JPH0474959A - Measuring method of acidity of neutral sample - Google Patents

Measuring method of acidity of neutral sample

Info

Publication number
JPH0474959A
JPH0474959A JP2188423A JP18842390A JPH0474959A JP H0474959 A JPH0474959 A JP H0474959A JP 2188423 A JP2188423 A JP 2188423A JP 18842390 A JP18842390 A JP 18842390A JP H0474959 A JPH0474959 A JP H0474959A
Authority
JP
Japan
Prior art keywords
sample
acidity
value
measuring
standard solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2188423A
Other languages
Japanese (ja)
Inventor
Mikio Kanzaki
神崎 幹雄
Toyohiko Doi
豊彦 土井
Hiroshi Nakanuma
浩 中沼
Miyuki Shibuya
渋谷 美雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2188423A priority Critical patent/JPH0474959A/en
Publication of JPH0474959A publication Critical patent/JPH0474959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To attain a measuring method of acidity of a neutral sample which enables attainment of a highly precise result in a short time and can be used also for automatic measurement in an in-line manner, by a method wherein a working curve is prepared beforehand, a pH value obtained in regard to an analysis sample is applied thereto and the acidity is read out. CONSTITUTION:After a sample to be measured is taken in a sampling valve 3 from a transfer piping 1 by a pump 2, the sampling valve 3 is inverted, ion- exchange water in a tank 5 is taken partially in the sampling valve 3 by a volume-regulating pump 4, and the sample in the sampling valve 3 is washed away into a measuring tank 6 by this ion-exchange water. A standard solution of sodium hydroxide in a tank 7 is taken partially by a volume-regulating pump 8 and injected into the measuring tank 6 and pH is measured by a pH sensor 10 with the solution agitated by an agitator 9. A measuring signal thus obtained is processed successively in a signal processing device 11, and a value at the time when the pH is maximum is read and converted into acidity by a working curve stored in the signal processing device 11.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、中性試料の酸度測定法に関するものである
。詳しくは、この発明は、天然原料や有機物を原料とし
た食品、飼料、医薬品等の製造における原料、半製品ま
たは製品等の緩衝能を有しほぼ中性付近のpHを有する
試料の酸度測定法に関するものである。さらに詳しくは
、この発明は、アミノ酸関連物質(ペプチド、蛋白質類
を含む)核酸関連物質、カルボン酸類(オキシ酸等の1
検体を含む)その他のpH*衝能を有する物質を含有す
る中性試料の酸度測定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring acidity of a neutral sample. Specifically, the present invention provides a method for measuring the acidity of samples that have a buffering capacity and a pH around neutrality, such as raw materials, semi-finished products, or finished products used in the production of foods, feeds, pharmaceuticals, etc. made from natural raw materials or organic materials. It is related to. More specifically, this invention covers amino acid-related substances (including peptides and proteins), nucleic acid-related substances, carboxylic acids (oxyacids, etc.)
This invention relates to a method for measuring the acidity of neutral samples containing other substances with pH*-adjusting ability (including specimens).

(従来の技術とその課題) 原料、半製品または製品の酸度(「アルカリ消費物質の
量jと表現することもできる)は、製品の品質や1稈の
状態に大きな影響を与えることが多い、特に中性付近の
pHを有する食品、飼料、医薬品等については、その酸
度の微細な差が製品の品質や工程の状態に大きな影響を
与えることから、工業的製造にあたっては、その原料、
半製品または製品の酸度を正確にかつ迅速に測定しなけ
ればならない。
(Conventional technology and its issues) The acidity of raw materials, semi-finished products, or finished products (which can also be expressed as the amount of alkali-consuming substances j) often has a large effect on the quality of the product and the condition of a culm. In particular, for foods, feeds, pharmaceuticals, etc. that have a pH near neutrality, minute differences in acidity have a large impact on product quality and process conditions.
The acidity of semi-finished products or finished products must be measured accurately and quickly.

従来より酸度の測定法としては、たとえば試料を一定量
秤取し、(あるいは一定量秤取して水に溶解し)、アル
カリ標準溶液で中和滴定し、アルカリ標準溶液の消費量
を直接読み取るのが一般的である。この場合中和当量点
(終点)に達したか否かは、指示薬を添加しpHの変化
による発色の変化の目視判断、比色計による測定、また
はpH$極によるpHの測定等が、多く用いられている
。しかしながら、これら従来法の問題点の一つは分析に
要する時間が長いことであり、手作業による分析では勿
論、自動化した分析機器による測定でも1試料の分析全
行程(試料の秤取、滴定、計算)に少なくとも数分間の
時間を要する。他の問題点は、正確な中和当量点の判断
が難しく滴定に高度の熟練を要することである。たとえ
ば、指示薬として、公定法でしばしば用いられているフ
ェノールフタレインを用いた場合、その変色域がDH8
,0〜9.8と巾がひろく、試料がpHI衝能含有する
物質を含むときはアルカリ添加によるpHの変化が緩慢
であるために、特にこの変色域の巾が広いことが判断の
支障となる。また、pH電極を用いて中和当量点を測定
する場合も、試料濃度が比較的希薄でかつアルカリの添
加に対して緩衝作用を有する物質を含まない場合は良好
な結果を得ることができるが、この発明が分析の対象と
するような天然物や有機化合物を含む試料、即ち、pH
[含有を有する物質を含む試料に対しては、アルカリ添
加によるDHの変化が緩慢であるため、良好な結果(精
度の高い分析値)が得難い、中性試料に対しては特に精
度が低下する。
Conventional methods for measuring acidity include, for example, weighing out a certain amount of a sample (or weighing out a certain amount and dissolving it in water), performing neutralization titration with an alkaline standard solution, and directly reading the consumption amount of the alkaline standard solution. is common. In this case, whether or not the neutralization equivalent point (end point) has been reached can be determined by adding an indicator and visually determining the change in color due to the change in pH, by measuring with a colorimeter, or by measuring the pH with a pH electrode. It is used. However, one of the problems with these conventional methods is that the analysis takes a long time, and even in manual analysis as well as measurement using automated analytical equipment, the entire analysis process of one sample (sample weighing, titration, (calculation) takes at least several minutes. Another problem is that it is difficult to accurately determine the neutralization equivalent point and requires a high degree of skill in titration. For example, when phenolphthalein, which is often used in official methods, is used as an indicator, the color change range is DH8
, 0 to 9.8, and when the sample contains a substance with pHI adsorption capacity, the pH change due to alkali addition is slow, so the wide range of this discoloration can be a hindrance to judgment. Become. Also, when measuring the neutralization equivalent point using a pH electrode, good results can be obtained if the sample concentration is relatively dilute and does not contain a substance that has a buffering effect against the addition of alkali. , samples containing natural products and organic compounds that are the subject of analysis in this invention, i.e., pH
[For samples containing substances that contain substances, the change in DH due to alkali addition is slow, making it difficult to obtain good results (highly accurate analytical values), and the accuracy is particularly low for neutral samples. .

