appropriate times in correspondence with Figure (a).
In b), the steady temperature Ts flows in, the necessary heating W is performed at the heater point A, and the steady temperature To (aimed at Ts)
It flows out from the exit. Figure (c) shows the T! This shows the time when the fluid whose temperature is higher than ΔT reaches the inlet, and the fluid that has already flowed away is heated by To at the heater point A, similar to the diagram (b). Figure (d) shows the Ts+ΔT as explained in Figure (a).
This shows a situation in which the heater reacts prematurely at point A when the minute mass flow rate ΔT reaches point B, heating lower by -ΔT. The heating received from the heater at point A, where the peak ΔT in Figure (a) is not the original T++ΔT, but is treated as T1 and appears as To+ΔT in Figure (e). The above-mentioned To-ΔT exists in the distance of the trailing stream i. Therefore, in Figure (e), the second temperature sensor 15b is To-ΔT and To+
ΔT is measured. Although shown as distance i in the figure, the heater detects the corresponding time. The time corresponding to i in figure (e) and the time corresponding to g in figure (a) are
Considering the relationship that is inversely proportional to the ratio of the average cross-sectional area of each pipe section, the time corresponding to g can be calculated from the time corresponding to i, and th can be calculated. The error time calculation circuit 23 calculates these.

発明2に関する手段の項に「設定固有遅れ時間thIと
真値との設定誤差時間thaを演算する誤差時間演算回
路」とは前記の説明に相当する。なおこの作用は[図(
e)におけるiに対応する時間を零にする演算回路」と
同義であり、そのようにしてもよいことを含む。また入
口に複数のΔTなる流体が続けて流入して、それぞれの
一対の凹凸が第2の温度センサで検出されるようなこと
があっても第1の温度センサがΔTを検出してから第2
の温度センサがその凹凸を検出するまでの時間はおよそ
決っているので、入口における複数のΔTの検出と第2
の温度センサにおける凹凸の対応関係は容易に判明する
。もっとも入口にご(接近して2つのΔTが検出される
ような時には困難となるが、現実には冷庫機等の0N−
OFF等によるものが多いので接近して検出されること
はない。
The term "error time calculation circuit that calculates the setting error time tha between the set specific delay time thI and the true value" in the section of the means related to the second invention corresponds to the above explanation. This effect is shown in [Figure (
It has the same meaning as "an arithmetic circuit that makes the time corresponding to i in e) zero," and includes the possibility of doing so. Furthermore, even if a plurality of fluids having ΔT continuously flow into the inlet and each pair of unevenness is detected by the second temperature sensor, the first temperature sensor detects ΔT and then the second temperature sensor detects the irregularities. 2
The time it takes for the temperature sensor to detect the unevenness is approximately fixed, so the detection of multiple ΔTs at the entrance and the second
The correspondence relationship between the unevenness in the temperature sensor is easily found. However, this becomes difficult when two ΔTs are detected in close proximity to each other at the entrance, but in reality, it is difficult to
Since most of the cases are due to OFF, etc., they are not detected in close proximity.

Ehgの制御はいくつかの制御結果の移動平均に基いて
行うとなおよい。
It is better to control Ehg based on a moving average of several control results.

かくして遅延回路22を介して仕事率演算出力回路21
に真値り。が入力され、入口で変動する温度の微小質量
流路に正確にねらいを定めてヒータが加熱を行う。
Thus, the power calculation output circuit 21 via the delay circuit 22
True value. is input, and the heater heats the small mass flow path, which has a fluctuating temperature at the inlet, by precisely targeting it.

発明3においては、発明1又は2において、流れて来る
流体にわずかな変動がある場合にも、流体は流体混合室
13にて混合されて温度はより均一化される。
In invention 3, in invention 1 or 2, even if there is a slight variation in the flowing fluid, the fluid is mixed in the fluid mixing chamber 13 and the temperature is made more uniform.

発明4においては、発明1.2又は3において、第2の
温度センサ15bがToを検出し、これをTsに制御す
るためのフィードバンク回路24を介してフィードバッ
クが行なわれる。フィードバックに関しては慣用の技術
である。
In invention 4, in invention 1.2 or 3, the second temperature sensor 15b detects To, and feedback is performed via the feed bank circuit 24 for controlling To to Ts. Regarding feedback, it is a conventional technique.

