JPH0473839A - Conductive film forming device - Google Patents

Conductive film forming device

Info

Publication number
JPH0473839A
JPH0473839A JP18403790A JP18403790A JPH0473839A JP H0473839 A JPH0473839 A JP H0473839A JP 18403790 A JP18403790 A JP 18403790A JP 18403790 A JP18403790 A JP 18403790A JP H0473839 A JPH0473839 A JP H0473839A
Authority
JP
Japan
Prior art keywords
furnace
temperature
conductive film
fluorescent lamp
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18403790A
Other languages
Japanese (ja)
Inventor
Nobuhiro Tamura
暢宏 田村
Atsushi Sato
厚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP18403790A priority Critical patent/JPH0473839A/en
Publication of JPH0473839A publication Critical patent/JPH0473839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To accurately carry out the coating of a conductive film on a fluorescent lamp bulb by setting the temperature in a furnace based on the measurement result of the resistance of the conductive film of the fluorescent lamp bulb, which is exhausted from the furnace, and by controlling the temperature in the furnace based on the result. CONSTITUTION:The resistance of a conductive film of a fluorescent lamp bulb, which is exhausted from a furnace 11, is measured by a resistance measurement device 26, and the measured resistance by the resistance measurement device 26 is compared with an aimed value of resistance maintenance, which is preliminarily set for the measurement resistance, by a sequencer 32, and the temperature in the furnace is set based on the difference, and a signal of the set temperature is supplied to a proportion controller 29, by which the set temperature is compared with the temperature in the furnace measured by a thermal body 28 for measurement of furnace temperature, and a switch valve controller 31 is controlled in such a way that the temperature in the furnace will be the same as the set temperature, and the opening of an automatic switch valve 30 is adjusted, so as to control the supply of combustion gas to a heating means. The coating of the conductive film on the fluorescent lamp bulb is carried out accurately constantly, while the level of the resistance of the conductive film can thus be maintained almost stable.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えばラピッドスタート型蛍光灯のバルブ内
面に透明な導電被膜をコーティングする導電被膜形成装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a conductive film forming apparatus for coating a transparent conductive film on the inner surface of a bulb of, for example, a rapid start type fluorescent lamp.

(従来の技術) 蛍光灯バルブの内面に導電被膜をコーティングする導電
被膜形成装置は、蛍光灯バルブを炉内に供給してバーナ
等の加熱手段により加熱し、その加熱された蛍光灯バル
ブに対して一方の開口端から例えば有機錫化合物等の導
電被膜材となる薬品の蒸気をノズルを介して吹込むとと
もに他方の開口端からダクトによりエアー抜きを行うこ
とにより蛍光灯バルブの内面に導電被膜をコーティング
し、導電被膜のコーティングが終了した蛍光灯バルブを
炉内から排出するようになっている。
(Prior art) A conductive film forming device that coats a conductive film on the inner surface of a fluorescent light bulb supplies the fluorescent light bulb into a furnace, heats it with a heating means such as a burner, and then applies a coating to the heated fluorescent light bulb. A conductive coating is applied to the inner surface of the fluorescent lamp bulb by blowing vapor of a chemical, such as an organic tin compound, through a nozzle from one open end and removing air through a duct from the other open end. Fluorescent lamp bulbs that have been coated with a conductive film are discharged from the furnace.

そして第4図に示すように炉1内に設けられた加熱手段
に対して外部から燃焼用ガスを電磁弁2を介して供給す
るとともに炉1内の温度を熱電対3で測定し、その熱電
対3からの温度測定出力を比例制御部4に供給している
。そして比例制御部4にて入力される温度測定値に基づ
いて電気式の自動開閉弁制御部5を制御し、その自動開
閉弁制御部5にて開閉弁2の開度を調節して加熱手段に
対するガスの供給量、すなわち炉入力エネルギーを制御
するようになっていた。
Then, as shown in FIG. 4, combustion gas is supplied from the outside to the heating means provided in the furnace 1 through a solenoid valve 2, and the temperature inside the furnace 1 is measured with a thermocouple 3. The temperature measurement output from pair 3 is supplied to proportional control section 4. Then, the electric automatic on-off valve control section 5 is controlled based on the temperature measurement value inputted in the proportional control section 4, and the automatic on-off valve control section 5 adjusts the opening degree of the on-off valve 2, thereby controlling the heating means. The amount of gas supplied to the reactor, in other words the input energy of the furnace, was controlled.

(発明が解決しようとする課題) しかしこのように炉入力エネルギーの制御を炉内温度の
測定値のみに基づいて行ったのでは、例えば炉内におけ
る蛍光灯バルブが空になったり、蛍光灯バルブが炉内に
詰まったりした場合、被熱物蓄熱量の変化により炉内温
度が大きく変化して電磁弁2の開度を急激に変化させる
事態が生じ、その結果バルブへの導電被膜のコーティン
グに悪影響を及ぼす問題があった。
(Problem to be solved by the invention) However, if the furnace input energy is controlled only based on the measured value of the temperature inside the furnace, for example, the fluorescent light bulb inside the furnace may become empty, or the fluorescent light bulb may become empty. If the furnace is clogged, the temperature inside the furnace will change greatly due to the change in the amount of heat stored in the heated object, causing a sudden change in the opening degree of the solenoid valve 2. As a result, the conductive film coating on the valve will be affected. There was a problem that had a negative impact.

また蛍光体バルブの温度を直接測定できないため条件に
よっては熱電対による測定温度と蛍光体バルブの温度と
に大きな差がでてバルブへの導電被膜のコーティングに
悪影響を及ぼす問題があった。
Furthermore, since the temperature of the phosphor bulb cannot be directly measured, depending on the conditions, there may be a large difference between the temperature measured by the thermocouple and the temperature of the phosphor bulb, which may have an adverse effect on the conductive film coating on the bulb.

そしてこのように蛍光灯バルブへの導電被膜のコーティ
ングが正確に行われない事態が生じると導電被膜の抵抗
値が大きく変動し、例えば抵抗値が大きくなると蛍光灯
のスタート電圧が異常上昇し、また抵抗値が小さくなる
と点灯中の黒化現象が早くから現れ不良品となる問題が
あった。
If a situation like this occurs in which the conductive film is not applied accurately to the fluorescent lamp bulb, the resistance value of the conductive film will fluctuate greatly. For example, if the resistance value increases, the starting voltage of the fluorescent lamp will rise abnormally, and When the resistance value becomes small, there is a problem that a blackening phenomenon occurs earlier during lighting, resulting in a defective product.

また気温変化や吹込み薬品のバラツキ等によっても蛍光
灯バルブへの導電被膜のコーティングが変化し導電被膜
の抵抗値が変動する問題があった。
There is also a problem in that the coating of the conductive film on the fluorescent lamp bulb changes due to changes in temperature, variations in the amount of chemicals injected, etc., and the resistance value of the conductive film fluctuates.

そこで本発明は、蛍光灯バルブへの導電被膜のコーティ
ングを常に正確に行うことができ、従って導電被膜の抵
抗値を略一定に管理することができる導電被膜形成装置
を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention aims to provide a conductive film forming apparatus that can always accurately coat a fluorescent lamp bulb with a conductive film, and therefore can control the resistance value of the conductive film to be approximately constant. .

