JPH0474914A - Tracking-type optical interference surface shape measuring apparatus - Google Patents

Tracking-type optical interference surface shape measuring apparatus

Info

Publication number
JPH0474914A
JPH0474914A JP19002690A JP19002690A JPH0474914A JP H0474914 A JPH0474914 A JP H0474914A JP 19002690 A JP19002690 A JP 19002690A JP 19002690 A JP19002690 A JP 19002690A JP H0474914 A JPH0474914 A JP H0474914A
Authority
JP
Japan
Prior art keywords
objective lens
laser
heterodyne interference
light
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19002690A
Other languages
Japanese (ja)
Inventor
Yoshinori Bessho
別所 芳則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP19002690A priority Critical patent/JPH0474914A/en
Publication of JPH0474914A publication Critical patent/JPH0474914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the shape of the surface of an object with high resolution by forming a heterodyne interference means in two stages, and detecting the change of a focal point as the phase change with high resolution by one of the heterodyne means. CONSTITUTION:The light generated from a linearly polarizing laser is converted to a double frequency laser wherein a P wave frequency is orthogonal to an S wave frequency by a first heterodyne interference means, and divided into two, then introduced into a second and a third heterodyne interference means. A part of the laser is applied to an object to be measured. The reflecting light is, after experimenting Dopper shift or phase change corresponding to the roughness of the surface, interfered with a reference light on a second sensor. Accordingly, the phase difference corresponding to the amount of roughness is detected. A feedback means moves an objective lens up and down in accordance with the phase difference to control the distance between the object and objective lens constant. The third heterodyne interference means calculates the moving amount of the objective lens, thereby to obtain the amount of the shift DELTAz in a (z) direction with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、表面形状測定装置に係わり、詳しくは、周波
数が異なる2種類のレーザビームによる光ヘテロダイン
干渉を利用して表面形状を測定する装置に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface shape measuring device, and more specifically, a device that measures a surface shape using optical heterodyne interference between two types of laser beams having different frequencies. It is related to.

[従来の技術] 従来、表面粗さなどの表面形状を測定する装置として、
被測定物の表面の微小範囲にフォーカス検出用ビームを
照射するとともに、その反射光強度により焦点ずれを検
出して、その検出信号によって測定物表面と対物レンズ
との距離を一定に保つフォーカスサーボ装置を備え、更
に該フォー・カスサーボされた対物レンズの動きを、ヘ
テロゲイン干渉手段によって計測し、測定物表面の全体
形状を求める装置がある。
[Conventional technology] Conventionally, as a device for measuring surface shapes such as surface roughness,
A focus servo device that irradiates a focus detection beam onto a minute area on the surface of the object to be measured, detects defocus based on the intensity of the reflected light, and uses the detection signal to maintain a constant distance between the surface of the object and the objective lens. There is an apparatus which further measures the movement of the objective lens subjected to the focus servo using a hetero gain interference means to determine the overall shape of the surface of the object to be measured.

例えば、特開昭61−105408号公報に示される光
学測定装置はその一例である。第6図を用いて簡単に説
明すると、直交二周波レーザであるゼーマンレーザ10
0から出た周波数f、の測定光と周波数f2の参照光は
、ハーフミラ−103でX座標と2座標を測定するビー
ムに2分される。そして、2座標を測定するためのビー
ムは、さらに偏光ビームスプリッタ104で計測光S波
と参照光P波とに2分される。計測光S波は、さらに偏
光ビームスプリッタ105で反射されて、λ/4板10
6を透過して円偏光となり、フォーカス検出装置120
に固定されたレンズ107とミラー108からなるキャ
ップ・アイに入って反射される。反射光は逆の光路を辿
り再びλ/4板106を通過することにより、今度はP
波に変換され、偏光ビームスプリッタ105に戻る。し
かし、その偏光ビームスプリッタ105の不完全性のた
め、P波の一部は反射されて合、波器である偏光ビーム
スプリッタ104に入る。この時、フォーカス検出装置
120は駆動装置111からフォーカスサーボを受けて
いるため、ミラー108からの反射光は、△fのドツプ
ラーシフトを受けている。従って、偏光ビームスプリッ
タ104に入った計測光の光周波数はf、十△fになっ
ている。
For example, an optical measuring device disclosed in Japanese Patent Application Laid-open No. 105408/1983 is one example. To briefly explain using FIG. 6, the Zeeman laser 10, which is an orthogonal two-frequency laser,
The measurement light with a frequency f and the reference light with a frequency f2 emitted from 0 are split into two beams by a half mirror 103 to measure the X coordinate and two coordinates. The beam for measuring two coordinates is further split into two by a polarizing beam splitter 104 into a measurement light S wave and a reference light P wave. The measurement light S wave is further reflected by the polarizing beam splitter 105 and passed through the λ/4 plate 10.
6 becomes circularly polarized light, and the focus detection device 120
The light enters the cap eye, which is made up of a lens 107 and a mirror 108, and is reflected. The reflected light follows the opposite optical path and passes through the λ/4 plate 106 again, and this time it becomes P
It is converted into a wave and returns to the polarizing beam splitter 105. However, due to the imperfection of the polarizing beam splitter 105, a part of the P wave is reflected and combined and enters the polarizing beam splitter 104, which is a wave filter. At this time, since the focus detection device 120 receives focus servo from the drive device 111, the reflected light from the mirror 108 undergoes a Doppler shift of Δf. Therefore, the optical frequency of the measurement light entering the polarizing beam splitter 104 is f, 10Δf.