〔実施例〕〔Example〕

第1図は実施例の管路図であって、例えば第3図の冷却
室2に接続されて使用される。第2図は第1図のタイム
チャート図である。
FIG. 1 is a pipe diagram of an embodiment, which is used by being connected to the cooling chamber 2 of FIG. 3, for example. FIG. 2 is a time chart diagram of FIG. 1.

第1図において、管路の入口4には入口温度T1を計測
する第1の温度センサ15aが設けられる。
In FIG. 1, a first temperature sensor 15a is provided at the inlet 4 of the conduit to measure the inlet temperature T1.

入口4に続き容積■の調整流路11を隔てて距離lの位
置にヒータ16が設けられる。その下流に距離fを隔て
て管路の出口温度Toを計測する第2の温度センサ15
bが、更に下流に逆U字状のノズル12を備えた流体混
合室13が設けられ、出口8に至る。
A heater 16 is provided at a distance 1 following the inlet 4 and across an adjustment channel 11 having a volume 2. A second temperature sensor 15 is located downstream of the second temperature sensor 15 at a distance f and measures the outlet temperature To of the pipe.
Further downstream, a fluid mixing chamber 13 equipped with an inverted U-shaped nozzle 12 is provided, leading to the outlet 8.

電源14は温度調節器20を介して電力を前記ヒータ1
6に供給する。温度調節器20は仕事率演算出力回路2
1、遅延回路22、誤差時間演算回路23、フィーラド
パック回路24及び所望の一定温度Tsを設定する温度
設定器25からなる。
A power source 14 supplies power to the heater 1 via a temperature controller 20.
Supply to 6. The temperature controller 20 is a power calculation output circuit 2
1, a delay circuit 22, an error time calculation circuit 23, a field pack circuit 24, and a temperature setter 25 for setting a desired constant temperature Ts.

この温度調節器20には前記第1の温度センサ15a及
び第2の温度センサ15bが接続される。
The first temperature sensor 15a and the second temperature sensor 15b are connected to this temperature regulator 20.

このような構成において、まず仕事率演算出力回路21
が仕事率Wを出力する条件を説明する。
In such a configuration, first, the power calculation output circuit 21
The conditions for outputting power W will be explained.

入口温度Tsの流体が流量Qで流入する時、比重をTと
すれば、微小時間Δtにおける微小質量Δlは次式(1
)で与えられる。
When a fluid with an inlet temperature Ts flows in at a flow rate Q, if the specific gravity is T, the minute mass Δl at a minute time Δt is calculated by the following equation (1
) is given by

Δm=γQ・Δt         ・・・(11Δm
の流体をΔtの時間で温度T1がら所望の一定温度Ts
までに上昇させるのに必要な熱エネルギは仕事率をWと
すれば、流体の比熱をCとして C(Ts−Ts)  Δm=W・Δt・・・(2)であ
り、式(2)に式(1)を代入して両辺をΔtで割れば
、 C(TS −’r+ ”) rQ=W     −・・
(31流体の比熱C1比重γ及び流量Q並びにヒータ1
6の電気抵抗は既知であるから、温度Tsを計測すれば
式(3)に基き仕事率演算出口回路21で所望の一定温
度Tsとする仕事率W、一般には電圧が演算されヒータ
16に出力できる。
Δm=γQ・Δt...(11Δm
of fluid from temperature T1 to desired constant temperature Ts in time Δt.
The thermal energy required to raise the temperature to Substituting equation (1) and dividing both sides by Δt, we get C(TS −'r+ ”) rQ=W −...
(31 Fluid specific heat C1 specific gravity γ and flow rate Q and heater 1
Since the electrical resistance of 6 is known, once the temperature Ts is measured, the power calculation output circuit 21 calculates the power W, generally the voltage, to achieve the desired constant temperature Ts based on equation (3) and outputs it to the heater 16. can.

