JPH047363B2 - - Google Patents

Info

Publication number
JPH047363B2
JPH047363B2 JP19925682A JP19925682A JPH047363B2 JP H047363 B2 JPH047363 B2 JP H047363B2 JP 19925682 A JP19925682 A JP 19925682A JP 19925682 A JP19925682 A JP 19925682A JP H047363 B2 JPH047363 B2 JP H047363B2
Authority
JP
Japan
Prior art keywords
urea resin
syrup
solid urea
acrylic polymer
polymer absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19925682A
Other languages
Japanese (ja)
Other versions
JPS5989320A (en
Inventor
Atsumi Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19925682A priority Critical patent/JPS5989320A/en
Publication of JPS5989320A publication Critical patent/JPS5989320A/en
Publication of JPH047363B2 publication Critical patent/JPH047363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 この発明は固型ユリア樹脂の製法に関する。 ユリア樹脂成形材料を作る際に固型ユリア樹脂
を用いることがある。従来、固型ユリア樹脂はユ
リア樹脂の初期縮合シラツプ中の水分を減じて冷
却固型化することにより得ていた。その際、反応
を進めないように脱水するのに、設備コストの高
価な真空乾燥機が必要となり、最終材料のコスト
アツプを招いていた。樹脂反応度の若い段階で反
応を止めていたので、後の縮合度を高める必要が
あり、そのために後収縮が大きかつた。 この発明は、これらの問題を解消することを目
的とする。これは、比較的水分の少ないシラツプ
を用い、その水分をアクリル系高分子吸収剤で吸
収することによつて達成される。 したがつて、この発明は、ユリア樹脂初期縮合
シラツプ中の水分を減じ、冷却固型化することに
よつて固型ユリア樹脂を得るにあたり、シラツプ
として仕込み水分13〜25重量%に設定されたもの
を用い、これにアクリル系高分子吸収剤を分散さ
せることによつて水分の吸収を行なうことを特徴
とする固型ユリア樹脂の製法を要旨とする。以下
にこれを詳しく述べる。 この発明において、ユリア樹脂の初期縮合シラ
ツプは、仕込み水分13〜25重量%に設定して反応
を行わせることにより得られたものが用いられ
る。仕込み水分量が13重量%未満になると反応の
コントロールが困難になり、25重量%を超えると
脱水が困難となる。仕込み水分量以外の配合条件
や反応条件などは通常のとおりである。 このシラツプにアクリル系高分子吸収剤を添加
し、室温下で良く撹拌し、均一に分散させるとシ
ラツプ中の水分がこのアクリル系高分子吸収剤に
吸収され、シラツプの脱水が完了する。アクリル
系高分子吸収剤は、通常粉末状であり、製鉄化学
工業株式会社により市販されている「アクアキー
プ」が知られている。このものは、固型ユリア樹
脂基準で0.5〜5重量%添加されるのが好ましい。
0.5重量%を下廻ると脱水効果が弱く、5重量%
を上廻るとガス抜け性が悪くなる傾向がみられる
からである。アクリル系高分子吸収剤は熱可塑性
の高分子であり、成形材料中に残るものであるた
め、その相対量が増すと、140〜150℃の加熱温度
下で膨張変形しようとする応力が増し、熱硬化性
のユリア樹脂の架橋で封じ込めることができなく
なり、ガスぶくれがいつまでも消えない傾向を持
つ。 シラツプ中の水分の吸収を終えたのちは、冷却
固型化を行なう。冷却固型化は従来と同様にして
行なう。高分子吸収剤の添加はシラツプの冷却後
でもよい。 このようにして得られた固型ユリア樹脂は、例
えば離型剤、着色剤とともに通常のユリア樹脂乾
燥品に配合し粉砕混合する等、適宜の方法により
成形材料化される。 この発明は、上に述べたように、シラツプ中の
仕込み水分および縮合水をアクリル系高分子吸収
剤を用い室温で脱水するため、従来のごとき加熱
脱水によれば固型樹脂の組成変化が起きやすかつ
たのを避けることができ、固型ユリア樹脂に対し
可塑効果の大きい成分状態を維持させる。真空乾
燥機の使用を省略することができ、工程の簡略
化、生産性の向上、エネルギーコストの低減を可
能とさせる。すなわち、従来5〜8時間要した脱
水工程が省略されるため、上のごとき効果がもた
らされるのである。さらに、加熱脱水を行なわな
いので、シラツプ中の樹脂の反応度を進めておく
ことができ、後の縮合度を小さくすることができ
る。そのため、この固型ユリア樹脂を用いて得ら
れる成形材料の成形品は後収縮が小さい。成形材
料に含まれている熱可塑性樹脂(アクリル系高分
子吸収剤)が後収縮の起きる処理条件下で膨張す
るため、これによつてもユリア樹脂の後収縮によ
る影響を抑えることができる。 次に、実施例を従来例と併せて述べる。 実施例 1〜5 350gのパラホルムアルデヒドに水80gと10%
苛性ソーダ水溶液10mlを加えて加熱した。系の温
度が75℃になつた時点で15分撹拌し、尿素352g
添加し、60℃で充分撹拌しながら反応を進めた。
10分後にアクリル系高分子吸収剤(商品名アクア
キープ10SH)を第1表の量だけ添加し、良く撹
拌して均一に分散させ、そののち冷却固型化させ
た。 得られた固型ユリア樹脂を適当な大きさ砕き、
通常のユリア樹脂乾燥品100重量部に対し15重量
部添加し、併せてステアリン酸亜鉛0.6重量部と
所要量の顔料を添加して、ボールミルで粉砕混合
し、成形材料とした。 〔従来例〕 アクリル系高分子吸収剤によることなく、従来
と同様にして脱水した。その他は実施例と同様に
して成形材料を得た。 実施例および従来例の成形材料の性能は、第1
表のとおりであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing solid urea resin. Solid urea resin is sometimes used when making urea resin molding materials. Conventionally, solid urea resins have been obtained by reducing the water content in the initial condensation syrup of urea resins and solidifying them by cooling. At that time, an expensive vacuum dryer was required to dehydrate the material to prevent the reaction from proceeding, leading to an increase in the cost of the final material. Since the reaction was stopped at a young stage of resin reactivity, it was necessary to increase the subsequent degree of condensation, which resulted in large post-shrinkage. This invention aims to solve these problems. This is accomplished by using a relatively water-poor syrup and absorbing the water with an acrylic polymer absorbent. Therefore, this invention aims at obtaining a solid urea resin by reducing the water content in the initial condensation syrup of urea resin and solidifying it by cooling. The gist of this invention is a method for producing a solid urea resin, which is characterized by absorbing moisture by dispersing an acrylic polymer absorbent into the solid urea resin. This will be explained in detail below. In this invention, the initial condensation syrup of urea resin used is one obtained by carrying out the reaction at a water content of 13 to 25% by weight. When the amount of water added is less than 13% by weight, it becomes difficult to control the reaction, and when it exceeds 25% by weight, dehydration becomes difficult. The blending conditions, reaction conditions, etc. other than the amount of water to be added are the same as usual. When an acrylic polymer absorbent is added to the syrup and stirred well at room temperature to uniformly disperse the syrup, the water in the syrup is absorbed by the acrylic polymer absorbent, completing the dehydration of the syrup. The acrylic polymer absorbent is usually in the form of powder, and "Aqua Keep" commercially available from Seitetsu Kagaku Kogyo Co., Ltd. is known. This material is preferably added in an amount of 0.5 to 5% by weight based on the solid urea resin.