一方、偏光ビームスプリッタ104を透過した参照光で
あるP波は、同じくλ/4板113を通り円偏光となり
、レンズ114、ミラー115を経て、高精度ミラー1
16に至る。高精度ミラー116で反射された参照先は
、逆の光路を辿り偏光ビームスプリッタ104で先の計
測光と合波干渉され、センサ109でf、−f2+△f
のビート信号が検出される。尚、高精度ミラー116は
駆動源117によって測定物とともに移動させられるた
め、先と同様に、その反射光は厳密にはドツプラーシフ
トを受けるが、本例では高精度ミラー116を使用して
いるため無視している。
On the other hand, the P wave, which is the reference light that has passed through the polarizing beam splitter 104, also passes through the λ/4 plate 113 and becomes circularly polarized light.
It reaches 16. The reference target reflected by the high-precision mirror 116 follows the opposite optical path, is combined and interfered with the previous measurement light by the polarizing beam splitter 104, and is f, -f2+△f by the sensor 109.
beat signal is detected. Note that since the high-precision mirror 116 is moved together with the object to be measured by the drive source 117, the reflected light is strictly Doppler shifted as before, but in this example, the high-precision mirror 116 is used. Therefore, it is ignored.

センサ109で検出された信号は、基準信号fx  f
*と比較されて△fが求められる。そして、周知のドツ
プラーの基本式 △f=2/λ・y m1v8=△Z/
△tによって変位量△2を下記の計算式で求めるのであ
る。
The signal detected by the sensor 109 is the reference signal fx f
* is compared to find Δf. And the well-known basic Doppler formula △f=2/λ・y m1v8=△Z/
The displacement amount Δ2 is calculated from Δt using the following formula.

△2=λ/2・ (△f)・dt =λ/4π・f(δφ/δt)・dt =λ/4π・ (φ0−φ。) 但し、φ0は計測した位相 φ。は初期位相    である。△2=λ/2・(△f)・dt =λ/4π・f(δφ/δt)・dt =λ/4π・(φ0−φ.) However, φ0 is the measured phase φ. is the initial phase.

[発明が解決しようとする課題] しかしながら、この光学測定装置は、特開昭61−10
5408号公報に示すように、フォーカス手段に、ピン
ホールの位置を僅かにずらした2個のセンサを用い、そ
のセンサからの出力差によりフォーカス誤差量をモニタ
する方法を用いているので、分解能は0. 2μ程度に
留まり、高分解能かつ測定可能範囲が広いという半導体
デバイスや光学部品分野の要求するスペックに答えられ
ないという欠点があった。
[Problem to be solved by the invention] However, this optical measuring device is
As shown in Publication No. 5408, the focusing means uses two sensors whose pinhole positions are slightly shifted, and the focus error amount is monitored by the output difference from the sensors, so the resolution is 0. It had the disadvantage that it remained at around 2μ and could not meet the specifications required in the semiconductor device and optical component fields, such as high resolution and wide measurable range.

また、特開昭61−105408号公報には、レンズ1
07.ミラー108からなるキャップ・アイを取り除き
、直接測定物の表面形状を計測する方法も記述されてい
るが、高精度ミラー116上を参照ビームが移動する以
上、高精度ミラー116の表面粗さ、移動ステージ11
8の振動、うねりの影響を免れることは不可能であり、
高精度な計測は望めなかった。
In addition, Japanese Patent Application Laid-Open No. 61-105408 discloses that lens 1
07. A method is also described in which the cap eye consisting of the mirror 108 is removed and the surface shape of the object to be measured is directly measured. However, since the reference beam moves on the high precision mirror 116, the surface roughness and movement of the high precision mirror 116 are stage 11
It is impossible to avoid the effects of vibration and undulation of 8.
Highly accurate measurements could not be expected.

本発明は、上述した問題点を解決するためになされたも
のであり、その目的とするところは、対物レンズと測定
物との間隔を反射光の位相差でモニタする第2のヘテロ
ゲイン干渉手段と、その間隔を常に一定に保つためのフ
ィードバック手段とを備え、その対物レンズの動きを第
3のヘテロダイン干渉手段にて測定することにより、数
nmという高分解能を備えつつ、測定可能範囲を格段に
広げ、対物レンズの焦点深度に制限されない追従型光波
干渉式表面形状測定装置を提供することにある。
The present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a second hetero gain interference means that monitors the distance between the objective lens and the measurement object using the phase difference of reflected light. , and a feedback means to keep the distance constant at all times, and by measuring the movement of the objective lens with a third heterodyne interference means, the measurable range is greatly expanded while having a high resolution of several nanometers. It is an object of the present invention to provide a tracking type light wave interference type surface shape measuring device that is not limited by the depth of focus of an objective lens.

