JPH0474996B2 - - Google Patents

Info

Publication number
JPH0474996B2
JPH0474996B2 JP60019548A JP1954885A JPH0474996B2 JP H0474996 B2 JPH0474996 B2 JP H0474996B2 JP 60019548 A JP60019548 A JP 60019548A JP 1954885 A JP1954885 A JP 1954885A JP H0474996 B2 JPH0474996 B2 JP H0474996B2
Authority
JP
Japan
Prior art keywords
column
ethanol
steam
purification
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019548A
Other languages
Japanese (ja)
Other versions
JPS61177978A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60019548A priority Critical patent/JPS61177978A/en
Publication of JPS61177978A publication Critical patent/JPS61177978A/en
Publication of JPH0474996B2 publication Critical patent/JPH0474996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はエタノール精製装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an ethanol purification device.

発酵もろみや粗留アルコールから種々の有機物
や無機物の固形分を除去し、更に水、フーゼル
油、アルデヒド類、メタノール、その他の微量不
純物を分離して精製エタノールを得るにエタノー
ル精製装置が使用される。そして、かかるエタノ
ール精製装置の代表例として、醪塔、濃縮塔、第
一及び第二抽出等、精留塔、精製塔、不純物処理
塔等、多数の蒸留塔から構成されたアロスパス方
式やスーパーアロスパス方式のものがあることは
よく知られている(醸酵協会発刊の「アルコール
ハンドブツク」、朝倉書店発刊の「蒸留工学ハン
ドブツク」等)。
Ethanol purification equipment is used to remove various organic and inorganic solids from fermentation mash and crude distilled alcohol, and further separate water, fusel oil, aldehydes, methanol, and other trace impurities to obtain purified ethanol. . Typical examples of such ethanol purification equipment include the Allospass method and the Super Allos system, which are composed of a number of distillation columns, such as a mortar column, a concentration column, first and second extraction columns, a rectification column, a purification column, an impurity treatment column, etc. It is well known that there are pass-based methods (``Alcohol Handbook'' published by the Fermentation Association, ``Distillation Engineering Handbook'' published by Asakura Shoten, etc.).

ところで、上記エタノール精製装置は、例えば
96V%の精製エタノール1klを得るに、廃糖密の
発酵醪からでは約4.5〜5.0トンの水蒸気を要し、
また粗留アルコールからでは約2.0〜4.0トンの水
蒸気を要するという、エネルギー多消費型の装置
である。そこで古くから、該装置に組み込まれて
いる各蒸留塔の段数増加や還流比低減等の一般的
対策によつてその省エネルギー化が図られてき
た。
By the way, the above-mentioned ethanol purification equipment, for example,
To obtain 1kl of 96V% purified ethanol, it takes about 4.5 to 5.0 tons of steam from waste molasses fermentation mash.
It is also an energy-intensive device, requiring approximately 2.0 to 4.0 tons of steam from crude distilled alcohol. Therefore, for a long time, efforts have been made to save energy by taking general measures such as increasing the number of stages in each distillation column built into the apparatus and reducing the reflux ratio.

しかしながら実情は、そのような一般的対策は
ほぼ完了しており、当業界では、一段と省エネル
ギー化を図り得る抜本的対策を施したエタノール
精製装置の出現が強く要請されているのである。
However, in reality, such general measures have almost been completed, and there is a strong demand in the industry for the emergence of ethanol purification equipment that takes drastic measures that can further save energy.

本発明は、上記要請に応えるエタノール精製装
置に関するものである。
The present invention relates to an ethanol purification device that meets the above requirements.

<従来の技術、その問題点> 従来、エタノール精製装置には、前述の如き一
般的対策の他に、次のような種々の省エネルギー
化対策が提案されているが、それぞれに問題点が
ある。
<Prior art and its problems> Conventionally, in addition to the general measures described above, various energy saving measures have been proposed for ethanol purification equipment, such as the following, but each has its own problems.