[発明の構成コ (課題を解決するための手段) 請求項(1)対応の発明は、蛍光灯バルブを炉内に供給
して加熱手段により加熱し、その加熱された蛍光灯バル
ブに対して一方の開口端から導電被膜材となる薬品を吹
込むとともに他方の開口端からエアー抜きを行うことに
より蛍光灯バルブの内面に導電被膜をコーティングし、
導電被膜のコーティングが終了した蛍光灯バルブを炉内
から排出する導電被膜形成装置において、炉内温度を測
定する炉温測定素子と、炉内から排出される蛍光灯バル
ブの導電被膜の抵抗値を測定する抵抗測定器と、この抵
抗測定器の測定結果と予め設定された抵抗管理目標値と
の差から炉内の設定温度を決定する設定温度決定手段と
、この設定温度決定手段により決定された設定温度及び
炉温測定素子の測定温度に基づいて炉内温度が設定温度
になるように加熱手段への入力エネルギーを制御する温
度制御手段を設けたものである。
[Structure of the Invention (Means for Solving the Problem) The invention corresponding to claim (1) is to supply a fluorescent lamp bulb into a furnace and heat it with a heating means, and to A conductive film is coated on the inner surface of the fluorescent lamp bulb by injecting a chemical that becomes a conductive film material from one open end and releasing air from the other open end.
In a conductive coating forming device that discharges fluorescent lamp bulbs from the furnace after coating with conductive coating, there is a furnace temperature measurement element that measures the temperature inside the furnace, and a resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace. A resistance measuring device to be measured, a set temperature determining means for determining a set temperature in the furnace from the difference between the measurement result of this resistance measuring device and a preset resistance management target value, and Temperature control means is provided for controlling input energy to the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature and the temperature measured by the furnace temperature measuring element.

また請求項(2)対応の発明は、炉内温度を測定する炉
温測定素子と、炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、炉内の蛍光灯バ
ルブの詰まり具合を検出するバルブ詰まり検出手段と、
抵抗測定器の測定結果と予め設定された抵抗管理目標値
との差及びバルブ詰まり検出手段の検出結果から炉内の
設定温度を決定する設定温度決定手段と、この設定温度
決定手段により決定された設定温度及び炉温測定素子の
測定温度に基づいて炉内温度が設定温度になるように加
熱手段への入力エネルギーを制御する温度制御手段を設
けたものである。
The invention corresponding to claim (2) also provides a furnace temperature measuring element for measuring the temperature inside the furnace, a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the inside of the furnace, and a fluorescent lamp inside the furnace. Bulb clogging detection means for detecting clogging of the light bulb;
a set temperature determining means for determining a set temperature in the furnace from the difference between the measurement result of the resistance measuring device and a preset resistance management target value and the detection result of the valve clogging detection means; Temperature control means is provided for controlling input energy to the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature and the temperature measured by the furnace temperature measuring element.

また請求項(3)対応の発明は、炉内温度を測定する炉
温測定素子と、炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、炉内の蛍光灯バ
ルブが空になったことを検出するバルブ空検出手段と、
抵抗測定器の測定結果と予め設定された抵抗管理目標値
との差及びバルブ空検出手段の検出結果から炉内の設定
温度を決定する設定温度決定手段と、この設定温度決定
手段により決定された設定温度及び炉温測定素子の測定
温度に基づいて炉内温度が設定温度になるように加熱手
段への入力エネルギーを制御する温度制御手段を設けた
ものである。
The invention corresponding to claim (3) also provides a furnace temperature measuring element for measuring the temperature inside the furnace, a resistance measuring device for measuring the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the inside of the furnace, and a fluorescent lamp inside the furnace. bulb empty detection means for detecting that the light bulb is empty;
a set temperature determining means for determining a set temperature in the furnace from the difference between the measurement result of the resistance measuring device and a preset resistance management target value and the detection result of the empty valve detecting means; Temperature control means is provided for controlling input energy to the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature and the temperature measured by the furnace temperature measuring element.

また請求項(4)対応の発明は、炉内温度を測定する炉
温測定素子と、炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、薬品の吹込み時
間を設定する設定手段と、抵抗測定器の測定結果と予め
設定された抵抗管理目標値との差及び設定手段にて設定
された薬品吹込み時間から炉内の設定温度を決定する設
定温度決定手段と、この設定温度決定手段により決定さ
れた設定温度及び炉温測定素子の測定温度に基づいて炉
内温度が設定温度になるように加熱手段への入力エネル
ギーを制御する温度制御手段を設けたものである。
The invention corresponding to claim (4) also provides a furnace temperature measuring element for measuring the temperature inside the furnace, a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the inside of the furnace, and a chemical injection device. A setting means for setting a time, and a set temperature determination for determining a set temperature in the furnace from the difference between the measurement result of the resistance measuring device and a preset resistance management target value and the chemical injection time set by the setting means. and a temperature control means for controlling input energy to the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. It is something.

また請求項(5)対応の発明は、炉内温度を測定する炉
温測定素子と、炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、炉内から排出さ
れる蛍光灯バルブの温度を検出するバルブ温度検出手段
と、抵抗測定器の測定結果と予め設定された抵抗管理目
標値との差及びバルブ温度検出手段にて検出された排出
バルブ温度から炉内の設定温度を決定する設定温度決定
手段と、この設定温度決定手段により決定された設定温
度及び炉温測定素子の測定温度に基づいて炉内温度が設
定温度になるように加熱手段への入力エネルギーを制御
する温度制御手段を設けたものである。
The invention corresponding to claim (5) also provides a furnace temperature measuring element for measuring the temperature inside the furnace, a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the furnace, and a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the furnace. The inside of the furnace is determined based on the difference between the measurement result of the resistance measuring device and the preset resistance management target value and the discharge valve temperature detected by the bulb temperature detection means. A set temperature determining means for determining the set temperature of the heating means, and input energy to the heating means so that the temperature inside the furnace reaches the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. It is equipped with temperature control means for controlling the temperature.

また請求項(6)対応の発明は、炉内温度を測定する炉
温測定素子と、炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、吹込み薬品の温
度を検出する薬品温度検出手段と、抵抗測定器の測定結
果と予め設定された抵抗管理目標値との差及び薬品温度
検出手段にて検出された吹込み薬品温度から炉内の設定
温度を決定する設定温度決定手段と、この設定温度決定
手段により決定された設定温度及び炉温測定素子の測定
温度に基づいて炉内温度が設定温度になるように加熱手
段への入力エネルギーを制御する温度制御手段を設けた
ものである。
The invention corresponding to claim (6) also provides a furnace temperature measuring element for measuring the temperature inside the furnace, a resistance measuring device for measuring the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the inside of the furnace, and a resistance measuring device for measuring the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the inside of the furnace. The set temperature in the furnace is determined from the difference between the measurement result of the chemical temperature detection means that detects the temperature and the resistance measuring device and the preset resistance management target value, and the temperature of the injected chemical detected by the chemical temperature detection means. and a temperature control that controls input energy to the heating means so that the temperature inside the furnace reaches the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. This means that a means has been established.

さらに請求項(7)対応の発明は、炉内温度を測定する
炉温測定素子と、炉内から排出される蛍光灯バルブの導
電被膜の抵抗値を測定する抵抗測定器と、この抵抗測定
器の測定結果と予め設定された抵抗管理目標値との差か
ら炉内の設定温度を決定する設定温度決定手段と、この
設定温度決定手段により決定された設定温度及び炉温測
定素子の測定温度に基づいて炉内温度が設定温度になる
ように加熱手段への入力エネルギーを制御する温度制御
手段と、炉内の蛍光灯バルブの詰まり具合を検出するバ
ルブ詰まり検出手段と、炉内の蛍光灯バルブが空になっ
たことを検出するバルブ空検出手段と、炉内から排出さ
れる蛍光灯バルブの温度を検出するバルブ温度検出手段
と、吹込み薬品の温度を検出する薬品温度検出手段と、
吹込み薬品を加熱するヒータと、このヒータへの通電エ
ネルギー及び薬品の吹込み時間の一方又は両方を、炉温
測定素子の測定温度、抵抗測定器の#1定結果、バルブ
詰まり検出手段の検出結果、バルブ空検出手段の検出結
果、バルブ温度検出手段の検出温度、薬品温度検出手段
の検出温度の1又は複数に基づいて設定する設定手段を
設けたものである。
Furthermore, the invention corresponding to claim (7) provides a furnace temperature measuring element for measuring the temperature inside the furnace, a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the inside of the furnace, and this resistance measuring device. a set temperature determining means for determining the set temperature in the furnace from the difference between the measurement result and a preset resistance management target value, and a set temperature determined by the set temperature determining means and the measured temperature of the furnace temperature measuring element. temperature control means for controlling the input energy to the heating means so that the temperature in the furnace reaches a set temperature based on the temperature, a clogging detection means for detecting clogging of a fluorescent light bulb in the furnace, and a fluorescent light bulb in the furnace. bulb empty detection means for detecting that the lamp is empty; bulb temperature detection means for detecting the temperature of the fluorescent lamp bulb discharged from the furnace; and chemical temperature detection means for detecting the temperature of the injected chemical;
A heater that heats the injected chemicals, and one or both of the energy applied to the heater and the time for injecting the chemicals, the measured temperature of the furnace temperature measuring element, the #1 constant result of the resistance measuring device, and the detection of the valve clogging detection means. As a result, a setting means is provided for setting based on one or more of the detection result of the empty valve detection means, the temperature detected by the valve temperature detection means, and the temperature detected by the chemical temperature detection means.