[課題を解決するための手段] この目的を達成するために、本発明の追従型光波干渉表
面形状測定装置は、直線偏光のレーザビームを出射する
レーザ装置と、該レーザビームを直交二周波レーザに変
換する第1のヘテロゲイン干渉手段と、直交二周波レー
ザを用いて対物レンズと測定物との距離の変化を反射光
の位相変化でをモニタする第2のヘテロダイン干渉手段
と、該モニタ量により対物レンズと測定物の距離を常に
一定に保つフィードバック手段と、該フィードバック手
段により制御された対物レンズの変位量を計測する第3
のヘテロダイン干渉手段と、測定物をxy力方向走査す
る走査手段とから構成されている。
[Means for Solving the Problems] In order to achieve this object, the tracking type optical interference surface shape measuring device of the present invention includes a laser device that emits a linearly polarized laser beam, and an orthogonal two-frequency laser beam that emits the laser beam. a first heterodyne interference means for converting into Feedback means for always keeping the distance between the objective lens and the object to be measured constant; and a third feedback means for measuring the displacement of the objective lens controlled by the feedback means.
The apparatus is comprised of a heterodyne interference means, and a scanning means for scanning the object to be measured in the x and y force directions.

尚、第1のヘテロダイン干渉手段には、更に測定精度を
挙げるために、互いの偏光成分を混在させない低ノイズ
型ヘテロダイン干渉手段を用いてもよいのである。
Note that, in order to further improve measurement accuracy, a low-noise type heterodyne interference means that does not mix polarization components may be used as the first heterodyne interference means.

[作用] 上記の構成を有する本発明の追従型光波干渉表面形状測
定装置において、光源である直線偏光レザから発せられ
た周波数f。の光は、第1のヘテロダイン干渉手段によ
って、P波周波数f。+fm、S波周波数f0の直交二
周波レーザに変換され、その一部は第1のセンサによっ
て基準ビート信号として検出される。第1のヘテロゲイ
ン干渉手段によって生成された直交二周波レーザは、分
離手段によって2分されて第2及び第3のヘテロゲイン
干渉手段に導かれる。第2のヘテロダイン干渉手段に導
かれたレーザの一部は、対物レンズを通して測定物に照
射され、その反射光は測定物が走査手段によってXY力
方向走査されることから、その表面の凹凸に応じたドツ
プラーシフト或は位相変化を受け、再び第2のヘテロダ
イン干渉手段に入り、第2のセンサ上で参照光と干渉さ
せられ、凹凸量に応じた位相差が検出される。この位相
差情報は、フィードバック手段に送られ、そのフィード
バック手段は、この位相差に応じて対物レンズを上下に
移動させて常に測定物と対物レンズとの距離が一定にな
るように制御する。
[Function] In the tracking type light wave interference surface shape measuring device of the present invention having the above configuration, the frequency f emitted from the linearly polarized laser that is the light source. The light has a P wave frequency f by the first heterodyne interference means. +fm and an orthogonal two-frequency laser having an S-wave frequency f0, a part of which is detected by the first sensor as a reference beat signal. The orthogonal two-frequency laser generated by the first hetero gain interference means is divided into two by the separation means and guided to the second and third hetero gain interference means. A part of the laser guided by the second heterodyne interference means is irradiated onto the object through the objective lens, and the reflected light is reflected by the object depending on the unevenness of its surface as the object is scanned in the XY force direction by the scanning means. The light then undergoes a Doppler shift or a phase change, enters the second heterodyne interference means again, is made to interfere with the reference light on the second sensor, and a phase difference corresponding to the amount of unevenness is detected. This phase difference information is sent to the feedback means, and the feedback means moves the objective lens up and down according to this phase difference to control the distance between the object to be measured and the objective lens to always be constant.

また、第3のヘテロダイン干渉手段は、その対物レンズ
の移動量を計測し、xy座標に応じたZ方向の変位量△
2を対物レンズの焦点深度に制限されることなく高精度
に求める。その測定可能範囲はフィードバック手段の備
えているフィードバック量の限界で決定される。
Further, the third heterodyne interference means measures the amount of movement of the objective lens, and calculates the amount of displacement △ in the Z direction according to the xy coordinates.
2 with high precision without being limited by the depth of focus of an objective lens. The measurable range is determined by the limit of the amount of feedback provided by the feedback means.

[実施例] 以下、本発明を具体化した追従型光波干渉表面形状測定
装置を図面を参照して説明する。
[Example] Hereinafter, a tracking type light wave interference surface shape measuring device embodying the present invention will be described with reference to the drawings.

