JPH0474319A - Optical pickup - Google Patents

Optical pickup

Info

Publication number
JPH0474319A
JPH0474319A JP2187669A JP18766990A JPH0474319A JP H0474319 A JPH0474319 A JP H0474319A JP 2187669 A JP2187669 A JP 2187669A JP 18766990 A JP18766990 A JP 18766990A JP H0474319 A JPH0474319 A JP H0474319A
Authority
JP
Japan
Prior art keywords
light
beam splitter
split prism
semiconductor laser
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2187669A
Other languages
Japanese (ja)
Inventor
Hiromi Takei
武井 浩美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Gunma Ltd
Original Assignee
NEC Gunma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Gunma Ltd filed Critical NEC Gunma Ltd
Priority to JP2187669A priority Critical patent/JPH0474319A/en
Publication of JPH0474319A publication Critical patent/JPH0474319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To make the device small in size and light in weight, and to shorten the adjustment time of a focus detecting system by constituting the focus detecting system by performing partial masking to two emitting faces of a polarization beam splitter, and also, joining a split prism. CONSTITUTION:The emitting face of a polarization beam splitter 4 becomes two sectors from a circular luminous flux because two triangular parts 17 in the vertical direction in four triangular parts divided into four by two pieces of diagonal lines are subjected to sand grinding and black coating, and they are made incident on a split prism 14. Two sector luminous fluxes which are made incident on the split prism 14 are subjected to horizontal shift by two wedge prisms of its arbitrary angle of the split prism and emitted, and caught by a photodetector 16 being in front thereof. In such a way, the device can be made small in size and light in weight, and the adjustment time of a focus detecting system can be shortened.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、円盤状記録媒体に各種情報を光学的に記録φ
再生のみを行なう装置の光学式ピックアップに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is a method for optically recording various information on a disk-shaped recording medium.
This invention relates to an optical pickup for a device that only performs playback.

[従来の技術] 従来この種の装置は、第7図および第8図に示すような
構成により、半導体レーザ1を出射した光束はコリメー
トレンズ2により平行光とされた後、前方に配置された
ビーム整形プリズム3に入射し、半導体レーザ1のその
PN接合面に平行な方向に2.5倍程度拡大された円形
光束となって偏光ビームスプリッタ4に入射する。この
とき、偏光ビームスプリッタ4はコリメートレンズ出射
後の光束がS偏光で入射するように配置されているので
、偏光ビームスプリッタ4に入射した光束はその誘電体
多層膜をコートした接合面により100%反射され、λ
/4板5を透過後円偏光となり対物レンズ6により円盤
状記録媒体7上に集光される。
[Prior Art] Conventionally, this type of device has a configuration as shown in FIGS. 7 and 8, in which a light beam emitted from a semiconductor laser 1 is made into parallel light by a collimating lens 2, and then the parallel beam is disposed in front. The light enters the beam shaping prism 3, becomes a circular light beam expanded by about 2.5 times in a direction parallel to the PN junction surface of the semiconductor laser 1, and enters the polarizing beam splitter 4. At this time, the polarizing beam splitter 4 is arranged so that the light beam emitted from the collimating lens enters as S-polarized light, so that the light beam incident on the polarizing beam splitter 4 is 100% due to the junction surface coated with the dielectric multilayer film. reflected, λ
After passing through the /4 plate 5, it becomes circularly polarized light and is focused onto a disc-shaped recording medium 7 by an objective lens 6.

かかる後に、円盤状記録媒体7によって反射された光束
は再び対物レンズ6を透過しλ/4板5を透過し、半導
体レーザ1出射後の光束となす方位角が90’  とな
る直線偏光となり、再び偏光ビームスプリッタ4に入射
する。このとき、この光束は偏光ビームスプリッタ4に
対してP偏光で入射するため、100%透過しλ/4板
5を透過後、円偏光となり凹面鏡8によって集光されな
がら反射し、再びλ/4板5を透過後S偏光となり、今
度は偏光ビームスプリッタ4の誘電体多層膜をコートシ
た接合面により100%反射されビームスプリッタ9に
入射する。
After this, the light beam reflected by the disc-shaped recording medium 7 passes through the objective lens 6 again, passes through the λ/4 plate 5, and becomes a linearly polarized light whose azimuth angle is 90' with the light beam emitted from the semiconductor laser 1. The light enters the polarizing beam splitter 4 again. At this time, this light beam enters the polarizing beam splitter 4 as P-polarized light, so it is 100% transmitted, passes through the λ/4 plate 5, becomes circularly polarized light, is reflected while being condensed by the concave mirror 8, and is reflected again as a λ/4 light beam. After passing through the plate 5, it becomes S-polarized light, which is then 100% reflected by the junction surface coated with the dielectric multilayer film of the polarizing beam splitter 4, and enters the beam splitter 9.