次に第1の温度センサ15aが入口温度Tsの流体に曝
されてその温度を検出してから前記ヒータ16が前記熱
エネルギを放出して出口流体に伝わるまでにはセンサや
ヒータの固有の時定数や流体に暴く固有遅れ時間thが
存在する。これは例えばシーズヒータの場合では、電気
抵抗体の熱容量、この電気抵抗体と外管との間の絶縁物
及び外管の伝熱抵抗及び熱容量、外管と流体との間の伝
熱抵抗等によるものである。
Next, after the first temperature sensor 15a is exposed to the fluid at the inlet temperature Ts and detects the temperature, until the heater 16 releases the thermal energy and transmits it to the outlet fluid, it takes a specific time for the sensor and the heater. There is an inherent delay time th that is unique to constants and fluids. For example, in the case of a sheathed heater, this includes the heat capacity of the electric resistor, the heat transfer resistance and heat capacity of the insulator and outer tube between the electric resistor and the outer tube, the heat transfer resistance between the outer tube and the fluid, etc. This is due to

ところで第1の温度センサ15aとヒータ16との間に
容積Vの調整流路11を設け、前記L1及び流量Qとの
間に次式(4)の関係があるように前記調整流路11を
配置する。
Incidentally, an adjustment flow path 11 having a volume V is provided between the first temperature sensor 15a and the heater 16, and the adjustment flow path 11 is set so that the relationship between L1 and the flow rate Q is expressed by the following equation (4). Deploy.

V=Q−th           ・・・(4)した
がって、物性として必然的に存在する前述の固有遅れ時
間thがあっても、第1の温度センサ15aでT+の温
度を計測された微小質量流量Δmの流体はtlの時間後
に丁度、ヒータ16の位置にまで到達し、ヒータ16か
らT1に対応する必要な加熱を受けることになる。
V=Q-th (4) Therefore, even if there is the above-mentioned inherent delay time th that inevitably exists as a physical property, the minute mass flow rate Δm whose temperature at T+ is measured by the first temperature sensor 15a is The fluid reaches exactly the position of the heater 16 after the time tl and receives the necessary heating corresponding to T1 from the heater 16.

結局、温度Tsが変動する流体が入口4に流れ込み、ヒ
ータ16にやむを得ない遅れthがあっても、ヒータ1
6は常にねらいを定めた微小流体を捕捉して必要な仕事
率Wの加熱を行い、所望の一定温度Tsの流体を吐き出
す。
After all, even if the fluid whose temperature Ts fluctuates flows into the inlet 4 and there is an unavoidable delay th in the heater 16, the heater 1
6 always captures a targeted microfluid, heats it with the necessary power W, and discharges the fluid at a desired constant temperature Ts.

なお、ここでヒータの上流の温度Tsで制御するのでい
わゆるフィードビフォワであり、タイミングを合せるの
が目的であって、仕事率Wが適正であるかどうか、すな
わちToが確実にTsになる保証はない。
In addition, since the control is performed using the temperature Ts upstream of the heater, it is a so-called feed-before, and the purpose is to match the timing, and to ensure that the power W is appropriate, that is, To is definitely Ts. There isn't.

次に第2の温度センサ15bと遅延回路22と誤差時間
演算回路23は前記式(4)に基き設定した設定固有遅
れ時間thsと現実の真の固有遅れ時間thaとの間に
設定誤差時間thdが存在する場合にこれを自動的に調
節するものである。thdが存在するとT1が変動する
流体には前記の差が位相差となって凹凸の波動となって
現れる。センサ、ヒータ等の時定数も正確には把握でき
ないし、把握したとしてもQ又V、特にQの変動があれ
ば発明1の式(4)の原理は活用されない。
Next, the second temperature sensor 15b, the delay circuit 22, and the error time calculation circuit 23 calculate a set error time thd between the set inherent delay time ths set based on the above formula (4) and the actual true inherent delay time tha. This is automatically adjusted if there is a When thd exists, the above-mentioned difference becomes a phase difference in a fluid in which T1 fluctuates, and appears as uneven waves. The time constants of sensors, heaters, etc. cannot be accurately known, and even if they are known, the principle of equation (4) of Invention 1 cannot be utilized if there is a variation in Q or V, especially Q.