(作用) 請求項(1)対応の発明においては、抵抗測定器で炉内
から排出される蛍光灯バルブの導電被膜の抵抗値を測定
する。そしてこの抵抗値測定結果と抵抗管理目標値を比
較しその差から炉内の設定温度を決定する。そしてこの
決定された設定温度と炉温測定素子の測定温度に基づい
て加熱手段への入力エネルギーが制御される。このよう
に抵抗測定器による蛍光灯バルブの導電被膜の抵抗値の
測定結果により炉内設定温度を決め、それに基づいて炉
温測定素子を使用して炉内温度制御を行っているので、
炉温測定素子のみで炉内温度制御を行うものに比べて蛍
光灯バルブへの導電被膜のコーティングが正確に行える
(Function) In the invention corresponding to claim (1), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Then, this resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined from the difference. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In this way, the set temperature in the furnace is determined based on the results of measuring the resistance value of the conductive coating of the fluorescent lamp bulb using a resistance measuring device, and the temperature inside the furnace is controlled based on this using the furnace temperature measuring element.
Compared to systems that control the temperature inside the furnace using only a furnace temperature measurement element, the conductive film can be applied to fluorescent lamp bulbs more accurately.

また請求項(2)対応の発明においては、抵抗測定器で
炉内から排出される蛍光灯バルブの導電被膜の抵抗値を
測定する。また炉内蛍光灯バルブの詰まり具合をバルブ
詰まり検出手段で検出する。
Further, in the invention corresponding to claim (2), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Further, the degree of clogging of the in-furnace fluorescent lamp bulb is detected by a bulb clogging detection means.

そして抵抗値測定結果と抵抗管理目標値を比較しその差
及び蛍光灯バルブの詰まり具合検出結果から炉内の設定
温度を決定する。そしてこの決定された設定温度と炉温
測定素子の測定温度に基づいて加熱手段への入力エネル
ギーが制御される。このように抵抗測定器による蛍光灯
バルブの導電被膜の抵抗値の測定結果と蛍光灯バルブの
詰まり具合により炉内設定温度を決め、それに基づいて
炉温測定素子を使用して炉内温度制御を行っているので
、この場合も蛍光灯バルブへの導電被膜のコーティング
が正確に行える。
Then, the resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined from the difference therebetween and the result of detecting the degree of clogging of the fluorescent lamp bulb. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In this way, the set temperature inside the furnace is determined based on the results of measuring the resistance value of the conductive coating of the fluorescent light bulb using a resistance measuring device and the degree of clogging of the fluorescent light bulb, and based on this, the temperature within the furnace is controlled using the furnace temperature measuring element. Therefore, in this case as well, the conductive film can be applied accurately to the fluorescent lamp bulb.

また請求項(3)対応の発明においては、抵抗測定器で
炉内から排出される蛍光灯バルブの導電被膜の抵抗値を
測定する。また炉内の蛍光灯バルブが空になったことを
バルブ空検出手段で検出する。
Further, in the invention corresponding to claim (3), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Further, the empty bulb detection means detects that the fluorescent lamp bulb in the furnace is empty.

そして抵抗値測定結果と抵抗管理目標値を比較しその差
及びバルブ空検出手段の検出結果から炉内の設定温度を
決定する。そしてこの決定された設定温度と炉温測定素
子の測定温度に基づいて加熱手段への入力エネルギーが
制御される。このように抵抗測定器による蛍光灯バルブ
の導電被膜の抵抗値の測定結果と蛍光灯バルブが空か否
かにより炉内設定温度を決め、それに基づいて炉温測定
素子を使用して炉内温度制御を行っているので、この場
合も蛍光灯バルブへの導電被膜のコーティングが正確に
行える。
Then, the resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined from the difference therebetween and the detection result of the empty valve detection means. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In this way, the set temperature in the furnace is determined based on the result of measuring the resistance value of the conductive coating of the fluorescent light bulb using a resistance measuring device and whether the fluorescent light bulb is empty.Based on that, the temperature inside the furnace is determined using the furnace temperature measuring element. Since control is performed, the conductive film can be applied accurately to the fluorescent lamp bulb in this case as well.

また請求項(4)対応の発明においては、抵抗測定器で
炉内から排出される蛍光灯バルブの導電被膜の抵抗値を
測定する。また設定手段により薬品吹込み時間を設定す
る。そして抵抗値測定結果と抵抗管理目標値を比較しそ
の差及び設定された薬品吹込み時間から炉内の設定温度
を決定する。そしてこの決定された設定温度と炉温測定
素子の測定温度に基づいて加熱手段への入力エネルギー
が制御される。このように抵抗測定器による蛍光灯バル
ブの導電被膜の抵抗値の測定結果と薬品吹込み時間から
炉内設定温度を決め、それに基づいて炉温測定素子を使
用して炉内温度制御を行っているので、この場合も蛍光
灯バルブへの導電被膜のコーティングが正確に行える。
Further, in the invention corresponding to claim (4), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Further, the chemical injection time is set by the setting means. Then, the resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined from the difference therebetween and the set chemical injection time. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In this way, the set temperature inside the furnace is determined from the results of measuring the resistance value of the conductive coating of the fluorescent lamp bulb using a resistance measuring device and the chemical injection time, and based on this, the temperature inside the furnace is controlled using the furnace temperature measuring element. Therefore, in this case as well, the conductive film can be applied accurately to the fluorescent lamp bulb.

また請求項(5)対応の発明においては、抵抗測定器で
炉内から排出される蛍光灯バルブの導電被膜の抵抗値を
測定する。また炉内から排出される蛍光灯バルブの温度
をバルブ温度検出手段により検出する。そして抵抗値測
定結果と抵抗管理目標値を比較しその差及び検出された
バルブ温度がら炉内の設定温度を決定する。そしてこの
決定された設定温度と炉温測定素子の測定温度に基づい
て加熱手段への入力エネルギーが制御される。このよう
に抵抗測定器による蛍光灯バルブの導電被膜の抵抗値の
測定結果と検出されたバルブ温度がら炉内設定温度を決
め、それに基づいて炉温測定素子を使用して炉内温度制
御を行っているので、この場合も蛍光灯バルブへの導電
被膜のコーティングが正確に行える。
Further, in the invention corresponding to claim (5), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Further, the temperature of the fluorescent lamp bulb discharged from the furnace is detected by the bulb temperature detection means. Then, the resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined based on the difference therebetween and the detected valve temperature. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In this way, the set temperature in the furnace is determined based on the results of measuring the resistance value of the conductive coating of the fluorescent lamp bulb using the resistance measuring device and the detected bulb temperature, and based on this, the temperature inside the furnace is controlled using the furnace temperature measuring element. Therefore, in this case as well, the conductive film can be applied accurately to the fluorescent lamp bulb.