ビームスプリッタ9に入射した光束はその50%がコリ
メートレンズ2の光軸と平行な方向に透過し、残り50
%はそれと直交する方向に反射し、ビームスプリッタ9
のコリメートレンズ2の光軸と平行な方向に出射した光
束は前方にあるナイフ10により更に50%が遮光され
、受光素子12によって捕らえられ、その差動出力によ
りフォーカシング制御を行ない、残りの、コリメートレ
ンズ2の光軸と直交する方向に出射した光束は受光素子
11によって捕らえられ、トラッキング制御および再生
信号検出を行なっていた。
50% of the luminous flux incident on the beam splitter 9 is transmitted in a direction parallel to the optical axis of the collimating lens 2, and the remaining 50% is transmitted in a direction parallel to the optical axis of the collimating lens 2.
% is reflected in the direction perpendicular to it, and the beam splitter 9
A further 50% of the light beam emitted in a direction parallel to the optical axis of the collimating lens 2 is blocked by the knife 10 in front, captured by the light receiving element 12, and focusing control is performed by its differential output, and the remaining part is collimated. The light beam emitted in the direction perpendicular to the optical axis of the lens 2 is captured by the light receiving element 11, and tracking control and reproduction signal detection are performed.

[発明が解決しようとする課題] 上述した従来の構成装置では、フォーカス検出にシング
ルナイフェツジ法を採用しているため、ナイフ10の調
整をコリメートレンズの光軸に直交する面内において行
なわなければならないばかりでなく、その調整にかなり
の時間を要する。また、外部からの衝撃および環境変化
などにより受光素子12の差動出力にオフセットを生じ
た場合、電気的に補正ができるマージンが少ないため、
受光素子12の調整を再度行なわなければならない。
[Problems to be Solved by the Invention] Since the conventional configuration device described above employs a single knife method for focus detection, the knife 10 must be adjusted in a plane perpendicular to the optical axis of the collimating lens. Not only is this necessary, but it also takes a considerable amount of time to adjust. In addition, if an offset occurs in the differential output of the light receiving element 12 due to an external shock or environmental change, there is little margin for electrical correction.
The light receiving element 12 must be adjusted again.

さらに、光学系の構成として、ビーム整形プリズム3、
偏光ビームスプリッタ4およびビームスプリッタ9を直
線的に接合しているため装置全体の形状が大きくなって
しまう。
Furthermore, as a configuration of the optical system, a beam shaping prism 3,
Since the polarizing beam splitter 4 and the beam splitter 9 are linearly joined, the overall shape of the device becomes large.

[課題を解決するための手段] 本発明の光学式ピックアップは、円盤状記録媒体に各種
情報を光学的に記録・再生のみを行なう装置において、
光源の半導体レーザと、前記半導体レーザから出射した
光束を平行光とするコリメートレンズと、前記コリメー
トレンズの出射面の前方に配置され、前記コリメートレ
ンズ出射の光束を前記半導体レーザのPN接合面と平行
な方向に任意の倍率で拡大するビーム整形プリズムと、
前記コリメートレンズの光軸と直交する方向の2つの出
射面にそれぞれλ/4板が接合され、かつ、その一方の
前記λ/4板に凹面鏡ハーフミラ−が接合され、前記フ
リメートレンズの光軸と平行な出射面においてその2本
の対角線により4分割された部分のうち、前記ビーム整
形プリズムのビーム拡大方向と平行な2つの三角形部分
が砂すり面でしかも、光吸収用の黒色塗装を施した偏光
ビームスプリッタと、前記偏光ビームスプリッタの前記
部分的に黒色塗装を施した面に接合されたスプリットプ
リズムと、前記スプリットプリズムの前方に配置された
少なくとも4分割以上の第1の受光素子と、前記凹面鏡
ハーフミラ−の前方に少なくとも4分割以上の第2の受
光素子とを配置したことを特徴とする。
[Means for Solving the Problems] The optical pickup of the present invention is an apparatus that only optically records and reproduces various information on a disc-shaped recording medium.
A semiconductor laser as a light source, a collimator lens that converts the light beam emitted from the semiconductor laser into parallel light, and a collimator lens arranged in front of the output surface of the collimator lens to make the light beam emitted from the collimator lens parallel to the PN junction surface of the semiconductor laser. A beam shaping prism that expands in any direction at any magnification,
A λ/4 plate is bonded to each of the two output surfaces in a direction orthogonal to the optical axis of the collimating lens, and a concave half mirror is bonded to one of the λ/4 plates, and the optical axis of the collimating lens is Of the parts divided into four by the two diagonal lines on the exit plane parallel to , the two triangular parts parallel to the beam expansion direction of the beam shaping prism are sanded surfaces and are coated with black paint for light absorption. a polarizing beam splitter, a split prism joined to the partially black-painted surface of the polarizing beam splitter, and a first light receiving element having at least four divisions arranged in front of the split prism; A second light receiving element divided into at least four parts is arranged in front of the concave half mirror.