第1図に示すように、光源である直線偏光レザ10はS
偏光に設定され、そのビームはまず最初に第1のヘテロ
ダイン干渉装置12に入る。このヘテロダイン干渉装置
は、第2図のように、低ノイズ型に構成されており、入
射したビームは無偏光ビームスプリッタ(以下、NPB
Sと略す)14にて透過光と反射光に2分される。その
透過光はミラー16を経て光合波器である偏光ビームス
プリッタ(以下、PBSと略す)18に入射する。また
、反射光は音響光学変調器(以下、AOMと略す)20
,22にてそれぞれ80.OM)(Z。
As shown in FIG. 1, a linearly polarized laser 10 serving as a light source is S
Set to polarization, the beam first enters the first heterodyne interferometer 12 . As shown in Figure 2, this heterodyne interference device has a low-noise configuration, and the incident beam is transmitted through a non-polarizing beam splitter (hereinafter referred to as NPB).
The light is divided into transmitted light and reflected light at 14 (abbreviated as S). The transmitted light passes through a mirror 16 and enters a polarization beam splitter (hereinafter abbreviated as PBS) 18, which is an optical multiplexer. In addition, the reflected light is transmitted through an acousto-optic modulator (hereinafter abbreviated as AOM) 20
, 22, respectively 80. OM) (Z.

80.1MH2の周波数変調を受けて元の光周波数f。The original optical frequency f after undergoing frequency modulation of 80.1 MH2.

に対して、f、+100KHzの光周波数に変換される
のである。変換された光は、ミラー24を経て、λ/2
板26に入りS波からP波に変換される。この時、λ/
2板26の不完全性によって完全には変換されないので
、若干のS波成分が光ノイズとして残り、P+△Sとな
って合波器であるPB818に入る。しかしながら、P
BSI8のS波に対する透過率は0.005%であるた
め、この光ノイズ△Sは透過できす、P波のみかPBS
18を透過することになる。その結果、PBS18から
は、S波周波数f。、P波周波数f。
In contrast, it is converted to an optical frequency of f, +100 KHz. The converted light passes through the mirror 24 and has a wavelength of λ/2
The S wave enters the plate 26 and is converted into a P wave. At this time, λ/
Since it is not completely converted due to the imperfection of the second plate 26, some S-wave components remain as optical noise and enter the PB818, which is a multiplexer, as P+ΔS. However, P
Since the transmittance of BSI8 for S waves is 0.005%, this optical noise △S cannot be transmitted. Only P waves or PBS
18 will pass through. As a result, the S-wave frequency f is output from the PBS 18. , P wave frequency f.

+100KH2のほぼ完全な直交二周波レーザが出射さ
れるのである。ところが、従来技術にあるゼマンレーザ
から出射される直交二周波レーザは、数%程度の互いの
成分が混在しており、非線形な計測誤差の原因となって
いた。
A nearly perfect orthogonal dual frequency laser of +100 KH2 is emitted. However, in the orthogonal dual-frequency laser emitted from the Zeman laser in the prior art, components of about several percent of each other coexist, causing nonlinear measurement errors.

第1のヘテロゲイン干渉装置12を出射し、た直交二周
波レーザは第2、第3のヘテロダイン干渉装置に入ると
ともに、その一部はNPBS28゜30を経て偏光子3
2に入り、偏光面を揃えられセンサ34で以下の式で示
される基準ビート信号■8が検出される。
The orthogonal two-frequency laser emitted from the first heterogain interference device 12 enters the second and third heterodyne interference devices, and a part of it passes through the NPBS 28°30 and enters the polarizer 3.
2, the plane of polarization is aligned, and the sensor 34 detects a reference beat signal 8 expressed by the following equation.

■ 、〜 1  十 CO3[−2π f B t +
 φ 8゜コ但し、 fB:基準周波数100KH2k
二波数 φ、。:初期位相      である。
■ , ~ 1 ten CO3[-2π f B t +
φ8゜However, fB: Reference frequency 100KH2k
Two wave numbers φ,. : Initial phase.

第2のヘテロダイン干渉装置は、PBS36を起点とし
、ビームエクスパンダ38.対物レンズ40、被測定物
58に至る往路、復路からなる計測アームと、偏光子4
6.無偏光ビームスブリ・ツタ48.キャップ・アイ5
0に至る往路、復路からなる参照アームとで構成される
ものである。また1、第3のヘテロゲイン干渉装置は、
NPBS28を起点とし、偏光子70.ミラー68.λ
/2板66を経てNPB862に至る参照アームと、N
PBS30.PBS36.偏光子46.NPBS48.
キャップ・アイ50.NPBS48を経てNPBS62
に至る計測アームとより構成されるものである。
A second heterodyne interferometer starts from the PBS 36 and includes a beam expander 38 . An objective lens 40, a measurement arm consisting of an outward path and a return path leading to the object to be measured 58, and a polarizer 4.
6. Non-polarized beam suburi ivy 48. cap eye 5
It is composed of a reference arm consisting of an outward path leading to zero and a backward path. In addition, the first and third hetero gain interference devices are
Starting from NPBS28, polarizer 70. Mirror 68. λ
The reference arm that passes through the /2 plate 66 and reaches the NPB862, and the N
PBS30. PBS36. Polarizer 46. NPBS48.
Cap Eye 50. NPBS62 after NPBS48
It consists of a measurement arm that extends to.