If it is less than 0.5% by weight, the dehydration effect will be weak, and 5% by weight.
This is because when the amount exceeds 1, gas release properties tend to deteriorate. The acrylic polymer absorbent is a thermoplastic polymer that remains in the molding material, so as its relative amount increases, the stress that causes it to expand and deform under heating temperatures of 140 to 150 degrees Celsius increases. The crosslinking of the thermosetting urea resin makes it impossible to contain the gas, and gas blisters tend to persist forever. After the moisture in the syrup has been absorbed, it is cooled and solidified. Cooling and solidification are performed in the same manner as before. The polymeric absorbent may be added after cooling the syrup. The solid urea resin thus obtained is made into a molding material by an appropriate method, such as by blending it with a normal dried urea resin product together with a mold release agent and a coloring agent, and pulverizing and mixing. As mentioned above, this invention dehydrates the charged water and condensed water in the syrup at room temperature using an acrylic polymer absorbent. To easily avoid sagging, and to maintain a component state with a large plasticizing effect on solid urea resin. The use of a vacuum dryer can be omitted, making it possible to simplify the process, improve productivity, and reduce energy costs. In other words, the dehydration step, which conventionally required 5 to 8 hours, is omitted, resulting in the above effects. Furthermore, since heating and dehydration are not performed, the degree of reactivity of the resin in the syrup can be advanced, and the subsequent degree of condensation can be reduced. Therefore, a molded article made of a molding material obtained using this solid urea resin has a small aftershrinkage. Since the thermoplastic resin (acrylic polymer absorbent) contained in the molding material expands under processing conditions that cause post-shrinkage, this also makes it possible to suppress the effects of post-shrinkage of the urea resin. Next, an example will be described together with a conventional example. Examples 1-5 350g of paraformaldehyde, 80g of water and 10%
10 ml of caustic soda aqueous solution was added and heated. When the temperature of the system reached 75℃, stir for 15 minutes and add 352g of urea.
and the reaction proceeded at 60°C with thorough stirring.
After 10 minutes, an acrylic polymer absorbent (trade name: Aqua Keep 10SH) was added in the amount shown in Table 1, stirred well to uniformly disperse, and then cooled to solidify. Crush the obtained solid urea resin into appropriate sizes,
15 parts by weight was added to 100 parts by weight of a normal dry urea resin product, and 0.6 parts by weight of zinc stearate and the required amount of pigment were added, and the mixture was pulverized and mixed in a ball mill to obtain a molding material. [Conventional example] Dehydration was carried out in the same manner as in the past, without using an acrylic polymer absorbent. A molding material was obtained in the same manner as in the example. The performance of the molding materials of the example and the conventional example is as follows:
It was as shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 ユリア樹脂初期縮合シラツプ中の水分を減
じ、冷却固型化することによつて固型ユリア樹脂
を得るにあたり、シラツプとして仕込み水分13〜
25重量%に設定されたものを用い、これにアクリ
ル系高分子吸収剤を分散させることによつて水分
の吸収を行なうことを特徴とする固型ユリア樹脂
の製法。 2 シラツプへのアクリル系高分子吸収剤の添加
量が、固型ユリア樹脂に対し0.5〜5重量%であ
る特許請求の範囲第1項記載の固型ユリア樹脂の
製法。
[Scope of Claims] 1. In obtaining a solid urea resin by reducing the water content in the initial condensation syrup of urea resin and solidifying it by cooling, the water content of 13~
A method for producing solid urea resin, which is characterized by absorbing water by dispersing an acrylic polymer absorbent into the solid urea resin at a concentration of 25% by weight. 2. The method for producing a solid urea resin according to claim 1, wherein the amount of the acrylic polymer absorbent added to the syrup is 0.5 to 5% by weight based on the solid urea resin.
JP19925682A 1982-11-13 1982-11-13 Preparation of solid urea resin Granted JPS5989320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19925682A JPS5989320A (en) 1982-11-13 1982-11-13 Preparation of solid urea resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19925682A JPS5989320A (en) 1982-11-13 1982-11-13 Preparation of solid urea resin