[実施例コ 次に本発明について図面を参照して説明する。[Example code] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す図、第2図は同実施例
を対物レンズ6の光軸に平行な方向のファーフィールド
より眺めた場合の図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram of the same embodiment viewed from the far field in a direction parallel to the optical axis of the objective lens 6.

半導体レーザ1を出射した光束はコリメートレンズ2に
よって平行光とされた後、前方に配置されたビーム整形
プリズム3に入射し、半導体レーザ1のそのPN接合面
に平行な方向に2.5倍程度拡大され、円形光束となっ
て偏光ビームスプリツタ4に入射する。このとき、偏光
ビームスプリッタ4は半導体レーザ1出射の光束に対し
ては、例えばP偏光を100%透過、S偏光を100%
反射するような特性を持たせであるが、いまの場合偏光
ビームスプリッタ4はコリメートレンズ2出射後の光束
がS偏光で入射するように配置されているため、偏光ビ
ームスプリッタ4に入射した光束は、その誘電体多層膜
をコートした接合面により100%反射され、λ/4板
5を透過後円偏光となり対物レンズ6により円盤状記録
媒体7上に集光される。
The light beam emitted from the semiconductor laser 1 is made into parallel light by the collimating lens 2, and then enters the beam shaping prism 3 placed in front, where it is transformed by about 2.5 times in the direction parallel to the PN junction surface of the semiconductor laser 1. The light is expanded and becomes a circular light beam that enters the polarizing beam splitter 4. At this time, the polarizing beam splitter 4 transmits 100% of the P-polarized light and 100% of the S-polarized light with respect to the light beam emitted from the semiconductor laser 1.
In this case, the polarizing beam splitter 4 is arranged so that the light beam after exiting the collimating lens 2 enters as S-polarized light, so the light beam incident on the polarizing beam splitter 4 is The light is 100% reflected by the junction surface coated with the dielectric multilayer film, becomes circularly polarized light after passing through the λ/4 plate 5, and is focused onto the disc-shaped recording medium 7 by the objective lens 6.

かかる後に、円盤状記録媒体7によって反射された光束
は再び対物レンズ6とλ/4板5を透過し、半導体レー
ザ1出射後の光束となす方位角が90° となる直線偏
光となり再び偏光ビームスプリッタ4に入射するため、
その誘電体多層膜とコートした接合面を今度は透過し、
λ/4板5を透過して円偏光となり凹面鏡ハーフミラ−
13に入射する。
After this, the light beam reflected by the disc-shaped recording medium 7 passes through the objective lens 6 and the λ/4 plate 5 again, and becomes linearly polarized light with an azimuth angle of 90° with the light beam emitted from the semiconductor laser 1, and becomes a polarized beam again. In order to enter the splitter 4,
This time, it passes through the bonded surface coated with the dielectric multilayer film,
It passes through the λ/4 plate 5 and becomes circularly polarized light, which becomes a concave mirror half mirror.
13.

凹面鏡ハーフミラ−13に入射した光束は、50%の光
量は集光されながら透過し、前方に配置された受光素子
15により捕らえられる。第4図は受光素子15に入射
する光束を示しており、同図のE、F、G、Hはそれぞ
れ4つの受光面である。トラック検出には(H−F)の
差動出力により行ない、再生信号検出は(E+F+G+
H)の出力にて検出する。
50% of the light beam incident on the concave half mirror 13 is transmitted while being focused, and is captured by the light receiving element 15 disposed in front. FIG. 4 shows the light beam incident on the light receiving element 15, and E, F, G, and H in the figure represent four light receiving surfaces, respectively. Track detection is performed by differential output of (H-F), and playback signal detection is performed by (E+F+G+
Detected by the output of H).