第2のヘテロダイン干渉装置では、PBS36によりP
波とS波が別々に2分される。透過波であるP波はビー
ムエクスパンダ38によって拡大平行光にされて対物レ
ンズ40に入り、測定物に集光照射される。ところで、
被測定物58はXYステージによって移動させられると
、その反射光は表面の凹凸(△Z2)に応じた位相変化
(2k・△Z2)を受け、逆の光路を辿りPBS36、
NPBS30、偏光子42を通りセンサ44に到達する
In the second heterodyne interferometer, PBS36
The wave and S wave are divided into two separately. The P wave, which is a transmitted wave, is expanded into parallel light by the beam expander 38, enters the objective lens 40, and is focused and irradiated onto the object to be measured. by the way,
When the object to be measured 58 is moved by the XY stage, the reflected light undergoes a phase change (2k・△Z2) according to the surface irregularities (△Z2), and follows the opposite optical path to the PBS 36,
The light passes through the NPBS 30 and the polarizer 42 and reaches the sensor 44 .

一方、PB336で反射された光波は、PBSの性質上
、S成分のほかに若干のP成分(約1%)が含まれてい
る。そのため、偏光子46を通過させて完全なS波にさ
れる。そのS波はNPBS48で一部反射され、対物レ
ンズに固定されているキャップ・アイ50に入り反射さ
れる。この反射光も、逆の光路を辿り、NPBS48.
偏光子46を経て、PB836上で前出のP波と合波干
渉させられ、NPBS30.偏光子42を経てセンサ4
4に入る。センサ44で検出される信号強度は、PB8
36からキャップ・アイ50までの距離を21、測定物
までの距離を22とすると、■、〜1+CO8[2k・
 (Z、−Z、)−2π f、t  +φ、。コ 但し、 fB:基準周波数100KH2k:波数 φ、。:初期位相      である。
On the other hand, the light wave reflected by the PB 336 contains a small amount of P component (approximately 1%) in addition to the S component due to the nature of PBS. Therefore, it passes through the polarizer 46 and becomes a complete S wave. The S wave is partially reflected by the NPBS 48, enters a cap eye 50 fixed to the objective lens, and is reflected. This reflected light also follows the opposite optical path and passes through the NPBS48.
After passing through the polarizer 46, it is combined and interfered with the above-mentioned P wave on the PB836, and the NPBS30. Sensor 4 via polarizer 42
Enter 4. The signal strength detected by the sensor 44 is PB8
If the distance from 36 to cap eye 50 is 21, and the distance to the measurement object is 22, then ■, ~1+CO8[2k・
(Z, −Z,)−2π f,t +φ,. However, fB: Reference frequency 100KH2k: Wave number φ. : Initial phase.

第1のヘテロゲイン干渉装置により得られた基準信号I
Il〜1+CO5[−2πfBt+φllo]と比較し
、フォーカス時の■、に対するI、の位相をφ2Bとす
ると、φPBは、 φ、=φBO−φp。2k (Zl−22)で表わされ
る。これは、測定物表面の凹凸による光路長の変化△z
2は対物レンズ40の動き△Z。
Reference signal I obtained by the first heterogain interferometer
Comparing with Il~1+CO5[-2πfBt+φllo], and assuming that the phase of I with respect to ■ during focus is φ2B, φPB is: φ,=φBO−φp. 2k (Zl-22). This is due to the change in optical path length due to unevenness on the surface of the measurement object △z
2 is the movement ΔZ of the objective lens 40.

でキャンセルできることを示している。このφ、8を第
3図に示す。
This indicates that you can cancel with . This φ, 8 is shown in FIG.

フィードバック手段は、第4図に示すようなフィードバ
ック回路72と、例えば圧電素子54などのアクチュエ
ータとから構成されている。フィードバック回路72は
、第4図に示すように、このφFi1を高周波クォーツ
クロック92、AND器88及びカウウンタ回路80に
より高精度に測定し、フォーカス時に設定された位相φ
FOCLI8と引算器82で比較し、更にその差をD/
A変換器84にてアナログ量に変換し増幅して、圧電素
子54に送る。例えば、表面形状の凹凸量△Z2によっ
て、φ、が△φ7.だけ変化すると、すぐさま引算器8
2からその差△φ。のデジタル量が出力され、それに応
じたアナログ量が圧電素子54に加えられる。そして、
対物レンズ40が△Z、(=△Z2)だけ移動制御され
て、△Z2が△Z、によって打ち消されるのである。つ
まり、フィードバック回路72は、常に△φ1.−〇と
なるように対物レンズ40が固定されたZ軸ステージ5
6を移動制御し、被測定物58表面の凹凸量を対物レン
ズ40の動きにすり替えるのである。
The feedback means is composed of a feedback circuit 72 as shown in FIG. 4 and an actuator such as a piezoelectric element 54, for example. As shown in FIG. 4, the feedback circuit 72 measures this φFi1 with high precision using a high-frequency quartz clock 92, an AND device 88, and a counter circuit 80, and calculates the phase φFi1 set at the time of focusing.
Compare FOCLI8 and subtracter 82, and then calculate the difference by D/
The A converter 84 converts it into an analog quantity, amplifies it, and sends it to the piezoelectric element 54. For example, depending on the amount of unevenness △Z2 of the surface shape, φ becomes △φ7. If only changes, the subtracter 8
The difference △φ from 2. A digital amount is outputted, and a corresponding analog amount is applied to the piezoelectric element 54. and,
The objective lens 40 is controlled to move by △Z, (=△Z2), and △Z2 is canceled by △Z. In other words, the feedback circuit 72 always outputs Δφ1. - Z-axis stage 5 with objective lens 40 fixed so that
6 is controlled to move, and the amount of unevenness on the surface of the object to be measured 58 is replaced by the movement of the objective lens 40.