先ず、二重又は多重効用方式がある(実公昭57
−2002)。これは高圧側の蒸留塔塔頂エタノール
含有蒸気を低圧側の蒸留塔の加熱源として利用す
る方式である。しかしこの方式には、加圧操作の
蒸留塔においてエタノール/水の気液平衡が変わ
り、その共沸点が移動して留出液中のエタノール
濃度が薄くなり、フーゼル油等の分離も悪くなる
問題点がある。また低圧操作の蒸留塔においては
圧損や低温の冷却水確保等も含めて、塔径や塔高
を大きくする塔、相応する蒸留設備それ自体を新
たに設けなければならない問題点がある。
First, there is the double or multiple effect method (Jikko Kosho 57
−2002). This is a method in which the ethanol-containing vapor at the top of the distillation column on the high pressure side is used as a heating source for the distillation column on the low pressure side. However, this method has the problem that the vapor-liquid equilibrium of ethanol/water changes in the pressurized distillation column, the azeotropic point shifts, the ethanol concentration in the distillate becomes diluted, and the separation of fusel oil etc. becomes poor. There is a point. In addition, in a distillation column operated at low pressure, there is a problem that a column with a larger column diameter or height and corresponding distillation equipment itself must be newly installed in order to prevent pressure loss and ensure low-temperature cooling water.

次に、MVR(メカニカル ベーパー リコン
プレツシヨン)方式がある(特公昭54−35877)。
これには例えば、蒸留塔の塔頂エタノール含有浄
気を直接圧縮機で加圧昇温し、これを蒸留塔塔底
液と間接的に熱交換させる方式である。しかしこ
の方式には、塔頂と塔底とにおける双方の温度差
が約15℃以上であると二段圧縮が必要となつてそ
の分だけ非経済的であり、エタノール含有蒸気の
軸封部からの漏洩や逆に汚染等の問題点がある。
Next, there is the MVR (mechanical vapor recompression) method (Special Publication No. 1987-35877).
For example, this method involves directly pressurizing and heating the ethanol-containing clean air at the top of the distillation column using a compressor, and then indirectly exchanging heat with the bottom liquid of the distillation column. However, this method requires two-stage compression when the temperature difference between the top and bottom of the column is about 15°C or more, making it uneconomical. There are problems such as leakage and contamination.

更に、圧縮式ヒートポンプ方式がある。しかし
この方式には、媒体にフロンの如き有機溶媒を加
圧状態で使用するため、安全上の危惧を避けられ
ない問題点がある。
Furthermore, there is a compression heat pump method. However, this method has the problem of unavoidable safety concerns because it uses an organic solvent such as chlorofluorocarbon under pressure as a medium.

以上の他に、蒸気発生吸収ヒートポンプ方式が
ある(雑誌「化学装置」、1984年8月号)。この方
式では第種が使用される。しかし、従来のこの
方式は、各蒸留塔の塔頂において該塔頂より排出
されるエタノール含有蒸気から直接蒸気発生吸収
ヒートポンプで熱回収する方式であるため、蒸気
発生吸収ヒートポンプそれ自体は相応に優れた性
能を有するも、それぞれの蒸気発生吸収ヒートポ
ンプにおける冷却水の確保、蒸発器と再生器との
間の熱バランス対策、熱媒体である臭化リチウム
による腐蝕やそれによる汚染等、種々の問題点が
ある。
In addition to the above, there is a steam generation absorption heat pump method (magazine ``Kagakusei'', August 1984 issue). In this method, the first type is used. However, in this conventional method, heat is directly recovered from the ethanol-containing vapor discharged from the top of each distillation column using a steam generation/absorption heat pump, so the steam generation/absorption heat pump itself is relatively superior. However, there are various problems such as securing cooling water for each steam generation absorption heat pump, heat balance measures between the evaporator and regenerator, corrosion caused by lithium bromide as a heat medium, and contamination caused by it. There is.