また請求項(6)対応の発明においては、抵抗測定器で
炉内から排出される蛍光灯バルブの導電被膜の抵抗値を
測定する。また蛍光灯バルブに吹込む薬品の温度を薬品
温度検出手段により検出する。
Further, in the invention corresponding to claim (6), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Further, the temperature of the chemical injected into the fluorescent lamp bulb is detected by the chemical temperature detection means.

そして抵抗値測定結果と抵抗管理目標値を比較しその差
及び検出された薬品温度から炉内の設定温度を決定する
。そしてこの決定された設定温度と炉温測定素子の測定
温度に基づいて加熱手段への入力エネルギーが制御され
る。このように抵抗mJ定器による蛍光灯バルブの導電
被膜の抵抗値の測定結果と検出された薬品温度から炉内
設定温度を決め、それに基づいて炉温測定素子を使用し
て炉内温度制御を行っているので、この場合も蛍光灯バ
ルブへの導電被膜のコーティングが正確に行える。
Then, the resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined from the difference therebetween and the detected chemical temperature. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In this way, the set temperature in the furnace is determined from the results of measuring the resistance value of the conductive coating of the fluorescent lamp bulb using the resistance mJ meter and the detected chemical temperature, and based on that, the temperature in the furnace is controlled using the furnace temperature measurement element. Therefore, in this case as well, the conductive film can be applied accurately to the fluorescent lamp bulb.

さらに請求項(7)対応の発明においては、抵抗測定器
で炉内から排出される蛍光灯バルブの導電被膜の抵抗値
を測定する。そしてこの抵抗値測定結果と抵抗管理目標
値を比較しその差から炉内の設定温度を決定する。そし
てこの決定された設定温度と炉温測定素子の測定温度に
基づいて加熱手段への入力エネルギーが制御される。ま
た炉内における蛍光灯バルブの詰まり具合、炉内の蛍光
灯バルブが空か否か、排出される蛍光灯バルブの温度、
吹込み薬品の温度がそれぞれ検出される。そして吹込み
薬品を加熱するヒータへの通電エネルギー及び薬品の吹
込み時間の一方又は両方を、炉内測定温度、導電被膜測
定抵抗値、炉内における蛍光灯バルブの詰まり具合、炉
内の蛍光灯バルブが空か否か、排出される蛍光灯バルブ
の温度、吹込み薬品の温度の1又は複数に基づいて設定
する。
Furthermore, in the invention corresponding to claim (7), the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace is measured using a resistance measuring device. Then, this resistance value measurement result is compared with the resistance management target value, and the set temperature in the furnace is determined from the difference. Then, the input energy to the heating means is controlled based on the determined set temperature and the temperature measured by the furnace temperature measuring element. In addition, the degree of clogging of the fluorescent light bulb in the furnace, whether the fluorescent light bulb in the furnace is empty, the temperature of the fluorescent light bulb being discharged,
The temperature of each injected chemical is detected. Then, one or both of the energy applied to the heater that heats the injected chemicals and the time for injecting the chemicals are determined by the measured temperature inside the furnace, the measured resistance value of the conductive film, the degree of clogging of the fluorescent lamp bulb in the furnace, and the fluorescent lamp inside the furnace. The setting is based on one or more of the following: whether the bulb is empty, the temperature of the fluorescent light bulb being discharged, and the temperature of the injected chemical.

このように抵抗測定器による蛍光灯バルブの導電被膜の
抵抗値の測定結果により炉内設定温度を決め、それに基
づいて炉温測定素子を使用して炉内温度制御を行い、ま
た吹込み薬品を加熱するヒータへの通電エネルギー及び
薬品の吹込み時間の一方又は両方を、炉内測定温度、導
電被膜測定抵抗値、炉内における蛍光灯バルブの詰まり
具合、炉内の蛍光灯バルブが空か否が、排出される蛍光
灯バルブの温度、吹込み薬品の温度の1又は複数に基づ
いて設定しているので、この場合も蛍光灯バルブへの導
電被膜のコーティングが正確に行える。
In this way, the set temperature in the furnace is determined based on the results of measuring the resistance value of the conductive coating of the fluorescent lamp bulb using a resistance measuring device, and based on this, the furnace temperature is controlled using the furnace temperature measuring element, and the injected chemicals are controlled. One or both of the energizing energy to the heater and the time for blowing chemicals can be adjusted based on the measured temperature inside the furnace, the measured resistance value of the conductive film, the degree of clogging of the fluorescent light bulb in the furnace, and whether the fluorescent light bulb in the furnace is empty or not. However, since the temperature is set based on one or more of the temperature of the discharged fluorescent lamp bulb and the temperature of the blown chemical, the conductive film can be accurately applied to the fluorescent lamp bulb in this case as well.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において11は一方側から供給される蛍光灯バル
ブを加熱するとともにそのバルブの内側に導電被膜をコ
ーティングし、導電被膜のコーティングを終了した蛍光
灯バルブを他方の側がら排出する炉である。
In Fig. 1, reference numeral 11 is a furnace that heats a fluorescent light bulb supplied from one side, coats the inside of the bulb with a conductive film, and discharges the fluorescent light bulb coated with the conductive film from the other side. .

すなわち前記炉11は第2図に示すように炉壁12.1
2間において蛍光灯バルブ13を担持し、これを1対の
ローラ14,14 (一方のみ図示)で回転させるよう
になっている。そして前記蛍光灯バルブ13をバーナ等
の加熱手段15で加熱するようになっている。前記1対
のローラ14゜14はモータ16を駆動源として回転制
御されるようになっている。
That is, the furnace 11 has a furnace wall 12.1 as shown in FIG.
A fluorescent lamp bulb 13 is supported between the rollers 2 and is rotated by a pair of rollers 14, 14 (only one of which is shown). The fluorescent lamp bulb 13 is then heated by a heating means 15 such as a burner. The pair of rollers 14.degree. 14 are rotationally controlled using a motor 16 as a driving source.

なお、第2図は炉11を出口側から見た断面図である。Note that FIG. 2 is a sectional view of the furnace 11 viewed from the outlet side.

前記蛍光灯バルブ13の一方の開口端にはノズル17が
対向配置され、また他方の開口端にはダクト18が対向
配置されている。
A nozzle 17 is arranged to face one open end of the fluorescent lamp bulb 13, and a duct 18 is arranged to face the other open end.

前記ノズル17は薬品タンク19を介してホットエア吹
出しバイブ20に連通し、前記ホットエア吹出しバイブ
20の途中には吹込み電磁弁21が設けられている。
The nozzle 17 communicates with a hot air blowing vibe 20 through a chemical tank 19, and a blowing solenoid valve 21 is provided in the middle of the hot air blowing vibe 20.

前記薬品タンク19には例えば(CH3)2Sn Cl
 2又は(C2H5) 2 Sn C12のような有機
錫化合物が導電被膜材として適当量入れられ、この導電
被膜材をヒータ22によって前記タンク19を加熱する
ことによって蒸発させるようになっている。そして発生
する蒸気を前記ホットエア吹出しバイブ20からのホッ
トエアをキャリヤとして前記ノズル17から前記蛍光灯
バルブ13内に吹込むようになっている。この吹込みに
先立って前記蛍光灯バルブ13を前記加熱手段15によ
り所定温度に加熱するようになっている。
The chemical tank 19 contains, for example, (CH3)2SnCl.
An appropriate amount of an organic tin compound such as C2 or (C2H5)2SnC12 is put in as a conductive coating material, and this conductive coating material is evaporated by heating the tank 19 with a heater 22. Then, the generated steam is blown into the fluorescent lamp bulb 13 from the nozzle 17 using the hot air from the hot air blowing vibe 20 as a carrier. Prior to this blowing, the fluorescent lamp bulb 13 is heated to a predetermined temperature by the heating means 15.