従って、対物レンズ40の焦点深度によって制限される
ことなく、フィードバック手段の限界まで測定できるの
である。そして、この対物レンズ40の動きは第三のヘ
テロダイン干渉装置によって高精度に計測されるのであ
る。
Therefore, measurements can be made up to the limits of the feedback means without being limited by the depth of focus of the objective lens 40. The movement of the objective lens 40 is then measured with high precision by the third heterodyne interference device.

第三のヘテロゲイン干渉装置の計測ビームは、第2のヘ
テロダイン干渉装置の参照ビームから取られる。つまり
、キャップ・アイ50によって反射され、NPBS48
.62を透過してセンサ64に到達したものを計測ビー
ムとする。この計測ビームは、フィードバック手段によ
って対物レンズ40が移動されるため、その移動量に応
じたk・△2.の位相変化情報を含んでいる。一方、参
照ビームは、NPBS28を透過した直交二周波レーザ
から取られる。つまり、直交二周波レーザに偏光子をか
けることにより変調のかかったP波のみを取り出し、さ
らにミラー68、λ/2板66を透過させ、先の計測ビ
ームと同じS偏波にされ、合波器であるNPBS62上
で合波干渉させられるのである。第3のセンサ64では
この対物レンズ40の移動量に応じた計測信号■。が検
出される。先と同様に、NPBS28からミラー68を
経て、センサ64に到達するまでの参照光の光路をZ3
、NPBS28からNPBS48までの計測光の光路を
Z4、NPBS48からキャップ・アイ50までの光路
を21、NPBS48からセンサ64までの光路をZ、
とすると、センサ64で検出される計測信号の干渉強度
は、Io〜1+CO8[k (Z、−Z、−Z、−2・
2.)−2πf、t+φDo] =1+CO8[k (ZCONST  2 ” Zl)
2πf、t+φDo] 但し、φo0:初期位相 k 二波数 fB :基準ビート周波数  である。
The measurement beam of the third heterodyne interferometer is taken from the reference beam of the second heterodyne interferometer. In other words, it is reflected by the cap eye 50 and the NPBS48
.. The beam that passes through the sensor 62 and reaches the sensor 64 is defined as a measurement beam. Since the objective lens 40 is moved by the feedback means, the measurement beam is emitted by k·Δ2 according to the amount of movement. Contains phase change information. On the other hand, the reference beam is taken from an orthogonal dual frequency laser transmitted through the NPBS 28. In other words, by applying a polarizer to the orthogonal dual-frequency laser, only the modulated P wave is extracted, which is then transmitted through the mirror 68 and the λ/2 plate 66 to become the S polarized wave, which is the same as the previous measurement beam, and is combined. The signals are combined and interfered on the NPBS 62, which is the receiver. The third sensor 64 generates a measurement signal ■ corresponding to the amount of movement of the objective lens 40. is detected. As before, the optical path of the reference light from the NPBS 28 to the mirror 68 to the sensor 64 is Z3.
, the optical path of the measurement light from NPBS 28 to NPBS 48 is Z4, the optical path from NPBS 48 to cap eye 50 is 21, the optical path from NPBS 48 to sensor 64 is Z,
Then, the interference intensity of the measurement signal detected by the sensor 64 is Io~1+CO8[k (Z, -Z, -Z, -2・
2. )−2πf, t+φDo] =1+CO8[k (ZCONST 2 ” Zl)
2πf, t+φDo] where φo0: initial phase k, two-wave number fB: reference beat frequency.

同様に、基準信号■8に対する■。の位相をφDBとす
ると、 φDB”φ80−φoo+2・k−Z。
Similarly, ■ for reference signal ■8. If the phase of is φDB, then φDB”φ80−φoo+2・k−Z.

k ” ZCONST となる。k” ZCONST becomes.

これは、対物レンズ40との距離Z、が変化すると、I
aに対するIDの位相が変化することを示しており、Z
、が△Z、だけ変化すると、光路の往復を考慮して2・
k・△Z、だけ位相が変化(△φon)するのである。
This means that when the distance Z to the objective lens 40 changes, I
This shows that the phase of ID with respect to a changes, and Z
, changes by △Z, taking into account the round trip of the optical path, 2.
The phase changes (Δφon) by k·ΔZ.