ところで、「酸性試料」の酸度測定に関しては、一定量
のアルカリ液を添加後にpHを測定し、pH値から酸の
強さを測定する方法が特開昭63−16263号公報に
開示されている。これは望ましい酸度(目標とする酸度
)を有する標準試料に一定量のアルカリ液を加えた場合
に示すpH値をメルクマールとするものであって、分析
すべき試料にも同量のアルカリ液を加えて、それが示す
pH値を測定し、目標とする酸度を有する標準試料が示
すpH値と比較して分析試料が目標とする酸度であるか
否かを判定するものである。また簡易法として、試料に
その当量に相当するアルカリまたは酸を加えた後のpH
を測定して酸度またはアルカリ度を測定する方法が特開
平1−262462号公報に開示されている。これは当
量点付近における急激なl)Hの変化を利用したもので
あり、pHM衝能含有する物質を含まない強酸、強アル
カリに限って適用可能な方法である。
By the way, regarding the acidity measurement of an "acidic sample", JP-A-63-16263 discloses a method of measuring the pH after adding a certain amount of alkaline solution and measuring the strength of the acid from the pH value. . This is a pH value that is measured when a certain amount of alkaline solution is added to a standard sample with a desired acidity (target acidity), and the same amount of alkaline solution is also added to the sample to be analyzed. Then, the pH value shown by the sample is measured and compared with the pH value shown by a standard sample having the target acidity to determine whether or not the analysis sample has the target acidity. In addition, as a simple method, the pH after adding an equivalent amount of alkali or acid to the sample is
A method of measuring acidity or alkalinity by measuring is disclosed in JP-A-1-262462. This method utilizes the rapid change in l)H near the equivalence point, and is applicable only to strong acids and strong alkalis that do not contain substances containing pHM binding capacity.

すなわち、pHM衝能含有する物質を含有する中性試料
にこの方法を適用した場合には、アルカリ液を添加して
もpHはきわめてゆるやかな変化を示すのみであり、強
酸を強アルカリで中和した時にみられるような急激かつ
明瞭なpH変化は発生しない、さらに、このような中性
試料は、試料中に含まれるpHM衝能含有する物質が添
加されたアルカリと緩徐に反応するため、一定量のアル
カリを加えた後のl)Hの値が経時的に不安定であると
いう特性を有してもいる。
In other words, when this method is applied to a neutral sample containing a substance with pHM absorption capacity, the pH changes only very slowly even when alkaline solution is added, and strong acids are neutralized with strong alkalis. In addition, in such a neutral sample, the pHM-containing substance contained in the sample reacts slowly with the added alkali, so the pH value remains constant. It also has the characteristic that the value of l)H after adding a certain amount of alkali is unstable over time.

このように、従来の測定法を用いて中性試料の酸度を測
定する場合には、分析に長時間を要することや、たとえ
ばアルカリ添加によるpH変化か緩慢ななめ良好な結果
か得難い等の問題点があった。
In this way, when measuring the acidity of a neutral sample using conventional measurement methods, there are problems such as the long time required for analysis and the difficulty in obtaining good results due to slow pH changes due to the addition of alkali. was there.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、短時間で精度の高い結果を得ることができ、しか
もインラインでの自動測定にも利用し得る中性試料の酸
度測定法を提供することを目自勺としている。
This invention was made in view of the above circumstances, and provides a method for measuring acidity of neutral samples that can obtain highly accurate results in a short time and can also be used for in-line automatic measurement. Our aim is to provide the following.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、■酸度
の測定をすべき分析試料と同種であって酸度既知の標準
試料の一定量、またはその水溶液に、一定量のアルカリ
標準液を添加し、その一定時間後における一定時間内の
pH平均値またはアルカリ標準液添加後一定時間内にお
けるpHfi高値を測定し、上記既知酸度と上記pH値
を各々座標軸とする検量線を作成し、■分析試料につい
て、上記と同−の条件でアルカリ標準液を添加して、p
H値を測定し、■I@準試料について得られた前記検量
線と、分析試料について測定して得られた前記pH値と
から分析試料の酸度を求めることを特徴とする中性試料
の酸度測定法を提供する。
(Means for Solving the Problems) This invention solves the above problems by: (1) adding a certain amount of a standard sample of the same type as the analytical sample whose acidity is to be measured and whose acidity is known, or an aqueous solution thereof; A certain amount of alkaline standard solution is added, and after a certain period of time, the pH average value within a certain period of time or the pHfi high value within a certain period of time after addition of the alkaline standard solution is measured, and the above known acidity and the above pH value are each used as coordinate axes. Create a calibration curve, add an alkaline standard solution to the analytical sample under the same conditions as above, and
H value is measured, and the acidity of the analytical sample is determined from the calibration curve obtained for the quasi-sample and the pH value obtained by measuring the analytical sample. Provide a measurement method.