また前記ダクト18により前記蛍光灯バルブ13内の空
気等を吸込むようになっている。
Further, the duct 18 is adapted to suck air, etc. inside the fluorescent lamp bulb 13.

前記薬品タンク19にはまた薬品温度検出手段として薬
品温度検出用熱電対23が設けられている。
The chemical tank 19 is also provided with a chemical temperature detecting thermocouple 23 as a chemical temperature detecting means.

また第1図に示すように前記炉11の入口には炉内が空
か否かを検出するバルブ空検出手段24が設けられ、ま
た出口には炉内の蛍光灯バルブ13の詰まり具合を検出
するバルブ詰まり検出手段25が設けられている。
Further, as shown in FIG. 1, a valve empty detection means 24 is provided at the entrance of the furnace 11 to detect whether or not the inside of the furnace is empty, and at the exit, a valve empty detection means 24 is installed to detect whether the fluorescent lamp bulb 13 inside the furnace is clogged. Valve clogging detection means 25 is provided.

前記炉11から導電被膜のコーティングが終了して排出
される蛍光灯バルブ13の排出路には導電被膜の抵抗値
を測定する抵抗測定器26が配置されている。また前記
炉11の出口には導電被膜のコーティングが終了して排
出される蛍光灯バルブ13の温度を検出するバルブ温度
検出手段として赤外線カメラ27が配置されている。
A resistance measuring device 26 for measuring the resistance value of the conductive film is disposed in the discharge path of the fluorescent lamp bulb 13 discharged from the furnace 11 after coating with the conductive film. Further, an infrared camera 27 is disposed at the outlet of the furnace 11 as a bulb temperature detecting means for detecting the temperature of the fluorescent lamp bulb 13 discharged after coating with the conductive film is completed.

前記炉11の内部には炉内温度を測定する炉温測定素子
として炉温測定用熱電対28が設けられ、この熱電対2
8からの温度測定出力を温度制御手段を構成する比例制
御部29に供給している。
A furnace temperature measuring thermocouple 28 is provided inside the furnace 11 as a furnace temperature measuring element for measuring the temperature inside the furnace.
The temperature measurement output from 8 is supplied to a proportional control section 29 constituting temperature control means.

前記炉内に設けられた加熱手段15に対して燃焼ガスを
供給する供給路にはガス供給量制御用の例えば電気式の
自動開閉弁30が設けられ、この開閉弁30の開度を開
閉弁制御部31により調節制御するようになっている。
A supply path for supplying combustion gas to the heating means 15 provided in the furnace is provided with, for example, an electric automatic on-off valve 30 for controlling the gas supply amount, and the opening degree of this on-off valve 30 is determined by the on-off valve. Adjustment control is performed by a control section 31.

前記開閉弁制御部31は前記比例制御部29により制御
されるようになっている。
The on-off valve control section 31 is controlled by the proportional control section 29.

前記薬品温度検出用熱電対23、バルブ空検出手段24
、バルブ詰まり検出手段25、抵抗測定器26、赤外線
カメラ27からの検出信号、測定信号をそれぞれシーケ
ンサ32に供給している。
The chemical temperature detection thermocouple 23 and the empty valve detection means 24
, the valve clogging detection means 25, the resistance measuring device 26, and the detection signal and the measurement signal from the infrared camera 27 are supplied to the sequencer 32, respectively.

前記シーケンサ32は前記吹込み電磁弁21及び比例制
御部29を制御するようになっている。
The sequencer 32 is adapted to control the blow solenoid valve 21 and the proportional control section 29.

前記シーケンサ32には前記抵抗測定器26による導電
被膜の抵抗測定値と予め設定された抵抗管理目標値を比
較し、その差から前記炉内の設定温度を決定する設定温
度決定手段、この設定温度決定手段により決定された設
定温度及び前記炉温測定用熱電対28の測定温度に基づ
いて炉内温度が設定温度になるように前記加熱手段15
への入力エネルギーを制御する温度制御手段、前記薬品
温度検出用熱電対23、バルブ空検出手段24、バルブ
詰まり検出手段25、抵抗測定器26、赤外線カメラ2
7からの検出信号、測定信号に基づいて前記ヒータ22
への通電エネルギー及び前記薬品タンク19へのホット
エアの吹込み時間の一方又は両方、例えば前記ヒータ2
2への通電エネルギーとホットエアの吹込み時間の両方
を設定する設定手段が設けられている。
The sequencer 32 includes a set temperature determining means that compares the resistance measurement value of the conductive film by the resistance measuring device 26 with a preset resistance management target value, and determines the set temperature in the furnace from the difference. The heating means 15 adjusts the furnace temperature to the set temperature based on the set temperature determined by the determining means and the temperature measured by the furnace temperature measuring thermocouple 28.
Temperature control means for controlling input energy to the chemical temperature detection thermocouple 23, valve empty detection means 24, valve clogging detection means 25, resistance measuring device 26, infrared camera 2
Based on the detection signal and measurement signal from 7, the heater 22
One or both of the energizing energy and the hot air blowing time to the chemical tank 19, for example, the heater 2
Setting means is provided for setting both the energization energy to 2 and the hot air blowing time.

このような構成の本実施例においては、入口から炉11
内に蛍光灯バルブ13が順次供給され加熱手段15にて
加熱される。そして蛍光灯バルブ13がノズル17とダ
クト18の対向する位置に到達すると吹込み電磁弁21
が予め設定されたホットエアの吹込み時間に基づいて開
口される。
In this embodiment with such a configuration, the furnace 11 is connected from the inlet.
Fluorescent lamp bulbs 13 are sequentially supplied inside and heated by heating means 15. When the fluorescent lamp bulb 13 reaches the position where the nozzle 17 and the duct 18 face each other, the blowing solenoid valve 21
is opened based on a preset hot air blowing time.

こうして薬品タンク19から導電被膜材の蒸気がホット
エアによってノズル17から蛍光灯バルブ13内に吹付
けられる。そして蛍光灯バルブ13内に残った灰分はダ
クト18により吸引されて取り除かれる。
In this way, the vapor of the conductive coating material from the chemical tank 19 is blown into the fluorescent lamp bulb 13 from the nozzle 17 by hot air. The ash remaining in the fluorescent lamp bulb 13 is then sucked out by the duct 18 and removed.

こうして蛍光灯バルブ13に対して導電被膜のコーティ
ングが行われ、コーティングが終了した蛍光灯バルブ1
3は出口から排出される。そして排出された蛍光灯バル
ブ13の導電被膜の抵抗値が抵抗測定器26で測定され
その測定値がシーケンサ32に供給される。
In this way, the fluorescent lamp bulb 13 is coated with a conductive film, and the coated fluorescent lamp bulb 1
3 is discharged from the outlet. Then, the resistance value of the conductive coating of the discharged fluorescent lamp bulb 13 is measured by the resistance measuring device 26, and the measured value is supplied to the sequencer 32.

また炉11の入口においてバルブ空検出手段24により
バルブの供給状態が検出され、炉内に蛍光灯バルブ13
が無く空になっているが否ががチエツクされるとともに
、炉11の出口においてバルブ詰まり検出手段25によ
りバルブの排出状態が検出され、炉内の蛍光灯バルブ1
3の詰まり具合がチエツクされる。そしてこの検出結果
がシーケンサ32に供給される。
Further, at the inlet of the furnace 11, the valve empty detection means 24 detects the supply state of the bulb, and the fluorescent lamp bulb 13 is detected in the furnace.
At the same time, the discharge state of the bulb is detected by the valve clogging detection means 25 at the outlet of the furnace 11, and the fluorescent lamp bulb 1 in the furnace is checked to see if it is empty.
The degree of clogging in step 3 is checked. This detection result is then supplied to the sequencer 32.