そして特に、以上例示した従来の方式はいずれ
も、1本の蒸留塔に1系統のシステムで対応する
のが原側であるため、エタノール精製装置の如き
多数の蒸留塔それぞれに該システムを施すことに
は、経済的な不利や装置全体の著しい複雑化の点
で、限界がある。
In particular, in all of the conventional systems exemplified above, one system is used for one distillation column at the source, so it is difficult to apply the system to each of a large number of distillation columns such as an ethanol purification device. However, there are limitations in terms of economic disadvantage and significant complexity of the overall device.

<発明が解決しようとする問題点、 その解決手段> 本発明は、叙上の如き従来方式の問題点を解決
し、前述の要請に応えるすなわち一段と省エネル
ギー化を図り得るエタノール精製装置を提供する
ものである。
<Problems to be Solved by the Invention and Means for Solving the Problems> The present invention solves the problems of the conventional method as described above, and provides an ethanol purification apparatus that can meet the above-mentioned demands, that is, can achieve further energy savings. It is.

しかして本発明は、前述の蒸気発生吸収ヒート
ポンプを好適活用する装置に係り、アロスパス方
式又はスーパーアロスパス方式のエタノール精製
装置において、濃縮塔、精留塔及び精製塔等の蒸
留等から選ばれる2本以上の蒸留塔の各塔頂より
排出されるエタノール含有蒸気を各塔頂で減圧下
の水と間接的に熱交換し、熱交換により発生した
減圧水蒸気を集合して、集合した減圧水蒸気から
蒸気発生吸収ヒートポンプ(第種)で熱回収し
たものを精製装置の熱源に利用するようにして成
るエタノール精製装置に係る。
Therefore, the present invention relates to an apparatus that preferably utilizes the above-mentioned steam generation absorption heat pump, and is an ethanol purification apparatus of the Allospass type or the Super Allospass type, in which a distillation column is selected from a concentration column, a rectification column, a purification column, etc. The ethanol-containing vapor discharged from the top of each of the distillation columns is indirectly heat-exchanged with water under reduced pressure at the top of each column, and the reduced-pressure steam generated by the heat exchange is collected. This invention relates to an ethanol purification device that utilizes heat recovered by a steam generation absorption heat pump (class type) as a heat source for the purification device.

以下、同図に基づいて、従来の代表例であるス
ーパーアロスパス方式と比較しつつ、本発明の構
成を更に詳細に説明する。
Hereinafter, based on the same figure, the configuration of the present invention will be explained in more detail while comparing it with a conventional typical example of the super allopath system.

第1図は従来のスーパーアロスパス方式による
エタノール精製装置を例示する全体図である。醪
塔A、初留塔A1、濃縮塔A2、温水塔F、第一抽
出塔D、第二抽出塔D1、精留塔B、脱酒精塔B1
精製塔C、不純物処理塔Gが周知の通りに連結さ
れていて、例えば初留塔A1へ供給された原料で
ある発酵醪が上記のような各蒸留塔を順次経由し
て次第に精製され、最終的に精製塔Cから精製エ
タノールを回収する構成となつている。図面の場
合、醪塔A、温水塔F、第一抽出塔D、第二抽出
塔D1、脱酒精塔B1及び不純物処理塔Gのそれぞ
れ塔底から加熱源である水蒸気が供給されている
(図中、S1〜S6)。そして、濃縮塔A2、第二抽出
塔D1、精留塔B、精製塔C及び不純物処理塔G
の各塔頂には凝縮器11〜15が取付けられてお
り、これらの各塔頂から排出されるエタノール含
有蒸気を冷却水と間接的に熱交換して適宜凝縮し
ている。
FIG. 1 is an overall view illustrating a conventional ethanol purification apparatus using the super allopath method. Moromi tower A, initial distillation tower A 1 , concentration tower A 2 , hot water tower F, first extraction tower D, second extraction tower D 1 , rectification tower B, de-alcoholic distillation tower B 1 ,
The purification column C and the impurity treatment column G are connected as is well known, and for example, the fermented mash, which is the raw material supplied to the initial distillation column A1 , passes through each of the above-mentioned distillation columns in turn and is gradually purified. The structure is such that purified ethanol is finally recovered from the purification column C. In the case of the drawing, water vapor, which is a heating source, is supplied from the bottom of each of the mortar tower A, hot water tower F, first extraction tower D, second extraction tower D 1 , de-alcoholizing tower B 1 and impurity treatment tower G. (S 1 to S 6 in the figure). Then, a concentration column A 2 , a second extraction column D 1 , a rectification column B, a purification column C, and an impurity treatment column G
Condensers 11 to 15 are attached to the top of each of the towers, and the ethanol-containing vapor discharged from the top of each of these towers is appropriately condensed by indirectly exchanging heat with cooling water.