またこの発明は、一定量の試料またはその水溶液に添加
する一定量のアルカリ標準液が、これを一定量の試料に
加えた時の滴定曲線の変曲点に相当するアルカリ標準液
の量の70〜130%の範囲であることを好ましい態様
としてもいる。
In addition, this invention provides that a certain amount of alkaline standard solution added to a certain amount of sample or its aqueous solution is 70% of the amount of alkaline standard solution that corresponds to the inflection point of the titration curve when added to a certain amount of sample A preferred embodiment is a range of 130% to 130%.

以下、この発明の原理および作用効果について詳しく説
明する。
Hereinafter, the principle and effects of this invention will be explained in detail.

この発明は、中性試料の酸度を測定するにあたり、中性
試料またはその水溶液にアルカリ標準液を中和当量点ま
で加えてその消費量を直接読み取ることをせず、酸度の
測定をすべき分析試料と同種の酸度既知の中性の標準試
料の一定量に一定量のアルカリ標準液を添加し、アルカ
リ標準液添加一定時間後における一定時間内のpH平均
値またはアルカリ標準液添加後一定時間内におけるpH
I&高値を測定して、あらかじめ既知酸度とpH値を各
々座標軸とする検量線を作成しておき、分析試料につい
ては標準試料に対して行ったと全く同一の条件でアルカ
リ標準液の添加、pHの測定を行い、分析試料について
得られたl)H値を上記検量線に当てはめて酸度を読み
取るものである。
In measuring the acidity of a neutral sample, this invention provides an analysis in which the acidity should be measured without adding an alkaline standard solution to the neutral sample or its aqueous solution up to the neutralization equivalent point and directly reading the consumption amount. A certain amount of alkaline standard solution is added to a certain amount of a neutral standard sample of the same type as the sample with known acidity, and the pH average value within a certain period of time after addition of the alkaline standard solution or within a certain period of time after addition of the alkaline standard solution is calculated. pH at
Measure the I & high values and create a calibration curve in advance with known acidity and pH values as the coordinate axes.For the analysis sample, add an alkaline standard solution and adjust the pH under exactly the same conditions as for the standard sample. The acidity is read by performing measurement and applying the H value obtained for the analytical sample to the above calibration curve.

以下、中性試料として牛乳(生乳)に例をとり説明する
In the following, explanation will be given using milk (raw milk) as an example of a neutral sample.

牛乳にアルカリ標準液を加えていくと、当量点を超す付
近でアルカリ標準液添加後のpHの安定が得られなくな
る。すなわち当量点またはその付近までアルカリ標準液
を加えてpH値の経時的変化を観察してみると、添加直
後からpH値はいったん上昇し、次いですぐに下降をは
じめ、このpH値の下降は相当の時間続く、第1図はそ
の状況を図示したものであって、縦軸にpH1横軸に経
過時間(分)をとっている、空気を遮断して行った実験
の結果から、このpH値の変化は空気中の炭酸ガスの影
響ではないことが確認されたので、牛乳自体に含まれる
pHM衝能含有する物質に起因すると推定されるが、い
ずれにしても、どの時点でのpH値を採るかは中和当量
点を決定する上で重要な問題であり、従来の方法におい
て滴定に熟練を要するというのもこのためである。
When an alkaline standard solution is added to milk, the pH cannot be stabilized after the addition of the alkaline standard solution near the equivalence point. In other words, if you add an alkaline standard solution to or near the equivalence point and observe the change in pH value over time, you will notice that the pH value rises immediately after addition, and then immediately begins to fall.This drop in pH value is quite significant. Figure 1 shows this situation, with pH on the vertical axis and elapsed time (minutes) on the horizontal axis.From the results of an experiment conducted with air shut off, this pH value is It was confirmed that the change in pH was not due to the influence of carbon dioxide gas in the air, so it is presumed that the change was caused by a substance containing pHM contained in the milk itself. This is an important issue in determining the neutralization equivalent point, and this is also the reason why titration requires skill in conventional methods.

そこで、このpH値の不安定さ、すなわちアルカリ標準
液添加後のpH値の経時的変動に着目し、その変動につ
いて詳細に調べた結果、中性試料に対して一定の範囲の
量のアルカリ標準液を加えた場合には、そのpH値の経
時的変動に再現性があることが見い出された。この再現
性を利用し、同種の中性試料(酸度既知)に一定の条件
でアルカリ標準液を加えた場合のpH値を一定の条件に
おいて測定して、酸度とpH値を各々座標軸とする検量
線を作成しておけば、酸度未知の中性試料に対して全く
同じ条件でアルカリ標準液を加え、同一条件においてp
H値を測定し、そこで得たpH値を上記の既知酸度とp
H値の検量線にあてはめることで、短時間にかつ精度良
く酸度未知の中性試料の酸度を読み取ることができるの
である。
Therefore, we focused on the instability of this pH value, that is, the change over time in the pH value after addition of the alkaline standard solution, and as a result of detailed investigation of the fluctuation, we found that a certain range of amounts of alkaline standard were added to the neutral sample. It has been found that when a liquid is added, the change in pH value over time is reproducible. Utilizing this reproducibility, the pH value when an alkaline standard solution is added to the same kind of neutral sample (acidity known) under certain conditions is measured under certain conditions, and calibration is performed using acidity and pH value as coordinate axes. If you create a line, you can add an alkaline standard solution under exactly the same conditions to a neutral sample with unknown acidity, and then calculate the p
Measure the H value and compare the obtained pH value with the above known acidity and p
By applying the H value calibration curve, it is possible to read the acidity of a neutral sample with unknown acidity in a short time and with high accuracy.