Publications (2)

Publication Number Publication Date
JPS5989320A JPS5989320A (en) 1984-05-23
JPH047363B2 true JPH047363B2 (en) 1992-02-10

Family

ID=16404754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19925682A Granted JPS5989320A (en) 1982-11-13 1982-11-13 Preparation of solid urea resin

Country Status (1)

Country Link
JP (1) JPS5989320A (en)

Also Published As

Publication number Publication date
JPS5989320A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
US2503947A (en) Method of molidng magnetic powder
US2534607A (en) Molded brake lining
JPH047363B2 (en)
US2159411A (en) Sulphite waste liquor-phenol-aldehyde condensation products
CN111909332B (en) Solid thermosetting phenolic resin and preparation method thereof
JP2002529568A (en) Composition for producing molded article and method for producing molded article comprising said composition
US2056462A (en) Manufacture of molded articles from urea and formaldehyde
US2864779A (en) Process of preparing urea-formaldehyde molding powders
US4144302A (en) Process for preparing injection moldable thermosettable composition
US3011900A (en) Methods of making a lignocellulose product and products resulting therefrom
US1090439A (en) Plastic masses and method of producing the same.
JP3362590B2 (en) Manufacturing method of resol resin molding material
US2595335A (en) Molding powders from urea and gaseous formaldehyde
USRE29242E (en) Novolak molding compounds containing hexamethylenetetramine monometaborate
US2813072A (en) Process for preparing thermo-setting resins
US3563952A (en) Novolak molding compounds containing hexamethylenetetramine monometaborate
US1899109A (en) Molding powder
US2984578A (en) Methods of making a lignocellulose product and products resulting therefrom
JPS58101144A (en) Preparation of solid urea resin
CA1110798A (en) Amino molding compound for cold manifold injection molding
US2056461A (en) Manufacture of molded articles from urea and formaldehyde
US2056436A (en) Molding resinous materials
US1536253A (en) Prematurely-cured plastic material and process of making same
US1146299A (en) Plastic molding composition and method of producing same.
JPS57180620A (en) Production of urea resin molding material