従来のスーパーアロスパス方式によると上記各
塔頂から排出されるエタノール含有蒸気の保有熱
が充分に活用されておらず、またこれを活用せん
とする従来提案の方式にはそれぞれに問題点があ
ることは前述した通りである。具体的に例えば、
従来の蒸気発生吸収ヒートポンプ方式で濃縮塔
A2、精留塔B、精製塔C及び不純物処理塔Gの
四つの蒸留塔塔頂から排出されるエタノール含有
蒸気の保有熱を熱回収する場合、各塔頂にそれぞ
れ蒸気発生吸収ヒートポンプを取り付け、これら
をその性質上各々適応する独立条件で運転し、し
かもそれぞれに多量の冷却水を確保しつつ、加え
て媒体である臭化リチウムによる腐蝕やそれによ
るエタノールの汚染といつた危惧が避けられない
のである。
According to the conventional super allos pass method, the retained heat of the ethanol-containing steam discharged from the top of each tower is not fully utilized, and the previously proposed methods that attempt to utilize this have their own problems. This is as stated above. Specifically, for example,
Concentration tower using conventional steam generation absorption heat pump method
When recovering the heat retained in the ethanol-containing vapor discharged from the tops of four distillation columns: A 2 , rectification column B, purification column C, and impurity treatment column G, a steam generation absorption heat pump is installed at the top of each column. By operating these systems under independent conditions that suit each of them due to their nature, while ensuring a large amount of cooling water for each, it is also possible to avoid corrosion caused by the medium lithium bromide and the risk of contamination of the ethanol. There isn't.

本発明は、蒸気発生吸収ヒートポンプを好適活
用することにより、従来の問題点を解決しつつ、
上述の保有熱を各蒸留塔の加熱源として(第1図
の場合にはS1〜S6として)有効利用するものであ
る。
The present invention solves the conventional problems by suitably utilizing a steam generation absorption heat pump, and
The above-mentioned retained heat is effectively used as a heating source for each distillation column (in the case of FIG. 1, as S 1 to S 6 ).

第2図〜第3図(両図を併せる)は本発明の一
実施例を示す全体図である。醪塔A′、初留塔
A1′、濃縮塔A2′、温水塔F′、第一抽出塔D′、第
二抽出塔D1′、精留塔B′脱酒精塔B1′精製塔C′、
不純物処理塔G′の相互配置それ自体は第1図の
場合と同じであるが、本実施例の場合、エタノー
ル精製装置、通常操作時において、濃縮塔A2′、
精留塔B′、精製塔C′及び不純物処理塔G′の各塔
頂から排出されるエタノール含有蒸気の温度が75
〜79℃程度というほぼ同じ一定の範囲内であるこ
とに着目し、それらの保有熱を1系統の蒸気発生
吸収ヒートポンプ(第種)で一括して回収する
構成となつている。
FIGS. 2 and 3 (both figures taken together) are overall views showing one embodiment of the present invention. Morotou A′, Hatsuruto
A 1 ′, concentration column A 2 ′, hot water column F ′, first extraction column D ′, second extraction column D 1 ′, rectification column B ′, de-alcoholization column B 1 ′, purification column C′,
The mutual arrangement of the impurity treatment towers G' is the same as that shown in FIG .
The temperature of the ethanol-containing vapor discharged from the top of each rectification column B', purification column C', and impurity treatment column G' is 75
Focusing on the fact that these temperatures are within the same fixed range of approximately 79°C, the structure is such that the retained heat is recovered all at once by a single system of steam generation and absorption heat pump (type 1).