次にこのような酸度とpH値の再現性に関する試験例を
以下に示す。
Next, test examples regarding the reproducibility of such acidity and pH values are shown below.

試験例1 生乳50+rに1/10規定水酸化ナトリウム標準液を
一定量づつ添加し、添加直後からその試料のpH値を3
0秒間継続測定してその最高値を採り、1/10規定水
酸化ナトリウム標準液添加量(ml)とpH値(最高値
)との関係を検討した。
Test Example 1 A fixed amount of 1/10 N sodium hydroxide standard solution was added to 50+ r of raw milk, and the pH value of the sample was adjusted to 3 immediately after the addition.
The measurement was continued for 0 seconds, the highest value was taken, and the relationship between the amount (ml) of 1/10 N sodium hydroxide standard solution added and the pH value (maximum value) was investigated.

1種類の試料に対し10回の測定を行ない、その結果を
第2図に示した。縦軸はpH(M高値)であり、横軸は
1/10規定酸化ナトリウム標準液添加量(ml)であ
る。
Measurements were performed 10 times on one type of sample, and the results are shown in FIG. The vertical axis is pH (high M value), and the horizontal axis is the amount (ml) of 1/10 N sodium oxide standard solution added.

この第2図からも明らかなように、各試料のpH(fi
高値)を結ぶ曲線は、わずかにS字形の湾曲を有する添
加量依存曲線となる。
As is clear from this Figure 2, the pH (fi
The curve connecting the high values) becomes an addition amount dependent curve with a slight S-shaped curvature.

このような特徴的な曲線は、試料中にpt[機能を有す
る物質が存在しない場合にはみられないものであり、牛
乳が蛋白質、脂肪、糖類等のpH[機能を有する物質を
含むためであると考えられる。
Such a characteristic curve will not be seen if there is no substance with pt function in the sample, and it is because milk contains substances with pt function such as proteins, fats, sugars, etc. It is believed that there is.

試験例2 次に上記S字形の曲線の変曲点において同種類の複数の
試料間でどのような相関があるかを調べた。
Test Example 2 Next, it was investigated what kind of correlation existed between a plurality of samples of the same type at the inflection point of the above-mentioned S-shaped curve.

9検体の牛乳(夫々の試料については別途公定法[昭和
26年12月27日厚生省第52号。
9 samples of milk (each sample was prepared using a separate official method [Ministry of Health and Welfare No. 52, December 27, 1951).

「乳及び乳製品の成分規格に関する省令j記載の方法コ
で酸度が求めである。なお生乳各々のpHは6.73.
6.72.6.72.6.70.6,73.6.71.
6,72.6.72及び、6.75であって、殆ど差が
ない)を用いて、試験例1と同様の測定を行なった。
"Acidity is determined by the method described in the Ministerial Ordinance on Ingredient Standards for Milk and Dairy Products.The pH of each raw milk is 6.73.
6.72.6.72.6.70.6, 73.6.71.
6, 72, 6.72, and 6.75, with almost no difference), the same measurements as in Test Example 1 were performed.

その結果得られた測定値を、pHを縦軸、水酸化ナトリ
ウム量を横軸にとった座標にプロットし、得られた9本
の曲線について、最小二乗法で線型函数への近似を試み
たところ、いずれも3次式で良好なあてほめが得られた
The resulting measured values were plotted on coordinates with pH on the vertical axis and sodium hydroxide content on the horizontal axis, and an attempt was made to approximate the resulting nine curves to a linear function using the least squares method. However, in both cases, good results were obtained using the cubic equation.

次に各3次式の変曲点座標を求めたところ、I)H座標
がほぼ一定値なのに対し、アルカリ量座標は変化してお
り、しかも第3図に示した通り、アルカリ量座標値と酸
度との間には高い相関が認められた。このことは、すな
わち変曲点を得るのに必要なアルカリ量は酸度に比例し
ており、換言ずれば、変曲点のpH座標値が一定である
ことから、酸度か増加するのに比例して滴定曲線がアル
カリ量軸に沿って右方向に平行移動することを意味する
Next, when we calculated the inflection point coordinates of each cubic equation, we found that while the I)H coordinate was almost a constant value, the alkali content coordinate was changing, and as shown in Figure 3, the alkali content coordinate value and A high correlation was observed between acidity and acidity. This means that the amount of alkali required to reach the inflection point is proportional to the acidity.In other words, since the pH coordinate value of the inflection point is constant, it is proportional to the increase in acidity. This means that the titration curve moves in parallel to the right along the alkali content axis.

第4図は、このことを模式的に図示したものであり、縦
軸はpH,横軸は添加アルカリ量、3本の曲線は酸度の
異なる試料、即ち、A1は酸度が最も低い試料、A、は
酸度が最も高い試料、A2はそれらの中間の酸度の試料
の3点について描いたものである。Pt 、P2 、P
>は各々試料A。
Figure 4 schematically illustrates this, where the vertical axis is pH, the horizontal axis is the amount of alkali added, and the three curves are samples with different acidities, namely A1 is the sample with the lowest acidity, A1 is the sample with the lowest acidity, and A1 is the sample with the lowest acidity. , A2 is a sample with the highest acidity, and A2 is a sample with an intermediate acidity. Pt, P2, P
> is sample A.