第2図は図(a)が流路の流れを示し、−点鎖線で示す
真値に対しQ、V又はり。の把握に誤差又は変動があっ
て設定固有遅れ時間thsが実線で示すものであったと
すると、A点にあるヒータ16のgだけ手前のB点に微
小質量流量Δmが到達した時に、ヒータ16はB点でΔ
mの温度に対応した放熱が行なわれてしまう。thsが
過大か、■が大きいか、Qが小さい場合等である。
In FIG. 2, (a) shows the flow in the flow path, and Q, V, or deviation from the true value indicated by the dashed line. Assuming that there is an error or variation in grasping the set specific delay time ths as shown by the solid line, when the minute mass flow rate Δm reaches point B, which is g in front of the heater 16 at point A, the heater 16 Δ at point B
Heat radiation corresponding to the temperature m is performed. This is the case when ths is too large, ■ is large, or Q is small.

図(b)から(e)までは図(a)に対応させて適宜な
時間における前記放熱の早まりの経過を示し、まず図(
b)では定常温度Tsが流入し、必要な加熱Wがヒータ
A点で行なわれて定常温度’ro  (TSをねらった
)で出口から流出する。図(C)は前記TsにΔTだけ
高い流体が入口に到達した時を示し、すでに流れ去った
流体は図(b)と同様にヒータA点でToの加熱がされ
る。図(d)は図<a>で説明したように前記TI  
+ΔTの微小質量流量ΔmがB点に来た時にA点でヒー
タが早まって反応し、−ΔTだけ低く加熱する状況を示
す。図(a)のビークΔTがA点でヒータから受ける加
熱は本来のT1+ΔTでなくTsとみなされての加熱が
行なわれ、図(e)のTo+ΔTとなって現れる。その
後流iの距離に前述のTo−ΔTが存在する。したがっ
て図(e)で第2の温度センサ15bがTo−ΔTとT
o+ΔTとを計測する。図では距離iとして示されるが
、ヒータはこれに対応する時間を検出する。この図(e
)のiに対応する時間と図(a)のgに対応する時間と
は、それぞれの管路部分の平均断面積の比に反比例する
関係を考慮して、iに対応する時間からgに対応する時
間が計算でき、thaが計算できる。これらを誤差時間
演算回路23が演算する。
Figures (b) to (e) show the progression of the heat dissipation at appropriate times in correspondence with Figure (a).
In b), a steady state temperature Ts flows in, the necessary heating W takes place at the heater point A, and a steady state temperature 'ro (aimed at TS) flows out from the outlet. Figure (C) shows when the fluid higher than Ts by ΔT reaches the inlet, and the fluid that has already flowed away is heated by To at the heater point A, as in Figure (b). Figure (d) shows the TI as explained in Figure <a>.
A situation is shown in which when the minute mass flow rate Δm of +ΔT comes to point B, the heater reacts prematurely at point A and heats up by −ΔT lower. The heating received from the heater at point A where the peak ΔT in Figure (a) is not the original T1+ΔT but is treated as Ts and appears as To+ΔT in Figure (e). The above-mentioned To-ΔT exists in the distance of the trailing stream i. Therefore, in Figure (e), the second temperature sensor 15b has To-ΔT and T
o+ΔT is measured. Although shown as distance i in the figure, the heater detects the corresponding time. This figure (e
The time corresponding to i in ) and the time corresponding to g in figure (a) are calculated from the time corresponding to i to the time corresponding to g, considering the relationship that is inversely proportional to the ratio of the average cross-sectional area of each pipe section. You can calculate the time it takes to do this, and you can calculate tha. The error time calculation circuit 23 calculates these.