すなわち、濃縮塔A2′、精留塔B′、精製塔C′及
び不純物処理塔G′の各塔頂には、冷却側が耐減
圧構造にされた凝縮器21〜24が取付けられて
おり、該冷却側の出口配管31は合流して耐減圧
構造の気液分離タンク41へ接続されている。こ
の気液分離タンク41の上部からは減圧水蒸気用
配管32が蒸気発生吸収ヒートポンプ51の蒸発
器51a及び再生器51bへと接続されていて、
これらの出口配管33は水供給タンク42へ接続
されており、この水供給タンク42の上部には真
空ポンプ61が連結されている。また、前記蒸気
発生吸収ヒートポンプ51の凝縮器51cには冷
却水が通水されていて、吸収器51dにはポンプ
62を介し補給水が通水されており、吸収器51
dの出口配管34は別の気液分離タンク43へ接
続されている。この気液分離タンク43の下部か
らは分離水用配管35がポンプ62へと接続さ
れ、上部からは水蒸気用配管36が図示しないス
チームインジエクターを介しボイラー用配管37
と合流して水蒸気供給タンク44へと接続されて
おり、この水蒸気供給タンク44から水蒸気が前
述した各蒸留塔の加熱源(図中、S1′〜S6′)とし
て利用される構成である。一方、前記水供給タン
ク42には、気液分離タンク41からの分離水用
配管37が接続され、補給水も注水されるように
なつており、その下部からポンプ63を介し合流
の入口配管38が延設されていて、この入口配管
38は前記凝縮器21〜24へと分配されてい
る。
That is, condensers 21 to 24 whose cooling sides have a vacuum-resistant structure are installed at the top of each of the concentration column A 2 ′, rectification column B′, purification column C′, and impurity treatment column G′. The outlet pipes 31 on the cooling side merge and are connected to a gas-liquid separation tank 41 having a vacuum-resistant structure. From the upper part of this gas-liquid separation tank 41, a reduced pressure steam pipe 32 is connected to an evaporator 51a and a regenerator 51b of a steam generation/absorption heat pump 51.
These outlet pipes 33 are connected to a water supply tank 42, and a vacuum pump 61 is connected to the upper part of this water supply tank 42. Further, cooling water is passed through the condenser 51c of the steam generation/absorption heat pump 51, and make-up water is passed through the absorber 51d via a pump 62.
The outlet pipe 34 of d is connected to another gas-liquid separation tank 43. A separated water pipe 35 is connected to a pump 62 from the lower part of the gas-liquid separation tank 43, and a steam pipe 36 is connected from the upper part to a boiler pipe 37 via a steam injector (not shown).
and is connected to a steam supply tank 44, and the steam from this steam supply tank 44 is used as a heating source for each of the above-mentioned distillation columns ( S1 ' to S6 ' in the figure). . On the other hand, a separated water pipe 37 from the gas-liquid separation tank 41 is connected to the water supply tank 42, and make-up water is also injected into the water supply tank 42, and a confluence inlet pipe 38 is connected to the water supply tank 42 via a pump 63 from the bottom thereof. is extended, and this inlet pipe 38 is distributed to the condensers 21 to 24.