A 2 、A sの変曲点に相当するアルカリ量である
This is the amount of alkali corresponding to the inflection point of A 2 and A s.

従って、平均的な酸度の試料の変曲点に相当するアルカ
リ量の一定量を加えた状態のpHは、各試料の滴定曲線
の横方向への平行移動に比例した変化を示すことになり
、このような条件で得られたpHは酸度と良好な相関を
持つことになる。第5図はこれを模式的に図示したもの
であって、縦軸はpH1横軸は添加アルカリ量である。
Therefore, the pH when a certain amount of alkali is added, which corresponds to the inflection point of a sample with average acidity, will show a change proportional to the horizontal translation of the titration curve of each sample. The pH obtained under such conditions has a good correlation with acidity. FIG. 5 schematically shows this, with the vertical axis representing pH and the horizontal axis representing the amount of alkali added.

 A + A 2、A、については第4図と同じである
A + A 2, A is the same as in FIG.

試験例3 次にこの相関関係の適用範囲を調べるため、9種類の生
乳(50011)を用い、各々の酸度(前記公定法によ
る)と1/10規定水酸化ナトリウム標準液の各添加量
(0,2ml、4 ml、6 ml、8a]1.10m
1.12m1.14m1.16m1.18m1)毎のp
H値との相関を調べた。p!1値は試験例1および2と
同様にその最高値を測定した。結果は第6図に示した通
りである。
Test Example 3 Next, in order to examine the scope of application of this correlation, nine types of raw milk (50011) were used, and each acidity (according to the above official method) and each addition amount of 1/10N sodium hydroxide standard solution (0 , 2ml, 4ml, 6ml, 8a] 1.10m
p per 1.12m1.14m1.16m1.18m1)
The correlation with H value was investigated. p! As in Test Examples 1 and 2, the maximum value was determined as 1 value. The results are shown in FIG.

この第6図から明らかなように、試料の酸度とそのpH
値との相関は、アルカリ添加量か6mlから12m1の
範囲で良好となる。
As is clear from this Figure 6, the acidity of the sample and its pH
The correlation with the value becomes good when the amount of alkali added is in the range of 6 ml to 12 ml.

そこでこの結果を前述のpH変曲点にあてはめると、6
01〜12m1という範囲は変曲点推定pH値を与える
1/10規定水酸化ナトリウム標準液添加量(9ml)
の70〜130%に相当するものである。
Therefore, applying this result to the pH inflection point mentioned above, we get 6
The range of 01 to 12ml is the amount of 1/10 N sodium hydroxide standard solution added (9ml) that gives the estimated pH value of the inflection point.
This corresponds to 70 to 130% of

すなわちこの発明においては、一定量の試料またはその
水溶液に添加すべきアルカリ標準液の量は、その試料の
一定量にアルカリ標準液を添加したときの滴定曲線の変
曲点に相当するアルカリ標準液の量の70〜130%の
範囲とする。
In other words, in this invention, the amount of alkaline standard solution to be added to a fixed amount of sample or its aqueous solution is the amount of alkaline standard solution that corresponds to the inflection point of the titration curve when the alkaline standard solution is added to a fixed amount of the sample. The amount should be in the range of 70 to 130% of the amount of

次に、このような範囲でアルカリ標準液を牛乳に添加し
、その酸度(前記公定法による)とpH値とを各々座標
軸とする検量線を作成した。すなわち、9種類の牛乳1
0m1に1710規定水酸化ナトリウム標準m 200
11を添加し、その後30秒間のpH最高値を測定した
。その結果、第7図に示したような検量線が得られた。
Next, an alkaline standard solution was added to milk in such a range, and a calibration curve was created with its acidity (according to the official method) and pH value as coordinate axes. In other words, 9 types of milk 1
1710N sodium hydroxide standard m200 in 0ml
11 was added, and the maximum pH value was then measured for 30 seconds. As a result, a calibration curve as shown in FIG. 7 was obtained.

なお、上記の各試験例では、pH値としてアルカリ標準
液添加後一定時間内におけるその最高値を測度としたが
、これとは異なり、アルカリ標準液添加から一定時間(
15秒間)後から15秒間、1秒毎にpH値を測定しく
測定点数16点)、その平均値を用いて同様の相関関係
を調べたところ、この場合も良好な結果が得られた。
In addition, in each of the above test examples, the maximum pH value within a certain period of time after addition of the alkaline standard solution was used as the measure;
After 15 seconds), the pH value was measured every second for 15 seconds (16 measurement points) and the average value was used to investigate the same correlation, and good results were obtained in this case as well.

以上述べたように、この発明は同種の標準試料について
あらかじめ検量線を作成し、これに基づいて、分析試料
の酸度を求めるものであるが、この検量線をコンピュー
タに記憶させ、分析試料について得られたl1l(値を
入力して情報処理を行い、酸度を出力せしめることが容
易にできる。このようなデータ処理は、試料を回分式に
採取して測定をする場合は勿論、製造工程中に試料を連
続的にサンプリングし、測定して、試料の品質をモニタ
ーするのにも極めて有用である。
As described above, in this invention, a calibration curve is created in advance for the same type of standard sample, and based on this, the acidity of the analysis sample is determined. It is possible to easily output the acidity by inputting and processing the information.Such data processing is useful not only when samples are collected in batches for measurement, but also during the manufacturing process. It is also extremely useful for continuously sampling and measuring samples to monitor sample quality.