発明2に関する手段の項に「設定固有遅れ時間thiと
真値との設定誤差時間tゎ、を演算する誤差時間演算回
路」とは前記の説明に相当する。なおこの作用は「図(
e)におけるiに対応する時間を零にする演算回路」と
同義であり、そのようにしてもよいことを含む。また入
口に複数のΔTなる流体が続けて流入して、それぞれの
一対の凹凸が第2の温度センサで検出されるようなこと
があっても第1の温度センサがΔTを検出してから第2
の温度センサがその凹凸を検出するまでの時間はおよそ
決っているので、入口における複数のΔTの検出と第2
の温度センサにおける凹凸の対応関係は容易に判明する
。もっとも入口にごく接近して2つのΔTが検出される
ような時には困難となるが、現実には冷庫機等の0N−
OFF等によるものが多いので接近して検出されること
はない。
The term "error time calculation circuit that calculates the set error time t between the set inherent delay time thi and the true value" in the section of means related to the second invention corresponds to the above explanation. This action is shown in the figure (
It has the same meaning as "an arithmetic circuit that makes the time corresponding to i in e) zero," and includes the possibility of doing so. Furthermore, even if a plurality of fluids having ΔT continuously flow into the inlet and each pair of unevenness is detected by the second temperature sensor, the first temperature sensor detects ΔT and then the second temperature sensor detects the irregularities. 2
The time it takes for the temperature sensor to detect the unevenness is approximately fixed, so the detection of multiple ΔTs at the entrance and the second
The correspondence relationship between the unevenness in the temperature sensor is easily found. This becomes difficult when two ΔTs are detected very close to the entrance, but in reality, it is difficult to detect 0N-T in refrigerators etc.
Since most of the cases are due to OFF, etc., they are not detected in close proximity.

jhtの制御はいくつかの制御結果の移動平均に基いて
行うとなおよい。
It is better to control jht based on a moving average of several control results.

か(して遅延回路22を介して仕事率演算出力回路21
に真価jhaが入力され、入口で変動する温度の微小質
量流路に正確にねらいを定めてヒータが加熱を行う。
(and then the power calculation output circuit 21 via the delay circuit 22
The true value jha is input to the heater, and the heater heats the small mass flow path, which has a fluctuating temperature at the inlet, by precisely targeting it.

そして流れて来る流体にわずかな変動がある場合にも、
流体は流体混合室13にて混合されて温度はより均一化
される。
And even if there is a slight fluctuation in the flowing fluid,
The fluids are mixed in the fluid mixing chamber 13 and the temperature is made more uniform.

最後に第2の温度センサ15bがToを検出し、これを
Tsに制御するためのフィードハック回路24を介して
フィードバックが行なわれる。フィードバックに関して
は慣用の技術である。
Finally, the second temperature sensor 15b detects To, and feedback is performed via the feed hack circuit 24 for controlling To to Ts. Regarding feedback, it is a conventional technique.

前記実施例において、温度センサに裸の熱電対、赤外線
センサも採用でき、各回路には半導体回路を使用できる
In the embodiments described above, a bare thermocouple or an infrared sensor may be used as the temperature sensor, and a semiconductor circuit may be used for each circuit.

〔発明の効果〕〔Effect of the invention〕

この発明1の定温流体供給装置は、 管路の入口温度Tsを計測する第1の温度センサと、そ
の下流のヒータと、流体を所望の一定温度Tsに上昇さ
せる仕事率Wを演算して前記ヒータに出力する仕事率演
算出力回路とからなる定温流体供給装置において、 前記第1の温度センサと前記ヒータとの間に容積■の調
整流路を介装し、前記第1の温度センサと前記ヒータが
持つ総合の固有遅れ時間thと前記管路を流れる流量Q
に関し、V=Qx thとするようにしたので、 第1の温度センサによる調整流路の入口温度Tの計測値
に基いて、仕事率演算出力回路が適正な熱エネルギに相
当する電圧をヒータに出力するに際して、温度計測から
熱エネルギ放出までに時間遅れthがあっても前記T1
の温度を持つ微小流体がT度ヒータに到達した時に熱エ
ネルギを放出することとなる。したがってヒータは常に
ねらいを定めた微小流体を捕捉して必要な加熱を行い、
所望の一定温度Tsに近い出口温度Toを低温に保った
流体が得られるという効果がある。
The constant temperature fluid supply device of this invention 1 includes a first temperature sensor that measures the inlet temperature Ts of the pipe, a heater downstream of the first temperature sensor, and a power W that increases the fluid to a desired constant temperature Ts. In a constant temperature fluid supply device comprising a power calculation output circuit that outputs output to a heater, an adjustment flow path having a volume of {circle around (2)} is interposed between the first temperature sensor and the heater, and the first temperature sensor and the The overall inherent delay time th of the heater and the flow rate Q flowing through the pipe
Regarding this, since V=Qx th is set, the power calculation output circuit applies a voltage corresponding to appropriate thermal energy to the heater based on the measurement value of the inlet temperature T of the adjustment flow path by the first temperature sensor. When outputting, even if there is a time delay th from temperature measurement to thermal energy release, the above T1
When the microfluid with a temperature of T reaches the T-degree heater, it releases thermal energy. Therefore, the heater always captures the targeted microfluid and provides the necessary heating.
This has the effect of providing a fluid whose outlet temperature To is kept low and close to the desired constant temperature Ts.