本発明において使用される蒸気発生吸収ヒート
ポンプ51は既に市販されているものでもよく
(例えば、三洋電機特機社製)、また図示を省略し
たが、第二抽出塔D1′の塔頂から排出されるやや
低温(通常操作時において約67℃)のエタノール
含有蒸気に対しても、例えば小型のターボ圧縮機
を付設介在させることによつて同様に熱回収し、
また醪塔A′や脱酒精塔B1′の塔底からの排水と熱
交換して予熱した温水を水供給タンク42へ補給
すれば、本発明は一層有効となり、かくして余分
な熱回収利用ができるようになる。
The steam generation absorption heat pump 51 used in the present invention may be one already commercially available (for example, manufactured by Sanyo Electric Tokki Co. , Ltd.). Similarly, heat can be recovered from ethanol-containing steam at a slightly lower temperature (approximately 67°C during normal operation), for example by installing a small turbo compressor.
Furthermore, if the water supply tank 42 is replenished with hot water that has been preheated by heat exchange with the waste water from the bottom of the moromi tower A' or the distillation tower B1 ', the present invention will become even more effective, and in this way, excess heat recovery and utilization can be made. become able to.

<作用> 次に本発明の作用を第2図〜第3図に示した実
施例に基づいて説明する。
<Function> Next, the function of the present invention will be explained based on the embodiment shown in FIGS. 2 and 3.

エタノール精製装置の始動時、従来と同様にボ
イラーを稼働してその水蒸気により各蒸留塔を加
熱し、各蒸留塔の塔頂からエタノール含有蒸気が
発生するようになつた段階で蒸気発生吸収ヒート
ポンプ51や真空ポンプ61等を作動させる。
When starting up the ethanol purification equipment, the boiler is operated in the same way as in the past, and each distillation column is heated by the steam, and when ethanol-containing steam is generated from the top of each distillation column, the steam generation absorption heat pump 51 is activated. , the vacuum pump 61, etc. are operated.

そして通常時、真空ポンプ61によつて気液分
離タンク41内を約200Torrの減圧下に維持する
と、この減圧下において水の沸点は約69℃とな
り、一方各蒸留塔の塔頂から排出されるエタノー
ル含有蒸気は75〜79℃であるから、真空ポンプ6
1の吸引によつて水供給タンク42の下部から各
凝縮器21〜24へ導かれた水はそれぞれのエタ
ノール含有蒸気と間接的に熱交換して該エタノー
ル含有蒸気を凝縮させつつ自体は減圧水蒸気にな
る。この減圧水蒸気は気液分離タンク41へ吸引
集合され、ここで同伴することのある未蒸発水と
分離させて、その上部から更に吸引されて蒸気発
生吸収ヒートポンプ51へ至る。この蒸気発生吸
収ヒートポンプ51で減圧水蒸気の保有熱の約半
量が回収され、昇温された水蒸気(100℃程度)
に変換されて、この昇温された水蒸気が気液分離
タンク43及び水蒸気供給タンク44を介して各
蒸留塔へと分配されるのである。したがつてこの
分配だけ、ボイラーによる水蒸気の供給を削減で
きる(削減量は水蒸気換算で約45〜50%)。そし
てこの場合、水蒸気供給タンク44を蓄熱タンク
兼用とすれば、始動時に便宜を供しつつボイラー
自体をも著しく小型化できる。尚、水供給タンク
42へは、気液分離タンク41で分離された水、
蒸気発生吸収ヒートポンプ51を経由して減圧水
蒸気から凝縮した水及び補給水が注水されるが、
これらの水は適宜、ポンプ63を介して凝縮器2
1〜24へと分配されることはいうまでもない。
Under normal conditions, when the inside of the gas-liquid separation tank 41 is maintained under a reduced pressure of approximately 200 Torr by the vacuum pump 61, the boiling point of water is approximately 69°C under this reduced pressure, while water is discharged from the top of each distillation column. Since the temperature of the ethanol-containing vapor is 75-79℃, the vacuum pump 6
The water led from the lower part of the water supply tank 42 to each of the condensers 21 to 24 by the suction of 1 indirectly exchanges heat with the respective ethanol-containing steam to condense the ethanol-containing steam while itself becoming reduced-pressure steam. become. This reduced-pressure steam is collected by suction into the gas-liquid separation tank 41, where it is separated from unevaporated water that may be entrained therein, and further suctioned from above to reach the steam generation/absorption heat pump 51. Approximately half of the heat retained in the reduced pressure steam is recovered by this steam generation/absorption heat pump 51, and the temperature of the steam is raised (approximately 100°C).
This heated steam is distributed to each distillation column via the gas-liquid separation tank 43 and the steam supply tank 44. Therefore, this distribution alone can reduce the supply of steam by the boiler (reduction amount is about 45-50% in steam equivalent). In this case, if the steam supply tank 44 is also used as a heat storage tank, the boiler itself can be significantly downsized while providing convenience at startup. The water separated in the gas-liquid separation tank 41 is supplied to the water supply tank 42.
Water condensed from reduced pressure steam and make-up water are injected via the steam generation absorption heat pump 51.
These waters are supplied to the condenser 2 via the pump 63 as appropriate.
Needless to say, the numbers are distributed from 1 to 24.