以下に、測定装置と測定の実施例を示し、この発明につ
いて具体的に説明する。
The present invention will be specifically explained below by showing examples of a measuring device and measurement.

実施例工 (測定装置と測定例) 第8図にその構成を模式的に示した測定装置を原料牛乳
の受入工程に設置し、タンクローリ−で搬入された原料
乳の酸度を連続的に測定した。
Example work (measuring device and measurement example) The measuring device whose configuration is schematically shown in Figure 8 was installed in the process of receiving raw milk, and the acidity of raw milk brought in by tank truck was continuously measured. .

すなわち、タンクローリ−からサイロタンクに搬入され
る牛乳をその移送配管(1)からポンプ(2)でサンプ
リングバルブ(3)に1の1採取し、次いでサンプリン
グバルブ(3)を反転して定量ポンプ(4)によりタン
ク(5)のイオン交換水5 mlをサンプリングバルブ
(3)に分取し、このイオン交換水によりサンプリング
バルブ(3)中の試料を測定槽(6)に洗い込む。次に
タンク(7)の1720規定水酸化ナトリウム標準液4
00μmを定量ポンプ(8)で分取し、測定槽(6)に
注入して、撹拌機(9)で撹拌しなからpHセンサー(
10)でpHを測定した。この場合、pHセンサー(1
0)からの信号は信号処理装置(11)  (PC98
01UX、日本電気)で連続的に処理し、pHが最高に
なったときの値を読み、信号処理装置く11)に記憶さ
せである検量線によって酸度に換算した。最後にポンプ
(12)で測定槽(6)を排液し、さらに定量ポンプ(
4)によりイオン交換水を測定槽(6)に注入し、測定
槽(6)およびpHセンサー(10)を洗浄して1検体
の測定を終了した。これらの作業には約2分間を要した
。また、測定の前には、タンク(13)および(14)
の標準Mumを、各々ポンプ(15)および(16)に
より測定槽(6)に注入し、pHセンサー(10)のキ
ャリブレーションを行なった。
That is, the milk carried from the tank truck to the silo tank is sampled from the transfer pipe (1) to the sampling valve (3) using the pump (2), and then the sampling valve (3) is reversed and the metering pump ( 4), 5 ml of ion-exchanged water from the tank (5) is dispensed into the sampling valve (3), and the ion-exchanged water washes the sample in the sampling valve (3) into the measurement tank (6). Next, 1720N sodium hydroxide standard solution 4 in tank (7)
00 μm is collected using a metering pump (8), injected into a measurement tank (6), stirred with a stirrer (9), and then added to a pH sensor (
10), the pH was measured. In this case, the pH sensor (1
The signal from 0) is sent to the signal processing device (11) (PC98
01UX (Nippon Electric), the value when the pH reached the maximum was read, and the value was stored in the signal processing device (11) and converted into acidity using a calibration curve. Finally, the measuring tank (6) is drained using the pump (12), and then the metering pump (
4), ion-exchanged water was injected into the measurement tank (6), the measurement tank (6) and the pH sensor (10) were washed, and the measurement of one sample was completed. These operations required approximately 2 minutes. In addition, before measurement, the tank (13) and (14)
Standard Mum was injected into the measurement tank (6) using pumps (15) and (16), respectively, and the pH sensor (10) was calibrated.

なお、以上の作業は、信号処理装置(11)を除き、ポ
ンプ類、タンク類およびサンプリングバルブ(3)、測
定槽(6)、1)Hセンサー(10)等が一体となって
いる「原乳酸度測定装置(東亜電波工業製)」を用いす
べて自動で行なった。
Note that the above work is performed on the "raw material", which includes pumps, tanks, sampling valves (3), measurement tanks (6), 1) H sensor (10), etc., except for the signal processing device (11). All measurements were performed automatically using a lactic acid level measuring device (manufactured by Toa Denpa Kogyo).

その結果得られた牛乳の酸度は、別途手作業で測定した
酸度と統計的にも有意差は見られなかった。
The acidity of the milk obtained as a result showed no statistically significant difference from the acidity measured separately manually.

実施例2 (測定装置と測定例) 第9図にその構成を模式的に示した測定装置を用い、実
施例1と同様に原料牛乳の受入工程においてその酸度を
測定した。
Example 2 (Measuring device and measurement example) Using a measuring device whose configuration is schematically shown in FIG. 9, the acidity of raw milk was measured in the receiving process in the same manner as in Example 1.

すなわち、タンクローリ−からサイロタンクへ搬入され
る牛乳を、その移送配管(1)からバルブ(17)を介
し、定量ポンプ(18)(SJ1211H、アトー■製
)によって一定量分取し、混合バルブ(19)に注入す
る。
That is, a certain amount of milk is transported from a tank truck to a silo tank through a transfer pipe (1) and a valve (17), and a metering pump (18) (SJ1211H, manufactured by Atto ■) is used to collect a certain amount of milk, and a mixing valve ( 19).

同時に、タンク(20)の1720規定水酸化ナトリウ
ム標準液をポンプ(21)により混合バルブ(19)に
連続的に注入し、牛乳と1720規定水酸化ナトリウム
標準液を混合しバルブ(19)で混合比25;9の割合
で混合した。
At the same time, the 1720N standard sodium hydroxide solution in the tank (20) is continuously injected into the mixing valve (19) by the pump (21), and the milk and 1720N sodium hydroxide standard solution are mixed together by the valve (19). They were mixed at a ratio of 25:9.