凹面鏡ハーフミラ−13に入射した残りの50%の光量
は、その凹面鏡により集光されながら反射しλ/4板5
を透過し再びS偏光となるため、偏光ビームスプリッタ
4の誘電体多層膜をコートした接合面により反射され、
第6図に示すようなスプリットプリズム14に入射する
が、このとき、偏光ビームスプリッタ4の出射面は第3
図に示すように、その2本の対角線により4分割された
4つの三角形部分のうち鉛直方向の2つの三角形部分1
7が砂ずり処理および黒色塗装が施しであるため、円形
光束から2つの扇形となり、スプリットプリズム14に
入射する。
The remaining 50% of the light incident on the concave mirror half mirror 13 is reflected while being focused by the concave mirror, and is reflected by the λ/4 plate 5.
The light passes through the beam and becomes S-polarized light again, so it is reflected by the junction surface coated with the dielectric multilayer film of the polarizing beam splitter 4.
The beam enters the split prism 14 as shown in FIG. 6, but at this time, the exit surface of the polarizing beam splitter 4
As shown in the figure, among the four triangular parts divided by the two diagonals, two vertical triangular parts 1
Since the light beam 7 has been sand-treated and painted black, the circular light beam becomes two fan-shaped lights and enters the split prism 14 .

スプリットプリズム14に入射した2つの扇形光束はス
プリットプリズムのその任意の角度の2つのくさびプリ
ズムにより横ズラシを受けて出射し前方にある受光素子
16によって捕らえられる。
The two fan-shaped light beams incident on the split prism 14 are laterally shifted by the two wedge prisms at arbitrary angles of the split prism, and then emitted and captured by the light receiving element 16 in front.

第5図は受光素子16に入射する2つの扇形光束を示し
ており、同図のA、B、C,Dはそれぞれ4つの受光面
である。フォーカス検出はダブルナイフェツジ法を採用
し、例えば(A+D) −(B+C)のような差動出力
により行なう。
FIG. 5 shows two fan-shaped light beams incident on the light-receiving element 16, and A, B, C, and D in the figure represent four light-receiving surfaces, respectively. Focus detection employs a double knife method, and is performed by differential outputs such as (A+D)-(B+C), for example.

[発明の効果コ 以上説明したように本発明によれば、偏光ビームスプリ
ッタの2つの出射面に部分的なマスキングを施しさらに
スプリットプリズムを接合してフォーカス検出系を構成
することにより、装置の小型軽量化、フォーカス検出系
の調整時間の短縮および環境変化に対するフォーカス検
出系のオフセット補正のマージンの拡大を簡単に行なう
ことができるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, the two exit surfaces of the polarizing beam splitter are partially masked and a split prism is joined to form a focus detection system, thereby reducing the size of the device. This has the advantage of being lightweight, reducing the adjustment time of the focus detection system, and easily increasing the margin for offset correction of the focus detection system against environmental changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は第1図の
実施例を対物レンズ6の光軸に平行な方向のファーフィ
ールドより眺めた場合の図、第3図は同実施例の偏光ビ
ームスプリッタのマスキング部分を説明するための図、
第4図は同実施例のトラック検出系の受光素子の受光状
態を説明するための図、第5図は同実施例のフォーカス
、検出系の受光素子の受光状態を説明するための図、第
6図は同実施例に用いられるスプリットプリズムを説明
するための図、第7図は従来例を示す図、第8図は従来
例の対物レンズの光軸に平行な方向のファーフィールド
より眺めた場合の図である。 1・・・半導体レーザ、2・・・コリメートレンズ、3
・・・ビーム整形プリズム、4・・・偏光ビームスプリ
ッタ、5・・・λ/4板、6・・・対物レンズ、7・・
・円盤状記録媒体、8・・・凹面鏡、9・・・ビームス
プリッタ、10・・・ナイフ、11,12,15.IF
5・・・受光素子、13・・・凹面鏡ハーフミラ−14
・・・スプリットプリズム、17・・・光吸収用マスキ
ング部分。
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram of the embodiment of FIG. 1 viewed from the far field in a direction parallel to the optical axis of the objective lens 6, and FIG. 3 is the same diagram. A diagram for explaining the masking part of the polarizing beam splitter of the example,
FIG. 4 is a diagram for explaining the light receiving state of the light receiving element of the track detection system of the same embodiment, and FIG. 5 is a diagram for explaining the light receiving state of the light receiving element of the focus and detection system of the same embodiment. Figure 6 is a diagram for explaining the split prism used in the same example, Figure 7 is a diagram showing a conventional example, and Figure 8 is a view of the conventional example from the far field in a direction parallel to the optical axis of the objective lens. FIG. 1... Semiconductor laser, 2... Collimator lens, 3
... Beam shaping prism, 4... Polarizing beam splitter, 5... λ/4 plate, 6... Objective lens, 7...
- Disc-shaped recording medium, 8... Concave mirror, 9... Beam splitter, 10... Knife, 11, 12, 15. IF
5... Light receiving element, 13... Concave mirror half mirror 14
... Split prism, 17... Masking part for light absorption.