つまり、△Z、は、△Z+=λ/4π・△φ。B =λ/4π・ (φDBZ−φDBO)但し、φDBO
:Zlが変化する前の位相φosz:Z+が変化した後
の位相 を表わす。
In other words, △Z is △Z+=λ/4π・△φ. B = λ/4π・ (φDBZ−φDBO) However, φDBO
: represents the phase before Zl changes φosz: represents the phase after Z+ changes.

この位相変化△φを2π以上も含めて計測することによ
り、λ/2以上の計測も可能となるのである。
By measuring this phase change Δφ including 2π or more, it becomes possible to measure λ/2 or more.

そして、このように構成された測定装置により、例えば
約30nmの段差形状を有する測定物を実際に測定する
と、第5図に示すような測定結果(データ)が得られた
。また、従来の測定装置、例えばレンズ67とミラー6
8から成るキャップ・アイを取り除いた測定装置にて前
記の測定物を測定すると、第7図に示すような測定結果
(データ)が得られる。従って、前記両測定結果を比較
検討すると、従来の測定装置においては、ゼーマンレー
ザ61による光ノイズ、高精度ミラー76の表面粗さ、
Xステージ78の振動等により、高精度な測定ができて
いないことがわかる。
When a measurement object having a step shape of, for example, about 30 nm was actually measured using the measuring device configured as described above, measurement results (data) as shown in FIG. 5 were obtained. In addition, a conventional measuring device, for example, a lens 67 and a mirror 6
When the above-mentioned object is measured using a measuring device from which the cap eye consisting of 8 is removed, measurement results (data) as shown in FIG. 7 are obtained. Therefore, when comparing and examining the above two measurement results, it is found that in the conventional measuring device, optical noise caused by the Zeeman laser 61, surface roughness of the high precision mirror 76,
It can be seen that highly accurate measurement is not possible due to vibrations of the X stage 78 and the like.

以上のように、ヘテロゲイン干渉装置を二段構成にする
事により、対物レンズの焦点深度に制限されることなく
、かつ高分解能で測定物の表面形状が計測できるのであ
る。
As described above, by configuring the heterogain interference device in two stages, the surface shape of the object to be measured can be measured with high resolution without being limited by the depth of focus of the objective lens.

[発明の効果] 以上詳述したことから明らかなように、本発明によれば
、ヘテロダイン干渉手段を二段構成にし、一方のヘテロ
ゲイン干渉手段によりフォーカス変化を位相変化という
高分解能で検出するとともに、圧電素子等によりlnm
の精度で対物レンズにフォーカスサーボをかけ、かつ他
方のヘテロダイン干渉手段でその対物レンズの動きを計
測しているので、対物レンズの焦点深度に制限されるこ
となく、高分解能で測定物の表面形状を測定できるとい
う利点がある。
[Effects of the Invention] As is clear from the detailed description above, according to the present invention, the heterodyne interference means has a two-stage configuration, and one of the heterogain interference means detects a focus change in the form of a phase change with high resolution, and lnm by piezoelectric element etc.
The focus servo is applied to the objective lens with an accuracy of It has the advantage of being able to measure

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図までは本発明を具体化した実施例を示
すもので、第1図は追従型光波干渉表面形状測定装置の
構成図、第2図は低ノイズ型ヘテロダイン干渉装置の構
成図、第3図は基準信号とフォーカス信号の相対位相で
あるφFBを示す図、第4図はフィードバック回路の構
成を示すブロック図、第5図は本発明による微細形状測
定データを示す図、第6図は従来型のヘテロダイン干渉
表面形状測定装置の光学系図、第7図は従来の方法によ
る微細形状測定データを示す図である。 図中、12は直交二周波変換器、14は無偏光ビームス
プリッタ、16.24はミラー、18゜36は偏光ビー
ムスプリッタ、20.22は音響光学変調器、26.6
6はλ/2板、28.62は無偏光ビームスプリッタ、
30.48は無偏光ビームスプリッタ、32,46.4
2は偏光子、34.44.64は光センサ、36は偏光
ビームスプリッタ、38はビームエクスパンダ、40は
対物レンズ、50はキャップ・アイ、54は圧電素子、
56はZ軸ステージ、58は被測定物、60はXYステ
ージ、72はフィードバック回路、80はカウンタ、8
2は引算器、84はD/A変換器、86は増幅器、88
はAND器、90は反転器、92は高周波クォーツクロ
ックである。
1 to 5 show embodiments embodying the present invention. FIG. 1 is a configuration diagram of a tracking type light wave interference surface shape measuring device, and FIG. 2 is a configuration diagram of a low noise type heterodyne interference device. 3 is a diagram showing φFB, which is the relative phase of the reference signal and the focus signal, FIG. 4 is a block diagram showing the configuration of the feedback circuit, and FIG. 5 is a diagram showing fine shape measurement data according to the present invention. FIG. 6 is an optical system diagram of a conventional heterodyne interference surface shape measuring device, and FIG. 7 is a diagram showing fine shape measurement data by the conventional method. In the figure, 12 is an orthogonal two-frequency converter, 14 is a non-polarizing beam splitter, 16.24 is a mirror, 18°36 is a polarizing beam splitter, 20.22 is an acousto-optic modulator, 26.6
6 is a λ/2 plate, 28.62 is a non-polarizing beam splitter,
30.48 is a non-polarizing beam splitter, 32,46.4
2 is a polarizer, 34, 44, 64 is an optical sensor, 36 is a polarizing beam splitter, 38 is a beam expander, 40 is an objective lens, 50 is a cap eye, 54 is a piezoelectric element,
56 is a Z-axis stage, 58 is an object to be measured, 60 is an XY stage, 72 is a feedback circuit, 80 is a counter, 8
2 is a subtracter, 84 is a D/A converter, 86 is an amplifier, 88
is an AND device, 90 is an inverter, and 92 is a high frequency quartz clock.