また炉11の出口において赤外線カメラ27により排出
される蛍光灯バルブ13の温度状態が検出されその検出
結果がシーケンサ32に供給される。
Further, at the exit of the furnace 11, the temperature state of the discharged fluorescent lamp bulb 13 is detected by an infrared camera 27, and the detection result is supplied to the sequencer 32.

さらに薬品温度検出用熱電対23によって薬品タンク1
9内の導電被膜材の温度が検出されその検出結果がシー
ケンサ32に供給される。
Furthermore, the chemical tank 1 is
The temperature of the conductive coating material in the conductive film 9 is detected and the detection result is supplied to the sequencer 32.

また炉温測定用熱電対28により炉内温度が測定されそ
の測定温度が比例制御部29に供給される。
Further, the furnace temperature is measured by the furnace temperature measuring thermocouple 28, and the measured temperature is supplied to the proportional control section 29.

シーケンサ32は抵抗測定器26による測定抵抗値を予
め設定された抵抗管理目標値と比較し、その差に基づい
て炉内設定温度を決定する。そしてこの設定温度信号を
比例制御部29に供給する。
The sequencer 32 compares the resistance value measured by the resistance measuring device 26 with a preset resistance management target value, and determines the set temperature in the furnace based on the difference. This set temperature signal is then supplied to the proportional control section 29.

比例制御部29は炉温測定用熱電対28により測定され
た実際の炉内温度と設定温度を比較し、炉内温度が設定
温度になるように開閉弁制御部31を制御して自動開閉
弁30の開度を調整し、加熱手段15への燃焼ガスの供
給量を調節する。
The proportional control unit 29 compares the actual furnace temperature measured by the furnace temperature measuring thermocouple 28 with the set temperature, and controls the on-off valve control unit 31 so that the furnace temperature becomes the set temperature, so that the automatic on-off valve is activated. 30 is adjusted to adjust the amount of combustion gas supplied to the heating means 15.

またシーケンサ32は薬品温度検出用熱電対23からの
温度検出信号、バルブ空検出手段24からの検出信号、
バルブ詰まり検出手段25からの検出信号、抵抗測定器
26からの抵抗測定信号、赤外線カメラ27からの温度
検出信号に基づいてヒータ22への通電エネルギーを設
定するとともに吹込み電磁弁21の開放時間、すなわち
薬品タンク19へのホットエアの吹込み時間を設定する
The sequencer 32 also receives a temperature detection signal from the chemical temperature detection thermocouple 23, a detection signal from the valve empty detection means 24,
Based on the detection signal from the valve clogging detection means 25, the resistance measurement signal from the resistance measuring device 26, and the temperature detection signal from the infrared camera 27, the energization energy to the heater 22 is set, and the opening time of the blow solenoid valve 21; That is, the time for blowing hot air into the chemical tank 19 is set.

こうしてヒータ22への通電エネルギー及び吹込み電磁
弁21の開放時間が蛍光灯バルブ13の導電被膜の抵抗
値が抵抗管理目標値に近付くように制御されることにな
る。
In this way, the energy applied to the heater 22 and the opening time of the solenoid valve 21 are controlled so that the resistance value of the conductive coating of the fluorescent lamp bulb 13 approaches the resistance management target value.

このように炉内温度が抵抗測定器26によって測定され
た抵抗値を抵抗管理目標値と比較することによって決定
された設定温度に基づいて制御されるのでたとえ条件に
よって炉内温度と蛍光灯バルブ13の温度に大きな差が
生じ寸も炉内温度がグされた導電被膜の抵抗値が抵抗管
理目標値に近付くようになるので導電被膜のコーティン
グが正確にできることになる。
In this way, the furnace temperature is controlled based on the set temperature determined by comparing the resistance value measured by the resistance measuring device 26 with the resistance management target value. Even if a large difference occurs in the temperature of the furnace, the resistance value of the conductive film approaches the resistance management target value when the temperature inside the furnace is reduced, so that the conductive film can be coated accurately.

またヒータ22への通電エネルギー及び吹込み電磁弁2
1の開放時間も蛍光灯バルブ13の導電被膜の抵抗値が
抵抗管理目標値に近付くように制御されるので、導電被
膜のコーティングがさらに正確にできることになる。
Also, energizing energy to the heater 22 and blowing solenoid valve 2
Since the opening time of 1 is also controlled so that the resistance value of the conductive film of the fluorescent lamp bulb 13 approaches the resistance management target value, coating with the conductive film can be performed more accurately.

このように蛍光灯バルブ13の導電被膜のコーティング
が正確にできるので抵抗値を略一定に管理でき品質の向
上を図ることができる。
In this way, since the conductive film of the fluorescent lamp bulb 13 can be coated accurately, the resistance value can be controlled to be approximately constant, and quality can be improved.

なお、前記実施例では薬品温度検出用熱電対、バルブ空
検出手段、バルブ詰まり検出手段、抵抗測定器、赤外線
カメラからの検出信号、測定信号に基づいてヒータへの
通電エネルギー及び薬品タンクへのホットエアの吹込み
時間の両方を設定したが必ずしもこれに限定されるもの
ではなく、ヒータへの通電エネルギー及び薬品タンクへ
のホットエアの吹込み時間のいずれが一方を設定するも
のであっても、また場合によっては設定を全く行わない
ものであってもよい。
In the above embodiment, energy is supplied to the heater and hot air is supplied to the chemical tank based on the thermocouple for detecting the chemical temperature, the empty valve detecting means, the valve clogging detecting means, the resistance measuring device, the detection signal from the infrared camera, and the measurement signal. However, it is not necessarily limited to this, and even if either of the energizing energy to the heater and the hot air blowing time to the chemical tank is set, or if In some cases, no settings may be made at all.

また前記実施例では炉内設定温度を抵抗測定器からの抵
抗測定値を抵抗管理目標値と比較しその差に基づいて決
定したが必ずしもこれに限定されるものではなく、その
差とともにバルブ詰まり検吊手段からの検出結果を加味
して決定しても、またその差とともにバルブ空検出手段
からの検出結果を加味して決定しても、またその差とと
もに赤外線カメラによる蛍光灯バルブ温度の検出結果を
加味して決定しても、またその差とともに赤外線カメラ
による蛍光灯バルブ温度の検出結果を加味して決定して
も、またその差とともに薬品温度検出用熱電対による薬
品温度の検出結果を加味して決定してもよい。さらには
炉内設定温度の決定にこれら各手段の検出結果を複数加
味してもよい。
Furthermore, in the above embodiment, the set temperature in the furnace was determined based on the difference between the resistance measurement value from the resistance measuring device and the resistance management target value, but the invention is not limited to this, and the valve clogging detection Even if the determination is made by taking into account the detection result from the hanging means, or by taking into account the detection result from the empty bulb detection means, or by taking into account the difference therebetween, the detection result of the fluorescent lamp bulb temperature by an infrared camera is determined. Whether it is determined by taking into account the difference in temperature, or by taking into account the result of detecting the temperature of a fluorescent lamp bulb by an infrared camera, or by taking into account the result of detecting the temperature of a chemical by a thermocouple for detecting chemical temperature. You may decide by doing so. Furthermore, a plurality of detection results from each of these means may be taken into consideration in determining the set temperature in the furnace.

このようにすればさらに条件が加味されるので導電被膜
のコーティングがより正確にできることになる。
In this way, additional conditions are taken into account, so that the conductive film can be coated more accurately.