次いで、この混合液をミキシングコイル(22)でさら
に均一に混合し、切、替バルブ(23)を介してpHセ
ンサー(24)(H3−6O3に5G−80を装着、東
亜電波工業製)を通過させ、その1)H値を測定した。
Next, this liquid mixture is further mixed uniformly with a mixing coil (22), and a pH sensor (24) (H3-6O3 equipped with 5G-80, manufactured by Toa Denpa Kogyo) is connected via a switching valve (23). 1) The H value was measured.

混合バルブ(19)での混合から測定までの時間を正確
に10秒間とし、連続して30秒間測定した後、バルブ
(17)を切り替え、タンク(25)のイオン交換水を
引き、流路を洗浄して1回の分析を終了した。なお、こ
の洗浄の間、ポンプ(21)は停止した。
The time from mixing at the mixing valve (19) to measurement was set to exactly 10 seconds, and after continuous measurement for 30 seconds, the valve (17) was switched, the ion-exchanged water in the tank (25) was drawn, and the flow path was opened. One analysis was completed by washing. Note that during this cleaning, the pump (21) was stopped.

測定値は30秒間の全測定値(31点)を信号処理装置
(26)(PC9801UX、日本電気製)で処理して
平均をとり、予め信号処理装置(26)に記憶させであ
る検量線によって酸度に換算した。
The measured values are processed by a signal processing device (26) (PC9801UX, manufactured by NEC Corporation) for all measured values (31 points) for 30 seconds, averaged, and calculated using a calibration curve stored in the signal processing device (26) in advance. Converted to acidity.

1検体の測定は約1分間で終了した。また、測定の前に
は、タンク(27)および(28)の標準緩衝液を切替
えバルブ(29)を介して順次流し、1)Hセンサー(
24)のキャリブレーションを行なった。
The measurement of one sample was completed in about 1 minute. In addition, before measurement, the standard buffer solutions in tanks (27) and (28) are sequentially flowed through the switching valve (29), and 1) the H sensor (
24) was calibrated.

その結果得られた牛乳の酸度は別途手作業で測定した酸
度と、統計的にも有意差はみられなかつた。
There was no statistically significant difference between the acidity of the milk obtained as a result and the acidity measured separately manually.

もちろんこの発明は以上の例によって限定されるもので
はなく、その構成の細部については様々な態様が可能で
あることは言うまでもない、またその適用範囲について
も、牛乳の他、たとえば豆乳、しょう油、みそ等の中性
試料についても、その酸度の正確な測定が可能である。
Of course, this invention is not limited to the above examples, and it goes without saying that various embodiments are possible with respect to the details of its structure. It is also possible to accurately measure the acidity of neutral samples such as

(発明の効果) 以上詳しく説明した通り、この発明の中性試料の酸度測
定法により、pHW衝能含有する物質を含有するほぼ中
性の試料の酸度を迅速に、かつ精度よく測定することが
可能となる。しかも測定を容易に自動化することができ
る。
(Effects of the Invention) As explained in detail above, the method for measuring the acidity of a neutral sample of the present invention allows the acidity of a nearly neutral sample containing a substance containing pHW capacity to be measured quickly and with high accuracy. It becomes possible. Moreover, the measurement can be easily automated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、牛乳にその当量点までアルカリ標準液を加え
たときのpH値の変化を経時的に図示したものである。 第2図は、牛乳に水酸化ナトリウム標準液の容量を添加
したときの、そのpH最高値と水酸化ナトリウム標準添
加量の相関図である。 第3図は、変曲点における酸度とアルカリ標準液添加量
の相関図である。 第4図は、試料の酸度に比例して滴定曲線がアルカリ量
軸に沿って平行移動することを示す模式第5図は、酸度
が異なる3試料の各々に、その変曲点に相当するアルカ
リ量の一定量を加えたときのアルカリの量と11Hの関
係を示した模式図である。 第6図は、牛乳に水酸化ナトリウム標準液の容量を添加
した場合の生乳の酸度とI)H値の相関係数を示したも
のである。 第7図は、牛乳の検量線の一例である。 第8図および第9図は各々、この発明の測定法に用いる
装置を例示した模式図である。 1・・・移送配管 2.12.21・・・ポンプ 3・・・サンプリングバルブ 4.8.15.16.18・・・定量ポンプ5.7.1
3.14.20.25.27.28・・・タンク 6・・・測定槽 9・・撹拌機 0.24・・・pHセンサー 1.26・・・信号処理装置 7.23.29・・・切替えバルブ 9・・・混合バルブ 2・・・ミキシングコイル 第  1 図
FIG. 1 is a diagram illustrating the change in pH value over time when an alkaline standard solution is added to milk up to its equivalence point. FIG. 2 is a correlation diagram between the maximum pH value and the standard amount of sodium hydroxide added when the volume of the standard sodium hydroxide solution is added to milk. FIG. 3 is a correlation diagram between the acidity at the inflection point and the amount of alkaline standard solution added. Figure 4 shows a schematic diagram showing that the titration curve moves in parallel along the alkali content axis in proportion to the acidity of the sample. FIG. 2 is a schematic diagram showing the relationship between the amount of alkali and 11H when a certain amount of alkali is added. FIG. 6 shows the correlation coefficient between the acidity of raw milk and the I)H value when the volume of the standard sodium hydroxide solution is added to the milk. FIG. 7 is an example of a calibration curve for milk. FIG. 8 and FIG. 9 are schematic diagrams each illustrating an apparatus used in the measuring method of the present invention. 1... Transfer piping 2.12.21... Pump 3... Sampling valve 4.8.15.16.18... Metering pump 5.7.1
3.14.20.25.27.28...tank 6...measuring tank 9...stirrer 0.24...pH sensor 1.26...signal processing device 7.23.29...・Switching valve 9...Mixing valve 2...Mixing coil Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)[1]酸度の測定をすべき分析試料と同種であっ
て酸度既知の標準試料の一定量、またはその水溶液に、
一定量のアルカリ標準液を添加し、その一定時間後にお
ける一定時間内のpH平均値またはアルカリ標準液添加
後一定時間内におけるpH最高値を測定し、上記既知の
酸度と上記pH値を各々座標軸とする検量線を作成し、
[2]分析試料について、上記と同一の条件でアルカリ
標準液を添加して、pH値を測定し、[3]標準試料に
ついて得られた前記検量線と、分析試料について測定し
て得られた前記pH値とから分析試料の酸度を求めるこ
とを特徴とする中性試料の酸度測定法。
(1) [1] A certain amount of a standard sample of the same type as the analytical sample whose acidity is to be measured and whose acidity is known, or an aqueous solution thereof,
A certain amount of alkaline standard solution is added, and after a certain period of time, the average pH value within a certain period of time or the maximum pH value within a certain period of time after addition of the alkaline standard solution is measured, and the above-mentioned known acidity and above-mentioned pH value are plotted on the coordinate axes. Create a calibration curve with
[2] For the analytical sample, add an alkaline standard solution under the same conditions as above and measure the pH value, [3] The calibration curve obtained for the standard sample and the pH value obtained by measuring for the analytical sample. A method for measuring acidity of a neutral sample, characterized in that the acidity of the analysis sample is determined from the pH value.
(2)一定量の試料またはその水溶液に添加する一定量
のアルカリ標準液が、これを一定量の試料に加えたとき
の滴定曲線の変曲点に相当するアルカリ標準液の量の7
0〜130%の範囲であることを特徴とする請求項(1
)記載の中性試料の酸度測定法。
(2) A certain amount of alkaline standard solution added to a certain amount of sample or its aqueous solution corresponds to the inflection point of the titration curve when added to a certain amount of sample.
Claim (1) characterized in that it is in the range of 0-130%.
) method for measuring acidity of neutral samples.
JP2188423A 1990-07-16 1990-07-16 Measuring method of acidity of neutral sample Pending JPH0474959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188423A JPH0474959A (en) 1990-07-16 1990-07-16 Measuring method of acidity of neutral sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188423A JPH0474959A (en) 1990-07-16 1990-07-16 Measuring method of acidity of neutral sample