<発明の効果> 以上説明した通りであるから、本発明には要約
すると次の如き顕著な効果がある。
<Effects of the Invention> As explained above, the present invention has the following remarkable effects in summary.

1 一段と省エネルギー化を図ることができ、そ
の分だけボイラーを稼働させる場合の公害対策
が軽減でき、また小型ボイラーを使用できる。
1. It is possible to further save energy, reduce the pollution measures required when operating a boiler, and use a small boiler.

2 作動媒体が水であるため、腐触、漏洩、汚染
等の問題が全くない。
2. Since the working medium is water, there are no problems such as corrosion, leakage, or contamination.

3 蒸留塔を加圧又は減圧操作するわけではない
ので既存設備が利用できる。
3. Existing equipment can be used because the distillation column is not pressurized or depressurized.

4 2本以上の蒸留塔に1系統で対処し得るた
め、装置全体をむやみに複雑化することがな
く、また経済的である。
4. Since one system can handle two or more distillation columns, the entire device is not unnecessarily complicated and is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスーパーアロスパス方式による
エタノール精製装置を例示する全体図、第2図〜
第3図は本発明の一実施例を示す全体図である。 11〜15,21〜24……凝縮器、41,4
3……気液分離タンク、42……水供給タンク、
44……水蒸気供給タンク、51……蒸気発生吸
収ヒートポンプ、61……真空ポンプ、62,6
3……ポンプ、A,A′……醪塔、A1,A1′……初
留塔、A2,A2′……濃縮塔、F,F′……温水塔、
D,D′……第一抽出塔、D1,D1′……第二抽出
塔、B,B′……精留塔、C,C′……精製塔、G,
G′……不純物処理塔。
Figure 1 is an overall diagram illustrating a conventional ethanol purification system using the Super Allospass method, and Figures 2-
FIG. 3 is an overall view showing one embodiment of the present invention. 11-15, 21-24... Condenser, 41, 4
3... Gas-liquid separation tank, 42... Water supply tank,
44...Steam supply tank, 51...Steam generation absorption heat pump, 61...Vacuum pump, 62,6
3...pump, A, A'...mold tower, A1 , A1 '...first distillation tower, A2 , A2 '...concentration tower, F, F'...hot water tower,
D, D'... First extraction column, D 1 , D 1 '... Second extraction column, B, B'... Rectification column, C, C'... Purification column, G,
G'... Impurity treatment tower.