発明2の定温流体供給装置は更に、 前記ヒータの下流の出口温度Toを計測する第2の温度
センサと、前記仕事率演算出力回路の前又は後に接続さ
れる遅延回路と、設定固有遅れ時間thsと真価との設
定誤差時間thdを演算する誤差時間演算回路とを備え
、前記設定誤差時間thdを零とするように前記遅延回
路の遅延時間tbを調節するようにしたので、最終的に
Toの脈動が均一化されるという効果がある。
The constant temperature fluid supply device of invention 2 further includes: a second temperature sensor that measures the downstream outlet temperature To of the heater; a delay circuit connected before or after the power calculation output circuit; and a set specific delay time ths. and an error time calculation circuit that calculates the setting error time thd between the actual value and the true value, and the delay time tb of the delay circuit is adjusted so that the setting error time thd becomes zero. This has the effect of making the pulsation uniform.

発明4の定温流体供給装置は、Tsの計測結果によって
フィードバックが行なわれTsを正確に保つ。
In the constant temperature fluid supply device of the fourth aspect, feedback is performed based on the measurement result of Ts, and Ts is maintained accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の管路図、第2図は第1図のタイムチャ
ート図であり、第3図は従来例の管路図である。 1・・・吸込口、3・・・蒸発器、4・・・人口、5.
15a。 15b・・・温度センサ、6,16・・・ヒータ、11
・・・調整流路、12・・・ノズル、13・・・流体混
合室、14・・・電源、21・・・仕事率演算出力回路
、22・・・遅延回路、23・・・誤差時間演算回路。 第1図
FIG. 1 is a duct diagram of the embodiment, FIG. 2 is a time chart of FIG. 1, and FIG. 3 is a duct diagram of a conventional example. 1... Suction port, 3... Evaporator, 4... Population, 5.
15a. 15b... Temperature sensor, 6, 16... Heater, 11
... Adjustment channel, 12 ... Nozzle, 13 ... Fluid mixing chamber, 14 ... Power supply, 21 ... Power calculation output circuit, 22 ... Delay circuit, 23 ... Error time Arithmetic circuit. Figure 1

Claims (1)