Claims (1)

【特許請求の範囲】[Claims]  円盤状記録媒体に各種情報を光学的に記録・再生のみ
を行なう装置において、光源の半導体レーザと、前記半
導体レーザから出射した光束を平行光とするコリメート
レンズと、前記コリメートレンズの出射面の前方に配置
され、前記コリメートレンズ出射の光束を前記半導体レ
ーザのPN接合面と平行な方向に任意の倍率で拡大する
ビーム整形プリズムと、前記コリメートレンズの光軸と
直交する方向の2つの出射面にそれぞれλ/4板が接合
され、かつ、その一方の前記λ/4板に凹面鏡ハーフミ
ラーが接合され、前記コリメートレンズの光軸と平行な
出射面においてその2本の対角線により4分割された部
分のうち、前記ビーム整形プリズムのビーム拡大方向と
平行な2つの三角形部分が砂ずり面でしかも、光吸収用
の黒色塗装を施した偏光ビームスプリッタと、前記偏光
ビームスプリッタの前記部分的に黒色塗装を施した面に
接合されたスプリットプリズムと、前記スプリットプリ
ズムの前方に配置された少なくとも4分割以上の第1の
受光素子と、前記凹面鏡ハーフミラーの前方に少なくと
も4分割以上の第2の受光素子とを配置したことを特徴
とする光学式ピックアップ。
A device that only optically records and reproduces various information on a disk-shaped recording medium includes a semiconductor laser as a light source, a collimator lens that converts the light beam emitted from the semiconductor laser into parallel light, and a front side of the exit surface of the collimator lens. a beam shaping prism disposed in the collimating lens, which expands the luminous flux emitted from the collimating lens by an arbitrary magnification in a direction parallel to the PN junction surface of the semiconductor laser; λ/4 plates are bonded to each, and a concave mirror half mirror is bonded to one of the λ/4 plates, and the output surface parallel to the optical axis of the collimating lens is divided into four parts by two diagonal lines. Among them, two triangular parts parallel to the beam expansion direction of the beam shaping prism are sand-striped surfaces, and the polarizing beam splitter is painted black for light absorption, and the part of the polarizing beam splitter is painted black. a split prism bonded to a surface subjected to a process, a first light-receiving element having at least four divisions arranged in front of the split prism, and a second light-receiving element having at least four divisions arranged in front of the concave mirror half mirror. An optical pickup characterized by arranging.
JP2187669A 1990-07-16 1990-07-16 Optical pickup Pending JPH0474319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187669A JPH0474319A (en) 1990-07-16 1990-07-16 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187669A JPH0474319A (en) 1990-07-16 1990-07-16 Optical pickup

Publications (1)

Publication Number Publication Date
JPH0474319A true JPH0474319A (en) 1992-03-09

Family

ID=16210090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187669A Pending JPH0474319A (en) 1990-07-16 1990-07-16 Optical pickup

Country Status (1)

Country Link
JP (1) JPH0474319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480625B2 (en) 2003-03-07 2009-01-20 Casio Computer Co., Ltd. Sales data processing device and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480625B2 (en) 2003-03-07 2009-01-20 Casio Computer Co., Ltd. Sales data processing device and program

Similar Documents

Publication Publication Date Title
EP0475765B1 (en) Optical head for magneto-optical recording/reproducing apparatus
JPH01317250A (en) Apparatus for optically scanning magneto- optic recording carrier
JP2798185B2 (en) Optical head for magneto-optical information reproducing device
JPH0474319A (en) Optical pickup
JPS63261546A (en) Optical pickup
JPH04172625A (en) Optical pickup
JPH04170724A (en) Optical pickup device
JP2625738B2 (en) Optical head
JP2760848B2 (en) Focus position detection device and focus control device
JP3335212B2 (en) Light head
JP2806197B2 (en) Optical pickup
JPH01294236A (en) Optical head
JPS59146458A (en) Optical recording and reproducing device
JPS6292242A (en) Optical pickup
JPS5914135A (en) Focus detecting method
JPS59116605A (en) Focus detection of optical system
JPH04286745A (en) Optical pickup device
JPS63131333A (en) Focus error detector
JPH0294118A (en) Focus error detector
JPH04172626A (en) Optical pickup
JPS6111951A (en) Optical head device
JPS63228423A (en) Optical information processor
JPH0323521A (en) Optical pickup device
JPH0279241A (en) Optical head
JPS63308754A (en) Optical pickup