Claims (1)

【特許請求の範囲】[Claims] 1 アロスパス方式又はスーパーアロスパス方式
のエタノール精製装置において、濃縮塔、精留塔
及び精製塔等の蒸留塔から選ばれる2本以上の蒸
留塔の各塔頂より排出されるエタノール含有蒸気
を各塔頂で減圧下の水と間接的に熱交換し、熱交
換により発生した減圧水蒸気を集合して、集合し
た減圧水蒸気から蒸気発生吸収ヒートポンプ(第
種)で熱回収したものを精製装置の熱源に利用
するようにして成るエタノール精製装置。
1. In an Allospass type or Super Allospass type ethanol purification device, ethanol-containing vapor discharged from the top of two or more distillation columns selected from a concentration column, a rectification column, a purification column, etc. is collected in each column. Heat is exchanged indirectly with water under reduced pressure at the top, the reduced pressure steam generated by the heat exchange is collected, and heat is recovered from the collected reduced pressure steam using a steam generation absorption heat pump (type), which is used as the heat source for the purification equipment. Ethanol purification equipment that can be used.
JP60019548A 1985-02-04 1985-02-04 Apparatus for purifying ethanol Granted JPS61177978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019548A JPS61177978A (en) 1985-02-04 1985-02-04 Apparatus for purifying ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019548A JPS61177978A (en) 1985-02-04 1985-02-04 Apparatus for purifying ethanol

Publications (2)

Publication Number Publication Date
JPS61177978A JPS61177978A (en) 1986-08-09
JPH0474996B2 true JPH0474996B2 (en) 1992-11-27

Family

ID=12002365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019548A Granted JPS61177978A (en) 1985-02-04 1985-02-04 Apparatus for purifying ethanol

Country Status (1)

Country Link
JP (1) JPS61177978A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504044A (en) * 2011-09-26 2012-06-20 三门峡富元果胶工业有限公司 Method and device for recovering ethanol in pectin production process
CN104016833B (en) * 2014-06-10 2016-01-20 中石化上海工程有限公司 The processing method of the integrated rectifying ethanol of three tower heat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998025A (en) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> Preparation and device for anhydrous ethanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998025A (en) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> Preparation and device for anhydrous ethanol

Also Published As

Publication number Publication date
JPS61177978A (en) 1986-08-09

Similar Documents

Publication Publication Date Title
KR930010596B1 (en) Enhanced recovery of argon from cryogenic air separation cycles
JPH0755333A (en) Very low temperature rectification system for low-pressure operation
TW512218B (en) Method and apparatus for producing nitrogen
JP2011050860A (en) Anhydrization method of hydrated organic substance
EP0059748A1 (en) Reverse absorption heat pump augmented distillation process.
CN1058468A (en) Cryognic air separation system with dual feed air side condensers
JPH10118406A (en) Distillation plant and usage of distillation plant
CN108546243A (en) A kind of lithium battery production double tower NMP recycling purification systems and its recycling method of purification
CN109908616A (en) The energy-saving distillation system and its distillating method of carbon monoxide ethyl alcohol
CN110105216A (en) A kind of method and device from backheat rectifying
CN109876485A (en) Acetic acid recovery is from backheat rectifier unit and method
JPH0474996B2 (en)
JPS597313B2 (en) Alcohol distillation equipment
CN107663474A (en) Biodiesel distillation system and technique
JPH057990B2 (en)
CN110483249A (en) A kind of six tower quadruple effect rectificating method of single column steam drive type methanol of not by-product fusel oil
CN205323257U (en) Ethanol differential pressure distillation plant with flash distillation
CN111574374B (en) Separation method and separation equipment for methyl methacrylate crude product
JPS6337622B2 (en)
CN207667179U (en) A kind of system for ethyl alcohol recycling
JP2017159220A (en) Separation method of liquid mixture
JPS59196833A (en) Method and apparatus for producing anhydrous methanol
CN206631440U (en) A kind of Tianna solution dewatering system
JPH0254811B2 (en)
CN214680106U (en) High-purity anhydrous alcohol production system