Publications (1)

Publication Number Publication Date
JPH0474959A true JPH0474959A (en) 1992-03-10

Family

ID=16223410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188423A Pending JPH0474959A (en) 1990-07-16 1990-07-16 Measuring method of acidity of neutral sample

Country Status (1)

Country Link
JP (1) JPH0474959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975865A (en) * 2010-10-09 2011-02-16 中国神华能源股份有限公司 Automatic titration system for acid or alkali liquor
CN105242003A (en) * 2015-11-13 2016-01-13 国网山东省电力公司电力科学研究院 Oil acid detection system and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975865A (en) * 2010-10-09 2011-02-16 中国神华能源股份有限公司 Automatic titration system for acid or alkali liquor
CN105242003A (en) * 2015-11-13 2016-01-13 国网山东省电力公司电力科学研究院 Oil acid detection system and method thereof
CN105242003B (en) * 2015-11-13 2017-05-17 国网山东省电力公司电力科学研究院 Oil acid value detection system and method thereof

Similar Documents

Publication Publication Date Title
Tyl et al. pH and titratable acidity
Sadler et al. pH and titratable acidity
US20190310235A1 (en) Methods for colorimetric endpoint detection and multiple analyte titration systems
JPH0474959A (en) Measuring method of acidity of neutral sample
CN111735906A (en) Method for determining alkalinity of water sample and analysis system
US20150369775A1 (en) Electroanalitical system
JP2012083365A (en) Automated protein analyzer
EP0517339A1 (en) Method of determining, with the aid of an ion-selective electrode, the concentration of a substance to be determined, and apparatus to be used in said method
Jenkins et al. Chemical assay of urea for automated sensing in milk
Knapp et al. Iodine losses during Winkler titrations
RU2690186C1 (en) Simultaneous quantitative determination of glycerine and potassium acetate in aqueous solution by 1h nmr spectroscopy
CN109709261B (en) Method and instrument for measuring degree of hydrolysis of sulfonate-containing polyacrylamide polymer
JPH0593725A (en) Prozone adjustment and analysis method in antigen-antibody reaction
JPS6125062A (en) Measurement of aso value by immunonephelometry
Liedtke et al. Automated calmagite compleximetric measurement of magnesium in serum, with sequential addition of EDTA to eliminate endogenous interference.
Beasley et al. Critical evaluation of the Karl Fischer water method, end-point detection system, and standardization
JPS59142462A (en) Continuous quantitative analysis of total acid and total amino acid
Vasjari et al. Potentiometric characterisation of acid rains using corrected linear plots
US4504444A (en) Apparatus for diluting highly concentrated solutions
Bark et al. Thermometry, enthalpimetry
RU2460998C1 (en) Method of determining polyhexamethylene guanidine hydrochloride
Lahav et al. Determination of low citric acid concentrations in mixture of weak acid/bases
SU1002940A1 (en) Method of quantitative determination of inverted sugar in solutions
Bark et al. A rapid method for determining the casein content of milk
US20040203168A1 (en) Method and means for the determination of total acid