Claims (1)

【特許請求の範囲】 1、直線偏光のレーザビームを出射するレーザ装置と、 該レーザビームを直交二周波レーザに変換する第1のヘ
テロダイン干渉手段と、 該直交二周波レーザを用いて対物レンズと測定物との距
離変化を反射光の位相差量でモニタする第2のヘテロダ
イン干渉手段と、 該位相差量により対物レンズと測定物の距離を常に一定
に保つフィードバック手段と、 該フィードバック手段により制御された対物レンズの変
位量を上記直交二周波レーザを用いて計測する第3のヘ
テロダイン干渉手段と、 上記測定物をxy方向に走査する走査手段と、を備えた
ことを特徴とする追従型光波干渉表面形状測定装置。
[Claims] 1. A laser device that emits a linearly polarized laser beam; a first heterodyne interference means that converts the laser beam into an orthogonal two-frequency laser; and an objective lens and an object lens using the orthogonal two-frequency laser. a second heterodyne interference means for monitoring changes in the distance to the object to be measured using a phase difference amount of the reflected light; a feedback means for always keeping the distance between the objective lens and the object to be constant based on the amount of phase difference; and control by the feedback means. a third heterodyne interference means for measuring the amount of displacement of the objective lens by using the orthogonal dual frequency laser; and a scanning means for scanning the object to be measured in the x and y directions. Interferometric surface profile measurement device.
JP19002690A 1990-07-16 1990-07-16 Tracking-type optical interference surface shape measuring apparatus Pending JPH0474914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19002690A JPH0474914A (en) 1990-07-16 1990-07-16 Tracking-type optical interference surface shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19002690A JPH0474914A (en) 1990-07-16 1990-07-16 Tracking-type optical interference surface shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0474914A true JPH0474914A (en) 1992-03-10

Family

ID=16251138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19002690A Pending JPH0474914A (en) 1990-07-16 1990-07-16 Tracking-type optical interference surface shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0474914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343222A (en) * 2000-06-05 2001-12-14 Canon Inc Method and apparatus for measuring three-dimensional shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343222A (en) * 2000-06-05 2001-12-14 Canon Inc Method and apparatus for measuring three-dimensional shape

Similar Documents

Publication Publication Date Title
US6529279B2 (en) Interferometer and method for measuring the refractive index and optical path length effects of air
US6327039B1 (en) Interferometer and method for measuring the refractive index and optical path length effects of air
US7251041B2 (en) Spatial filtering in interferometry
EP1169613B1 (en) Characterizing and correcting cyclic errors in distance measuring and dispersion interferometry
US6330065B1 (en) Gas insensitive interferometric apparatus and methods
US6219144B1 (en) Apparatus and method for measuring the refractive index and optical path length effects of air using multiple-pass interferometry
KR100328007B1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
US6757066B2 (en) Multiple degree of freedom interferometer
JP4939765B2 (en) Displacement measuring method and apparatus
US6762845B2 (en) Multiple-pass interferometry
EP1419361A1 (en) Dynamic interferometric controlling direction of input beam
JP3332365B2 (en) Apparatus and method for measuring refractive index and optical path length effects of air using multi-path interferometry
WO2007005314A2 (en) Apparatus and methods for reducing non-cyclic non-linear errors in interferometry
US7495770B2 (en) Beam shear reduction in interferometry systems
JPH0474914A (en) Tracking-type optical interference surface shape measuring apparatus
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
JP3344637B2 (en) Optical interference type position measuring device
EP1514074B1 (en) Interferometry systems involving a dynamic beam-steering assembly
JPH10274513A (en) Surface configuration measuring method and surface configuration measuring apparatus
JPH04102003A (en) Frequency modulation optical heterodyne interference measuring device
JP2003042710A (en) Optical heterodyne interferometer
JPH04310810A (en) Measuring apparatus of light heterodyne interference
JPH04310811A (en) Measuring apparatus of light heterodyne interference
JPH04188003A (en) Pattern matching type heterodyne interference measurement device
JPH09113216A (en) Method and instrument for measuring relative displacement