なお、前記実施例においては薬品温度を検出する薬品温
度検出用熱電対、炉内の蛍光灯バルブが空か否かを検出
するバルブ空検出手段、炉内の蛍光灯バルブの詰まり具
合を検出するバルブ詰まり検出手段、炉から排出される
蛍光灯バルブの温度を検出する赤外線カメラを配置した
ものについて述べたがこれらは無くてもよい。この場合
の構成は第3図に示すようになる。
In the above embodiment, a thermocouple for detecting chemical temperature, a valve empty detection means for detecting whether a fluorescent light bulb in the furnace is empty, and a clogging state of the fluorescent light bulb in the furnace are used. Although the bulb clogging detection means and the infrared camera for detecting the temperature of the fluorescent lamp bulb discharged from the furnace are arranged, these may be omitted. The configuration in this case is as shown in FIG.

この第3図においては炉内設定温度を抵抗測定器26か
らの抵抗測定値をシーケンサ32において抵抗管理目標
値と比較しその差に基づいてのみ決定することになる。
In FIG. 3, the set temperature in the furnace is determined only on the basis of the difference between the resistance measurement value from the resistance measuring device 26 and the resistance management target value in the sequencer 32.

この場合においても炉内温度と蛍光灯バルブ13の温度
に大きな差が生じても炉内温度か直ちに修正されて蛍光
灯バルブ13にコーティングされた導電被膜の抵抗値が
抵抗管理目標値に近付くようになるので導電被膜のコー
ティングが正確にできることになる。
In this case, even if there is a large difference between the temperature inside the furnace and the temperature of the fluorescent light bulb 13, the temperature inside the furnace is immediately corrected so that the resistance value of the conductive coating coated on the fluorescent light bulb 13 approaches the resistance management target value. Therefore, the conductive film can be coated accurately.

[発明の効果コ 以上詳述したように本発明によれば、蛍光灯バルブへの
導電被膜のコーティングを常に正確に行うことができ、
従って導電被膜の抵抗値を略一定に管理することができ
る導電被膜形成装置を提供できるものである。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to always accurately coat a fluorescent lamp bulb with a conductive film,
Therefore, it is possible to provide a conductive film forming apparatus that can control the resistance value of the conductive film to be substantially constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
同実施例における炉の要部構成を示す概略図、第3図は
本発明の他の実施例を示すブロック図、第4図は従来例
を示すブロック図である。 11・・・炉、 13・・・蛍光灯バルブ、 15・・・加熱手段、 19・・・薬品タンク、 22・・・ヒータ、 23・・・薬品温度検出用熱電対、 24・・・バルブ空検出手段、 25・・・バルブ詰まり検出手段、 26・・・抵抗測定器、 27・・・赤外線カメラ、 29・・・比例制御部、 30・・・自動開閉弁、 32・・・シーケンサ。 第3図 出願人代理人 弁理士 鈴江武彦 第4図
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a schematic diagram showing the main structure of a furnace in the same embodiment, and FIG. 3 is a block diagram showing another embodiment of the present invention. FIG. 4 is a block diagram showing a conventional example. DESCRIPTION OF SYMBOLS 11... Furnace, 13... Fluorescent lamp bulb, 15... Heating means, 19... Chemical tank, 22... Heater, 23... Thermocouple for detecting chemical temperature, 24... Valve Empty detection means, 25... Valve clogging detection means, 26... Resistance measuring device, 27... Infrared camera, 29... Proportional control section, 30... Automatic opening/closing valve, 32... Sequencer. Figure 3 Applicant's agent Patent attorney Takehiko Suzue Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーティングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、この抵抗測定器
の測定結果と予め設定された抵抗管理目標値との差から
前記炉内の設定温度を決定する設定温度決定手段と、こ
の設定温度決定手段により決定された設定温度及び前記
炉温測定素子の測定温度に基づいて炉内温度が設定温度
になるように前記加熱手段への入力エネルギーを制御す
る温度制御手段を設けたことを特徴とする導電被膜形成
装置。
(1) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is injected from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. element, a resistance measuring device that measures the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace, and a resistance measuring device that measures the resistance value of the inside of the furnace based on the difference between the measurement result of this resistance measuring device and a preset resistance management target value. a set temperature determining means for determining a set temperature of the heating means; and a set temperature determining means for determining a set temperature of the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. A conductive film forming apparatus characterized by being provided with a temperature control means for controlling input energy.
(2)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーテイングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、前記炉内の蛍光
灯バルブの詰まり具合を検出するバルブ詰まり検出手段
と、前記抵抗測定器の測定結果と予め設定された抵抗管
理目標値との差及び前記バルブ詰まり検出手段の検出結
果から前記炉内の設定温度を決定する設定温度決定手段
と、この設定温度決定手段により決定された設定温度及
び前記炉温測定素子の測定温度に基づいて炉内温度が設
定温度になるように前記加熱手段への入力エネルギーを
制御する温度制御手段を設けたことを特徴とする導電被
膜形成装置。
(2) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is injected from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. a resistance measuring device for measuring a resistance value of a conductive coating of a fluorescent lamp bulb discharged from the furnace, a bulb clogging detection means for detecting clogging of the fluorescent lamp bulb in the furnace, and the resistance measuring device. a set temperature determining means for determining a set temperature in the furnace from the difference between the measurement result and a preset resistance management target value and the detection result of the valve clogging detecting means; and a setting determined by the set temperature determining means. A conductive film forming apparatus comprising: a temperature control means for controlling input energy to the heating means so that the temperature inside the furnace reaches a set temperature based on the temperature and the temperature measured by the furnace temperature measuring element.
(3)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーティングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、前記炉内の蛍光
灯バルブが空になったことを検出するバルブ空検出手段
と、前記抵抗測定器の測定結果と予め設定された抵抗管
理目標値との差及び前記バルブ空検出手段の検出結果か
ら前記炉内の設定温度を決定する設定温度決定手段と、
この設定温度決定手段により決定された設定温度及び前
記炉温測定素子の測定温度に基づいて炉内温度が設定温
度になるように前記加熱手段への入力エネルギーを制御
する温度制御手段を設けたことを特徴とする導電被膜形
成装置。
(3) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is blown from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the furnace; a bulb empty detection means for detecting that the fluorescent lamp bulb in the furnace is empty; Set temperature determining means for determining a set temperature in the furnace from the difference between the measurement result of the resistance measuring device and a preset resistance management target value and the detection result of the empty valve detection means;
Temperature control means is provided for controlling input energy to the heating means so that the temperature inside the furnace reaches the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. A conductive film forming device characterized by:
(4)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーティングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、前記薬品の吹込
み時間を設定する設定手段と、前記抵抗測定器の測定結
果と予め設定された抵抗管理目標値との差及び前記設定
手段にて設定された薬品吹込み時間から前記炉内の設定
温度を決定する設定温度決定手段と、この設定温度決定
手段により決定された設定温度及び前記炉温測定素子の
測定温度に基づいて炉内温度が設定温度になるように前
記加熱手段への入力エネルギーを制御する温度制御手段
を設けたことを特徴とする導電被膜形成装置。
(4) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is blown from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. an element, a resistance measuring device for measuring the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace, a setting means for setting the injection time of the chemical, and a measurement result of the resistance measuring device and preset settings. a set temperature determining means for determining a set temperature in the furnace from the difference from the resistance management target value set by the setting means and the chemical injection time set by the setting means; A conductive film forming apparatus characterized in that a temperature control means is provided for controlling input energy to the heating means so that the temperature inside the furnace reaches a set temperature based on the temperature measured by the furnace temperature measuring element.
(5)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーティングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、前記炉内から排
出される蛍光灯バルブの温度を検出するバルブ温度検出
手段と、前記抵抗測定器の測定結果と予め設定された抵
抗管理目標値との差及び前記バルブ温度検出手段にて検
出された排出バルブ温度から前記炉内の設定温度を決定
する設定温度決定手段と、この設定温度決定手段により
決定された設定温度及び前記炉温測定素子の測定温度に
基づいて炉内温度が設定温度になるように前記加熱手段
への入力エネルギーを制御する温度制御手段を設けたこ
とを特徴とする導電被膜形成装置。
(5) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is blown from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. a resistance measuring device for measuring a resistance value of a conductive coating of a fluorescent lamp bulb discharged from the furnace, a bulb temperature detection means for detecting a temperature of the fluorescent lamp bulb discharged from the furnace, and the resistor. a set temperature determining means for determining a set temperature in the furnace from the difference between the measurement result of the measuring device and a preset resistance management target value and the discharge valve temperature detected by the valve temperature detecting means; It is characterized by providing a temperature control means for controlling input energy to the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature determined by the determining means and the temperature measured by the furnace temperature measuring element. Conductive film forming equipment.
(6)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーティングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、前記吹込み薬品
の温度を検出する薬品温度検出手段と、前記抵抗測定器
の測定結果と予め設定された抵抗管理目標値との差及び
前記薬品温度検出手段にて検出された吹込み薬品温度か
ら前記炉内の設定温度を決定する設定温度決定手段と、
この設定温度決定手段により決定された設定温度及び前
記炉温測定素子の測定温度に基づいて炉内温度が設定温
度になるように前記加熱手段への入力エネルギーを制御
する温度制御手段を設けたことを特徴とする導電被膜形
成装置。
(6) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is injected from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. a resistance measuring device for measuring the resistance value of a conductive coating of a fluorescent lamp bulb discharged from the furnace, a chemical temperature detection means for detecting the temperature of the injected chemical, and a measurement result of the resistance measuring device; Set temperature determining means for determining a set temperature in the furnace from the difference from a preset resistance management target value and the injected chemical temperature detected by the chemical temperature detecting means;
Temperature control means is provided for controlling input energy to the heating means so that the temperature inside the furnace reaches the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. A conductive film forming device characterized by:
(7)蛍光灯バルブを炉内に供給して加熱手段により加
熱し、その加熱された蛍光灯バルブに対して一方の開口
端から導電被膜材となる薬品を吹込むとともに他方の開
口端からエアー抜きを行うことにより蛍光灯バルブの内
面に導電被膜をコーティングし、導電被膜のコーティン
グが終了した蛍光灯バルブを前記炉内から排出する導電
被膜形成装置において、前記炉内温度を測定する炉温測
定素子と、前記炉内から排出される蛍光灯バルブの導電
被膜の抵抗値を測定する抵抗測定器と、この抵抗測定器
の測定結果と予め設定された抵抗管理目標値との差から
前記炉内の設定温度を決定する設定温度決定手段と、こ
の設定温度決定手段により決定された設定温度及び前記
炉温測定素子の測定温度に基づいて炉内温度が設定温度
になるように前記加熱手段への入力エネルギーを制御す
る温度制御手段と、前記炉内の蛍光灯バルブの詰まり具
合を検出するバルブ詰まり検出手段と、前記炉内の蛍光
灯バルブが空になったことを検出するバルブ空検出手段
と、前記炉内から排出される蛍光灯バルブの温度を検出
するバルブ温度検出手段と、前記吹込み薬品の温度を検
出する薬品温度検出手段と、前記吹込み薬品を加熱する
ヒータと、このヒータへの通電エネルギー及び前記薬品
の吹込み時間の一方又は両方を、前記炉温測定素子の測
定温度、抵抗測定器の測定結果、バルブ詰まり検出手段
の検出結果、バルブ空検出手段の検出結果、バルブ温度
検出手段の検出温度、薬品温度検出手段の検出温度の1
又は複数に基づいて設定する設定手段を設けたことを特
徴とする導電被膜形成装置。
(7) A fluorescent light bulb is supplied into a furnace and heated by a heating means, and a chemical that becomes a conductive coating material is blown into the heated fluorescent light bulb from one open end, and air is injected from the other open end. Furnace temperature measurement for measuring the temperature inside the furnace in a conductive film forming apparatus that coats the inner surface of a fluorescent lamp bulb with a conductive film by removing the conductive film and discharges the fluorescent lamp bulb coated with the conductive film from the furnace. element, a resistance measuring device that measures the resistance value of the conductive coating of the fluorescent lamp bulb discharged from the furnace, and a resistance measuring device that measures the resistance value of the inside of the furnace based on the difference between the measurement result of this resistance measuring device and a preset resistance management target value. a set temperature determining means for determining a set temperature of the heating means; and a set temperature determining means for determining a set temperature of the heating means so that the temperature inside the furnace becomes the set temperature based on the set temperature determined by the set temperature determining means and the temperature measured by the furnace temperature measuring element. temperature control means for controlling input energy; bulb clogging detection means for detecting the degree of clogging of the fluorescent light bulb in the furnace; and bulb empty detection means for detecting that the fluorescent light bulb in the furnace is empty. , a bulb temperature detection means for detecting the temperature of a fluorescent lamp bulb discharged from the furnace, a chemical temperature detection means for detecting the temperature of the injected chemical, a heater for heating the injected chemical, and a heater for heating the injected chemical; One or both of the energization energy and the blowing time of the chemical, the temperature measured by the furnace temperature measuring element, the measurement result of the resistance measuring device, the detection result of the valve clogging detection means, the detection result of the valve empty detection means, and the valve temperature. Detection temperature of the detection means, 1 of the detection temperature of the chemical temperature detection means
Alternatively, a conductive film forming apparatus is provided with a setting means for setting based on a plurality of values.
JP18403790A 1990-07-13 1990-07-13 Conductive film forming device Pending JPH0473839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18403790A JPH0473839A (en) 1990-07-13 1990-07-13 Conductive film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18403790A JPH0473839A (en) 1990-07-13 1990-07-13 Conductive film forming device