【特許請求の範囲】 1)管路の入口温度T_1を計測する第1の温度センサ
と、その下流のヒータと、流体を所望の一定温度T_s
に上昇させる仕事率Wを演算して前記ヒータに出力する
仕事率演算出力回路とからなる定温流体供給装置におい
て、 前記第1の温度センサと前記ヒータとの間に容積Vの調
整流路を介装し、前記第1の温度センサと前記ヒータが
持つ総合の固有遅れ時間t_hと前記管路を流れる流量
Qに関し、V=Q×t_hとすることを特徴とする定温
流体供給装置。 2)請求項1記載の定温流体供給装置において、前記ヒ
ータの下流の出口温度T_oを計測する第2の温度セン
サと、前記仕事率演算出力回路の前又は後に接続される
遅延回路と、設定固有遅れ時間t_h_sと真値との設
定誤差時間t_h_dを演算する誤差時間演算回路とを
備え、前記設定誤差時間t_h_dを零とするように前
記遅延回路の遅延時間t_bを調節することを特徴とす
る定温流体供給装置。 3)請求項1又は2記載の定温流体供給装置において、
前記管路の出口に流体混合室を接続することを特徴とす
る定温流体供給装置。 4)請求項1、2又は3記載の定温流体供給装置におい
て、ヒータの下流の出口温度T_oを計測する第2の温
度センサと仕事率演算出力回路との間にフィードバック
回路を介装して前記T_oを前記T_sに調整すること
を特徴とする定温流体供給装置。
[Claims] 1) A first temperature sensor that measures the inlet temperature T_1 of the pipe, a heater downstream thereof, and a fluid at a desired constant temperature T_s.
A constant temperature fluid supply device comprising a power calculation output circuit that calculates a power W to increase the power and outputs it to the heater, wherein an adjustment flow path having a volume V is interposed between the first temperature sensor and the heater. A constant temperature fluid supply device characterized in that V=Q×t_h regarding a total inherent delay time t_h of the first temperature sensor and the heater and a flow rate Q flowing through the pipe line. 2) In the constant temperature fluid supply device according to claim 1, a second temperature sensor that measures the downstream outlet temperature T_o of the heater, a delay circuit connected before or after the power calculation output circuit, and a setting-specific A constant temperature control device comprising: an error time calculation circuit that calculates a set error time t_h_d between a delay time t_h_s and a true value, and adjusts a delay time t_b of the delay circuit so that the set error time t_h_d becomes zero. Fluid supply device. 3) In the constant temperature fluid supply device according to claim 1 or 2,
A constant temperature fluid supply device, characterized in that a fluid mixing chamber is connected to an outlet of the pipe line. 4) In the constant temperature fluid supply device according to claim 1, 2 or 3, a feedback circuit is interposed between the second temperature sensor for measuring the downstream outlet temperature T_o of the heater and the power calculation output circuit. A constant temperature fluid supply device, characterized in that T_o is adjusted to the above-mentioned T_s.
JP18985890A 1990-07-18 1990-07-18 Constant temperature fluid supply device Pending JPH0475115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18985890A JPH0475115A (en) 1990-07-18 1990-07-18 Constant temperature fluid supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18985890A JPH0475115A (en) 1990-07-18 1990-07-18 Constant temperature fluid supply device

Publications (1)

Publication Number Publication Date
JPH0475115A true JPH0475115A (en) 1992-03-10

Family

ID=16248361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18985890A Pending JPH0475115A (en) 1990-07-18 1990-07-18 Constant temperature fluid supply device

Country Status (1)

Country Link
JP (1) JPH0475115A (en)

Similar Documents

Publication Publication Date Title
CA2202227C (en) Fuel-fired modulating furnace calibration apparatus and methods
US4464932A (en) Thermal mass flowmetering
RU2020119162A (en) AEROSOL GENERATING DEVICE WITH FEEDBACK CONTROL
RU2675438C2 (en) Control method for heat transfer system and such heat transfer system
RU2007130676A (en) METHOD FOR ADJUSTING THERMAL OR CALORIMETRIC FLOW METER
CN107367960A (en) Control device, water purifier and its control method of water purifier
CN102869456B (en) The device of transmission medium and the correlation technique of adjustment and adjustment temperature under adjustable temperature
US11221150B2 (en) System and method of controlling a mixing valve of a heating system
US10480826B2 (en) System and method of controlling a mixing valve of a heating system
TWI408318B (en) Water heater water temperature control method and device
RU2693538C2 (en) Apparatus and method for mixing combustible gas and combustion air, provided with hot water plant equipped with corresponding heat mass flow sensor, and method for measuring mass flow rate of gas stream
JPH0475115A (en) Constant temperature fluid supply device
GB2495905A (en) Water heating system arranged to heat mains pressure water using a thermal store and a heat exchanger
EP3757528B1 (en) Flow rate measuring apparatus
CN112672664A (en) Method for controlling hair care appliance
JP4454877B2 (en) Steam dryness or wetness control device
JPH07180904A (en) Hot water-supplying apparatus
US7168851B2 (en) Apparatus and method for measuring heat dissipation
JPH04339218A (en) Thermal flowmeter
JPH056099B2 (en)
JP3932078B2 (en) Ice filling rate measuring device
RU2020125676A (en) AEROSOL GENERATING DEVICE AND CONTAINING MULTIPLE SENSORS
Rumyantsev et al. A heat thermistor gas microflowmeter
JP2016008776A (en) Hot water supply device
JP2021056737A (en) Mass flow controller, fluid control device, and semiconductor manufacturing apparatus