Publications (1)

Publication Number Publication Date
JPH0473839A true JPH0473839A (en) 1992-03-09

Family

ID=16146258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18403790A Pending JPH0473839A (en) 1990-07-13 1990-07-13 Conductive film forming device

Country Status (1)

Country Link
JP (1) JPH0473839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300100A (en) * 2015-10-30 2016-02-03 朱世玉 Novel artificial quartz stone curing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300100A (en) * 2015-10-30 2016-02-03 朱世玉 Novel artificial quartz stone curing furnace

Similar Documents

Publication Publication Date Title
JP3783366B2 (en) Firing furnace
JPH0473839A (en) Conductive film forming device
JP2000304255A (en) Supply and exhaust cylinder clogging detecting device for forced supply exhaust type combustion device
JP2000211939A (en) Fiber optic drawn furnace featuring fiber optic preform heating and fiber drawing programmable logic controller
US5804796A (en) Ignition system with resistance value difference fire extinction detection circuit
EP0629500A1 (en) A drying apparatus for a rotary printing press
US5320519A (en) Method for controlling carburetor heater and apparatus therefor
KR940004182B1 (en) Heater
JP2000179836A (en) Combustion controller
JP3447195B2 (en) Method and apparatus for controlling inner surface heating of heat insulating bottle
JP3884873B2 (en) Incomplete combustion detector for combustion equipment
KR930009749B1 (en) Heating control device for hot water supply equipment
JPS5818588B2 (en) Netsupuujiyunkanshikikansohouhou Oyobi Souchi
JP2665136B2 (en) Incomplete combustion detector for combustion equipment
CN117957415A (en) Drying device and method for drying container units containing solvent
JP2502910Y2 (en) Drying equipment for painting
KR100400468B1 (en) Burning method of flat color display tube
JPH1114048A (en) Combustion controller
NL8800896A (en) BURNER STEERING.
KR100290847B1 (en) Device and method for preventing explosion of combustion chamber of gas heater
JP3745008B2 (en) Burner combustion equipment
JPH02267417A (en) Burning control device
JPH0426559A (en) Method and device for calcining multilayer ceramic substrate
JPH08193787A (en) Drying controller for grain dryer
JPH06147478A (en) System for deciding burner ignition