JPH0473434B2 - - Google Patents

Info

Publication number
JPH0473434B2
JPH0473434B2 JP4526485A JP4526485A JPH0473434B2 JP H0473434 B2 JPH0473434 B2 JP H0473434B2 JP 4526485 A JP4526485 A JP 4526485A JP 4526485 A JP4526485 A JP 4526485A JP H0473434 B2 JPH0473434 B2 JP H0473434B2
Authority
JP
Japan
Prior art keywords
complex
tcnq
cyclohepta
mmol
benzoxazinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4526485A
Other languages
Japanese (ja)
Other versions
JPS61204173A (en
Inventor
Toshio Mukai
Takao Yamashita
Koju Hagitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Perfumery Industry Co filed Critical Takasago Perfumery Industry Co
Priority to JP4526485A priority Critical patent/JPS61204173A/en
Publication of JPS61204173A publication Critical patent/JPS61204173A/en
Publication of JPH0473434B2 publication Critical patent/JPH0473434B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な導電性有機化合物、更に詳細に
は導電性ペイント、導電性インキ、レジストイン
キ、導電性プラスチツク、導電ゴム等の原料とし
て、あるいは電極、厚膜IC、液晶表示管、太陽
電池、超高密度メモリー等の構成材料として幅広
い用途に利用できる導電性有機化合物に関する。 〔従来の技術〕 導電性有機化合物は、金属にくらべ軽量性、電
導の異方性、成形の容易性、用途に応じた化学的
修飾の容易性等の利点があり、さらに理論的に常
温超伝導現象の可能性が示唆されるところから、
近年注目をあびており、低分子、高分子を問わ
ず、多くの素材が開発されつつある。 就中、テトラシアノキノジメタン(以下、
「TCNQ」という)を電子受容体部分とした
TCNQ錯体構造のものは、一般に導電性が高く
最もよく知られている。そして、これら従来の
TCNQ錯体の電子供与体部分としては、テトラ
−n−ブチルアンモニウム、キノリン、アクリジ
ン、o−フエナントロリン、N−メチルフエナジ
ン(NMP)、N−メチルベンゾチアジン、テト
ラチアフルバレン(TTF)、テトラチアテトラセ
ン(TTT)、テトラメチルテトラセレナフルバレ
ン(TMTSF)等が使用されてきた〔「有機半導
体材料の合成と応用」CNC(1981);「現代化学」
No.141、第12〜第19頁、東京化学同人(1982);化
学総説42「伝導性低次元物質の化学」学会出版セ
ンター(1983)〕。 〔発明が解決しようとする問題点〕 しかしながら、斯様にTCNQ錯体構造の導電
性有機化合物は多数知られているが、導電性の点
で満足すべきものは少なく、また高導電性のもの
はその化学構造が複雑で合成が容易でないものが
ほとんどであるため、高導電性を有し、かつ合成
が容易な有機化合物材料の開発が望まれていた。 〔問題点を解決するための手段〕 本発明は、斯かる条件を満足する有機化合物を
見出すべく鋭意検討を重ねた結果、電子供与体部
分としてシクロヘプタベンゾジアジン、シクロヘ
プタベンゾオキサジン、シクロヘプタベンゾチア
ジンの如き7員環系化合物を用いたTCNQ錯体
は、従来のTCNQ錯体と比べて最高度に近い導
電性を有し、かつ極めて容易に合成できることを
見出し、本発明を完成した。 すなわち本発明は、次の一般式() (式中、Rは水素原子又は炭素数1〜3のアルキ
ル基を、XはHNCH3N、O又はSを、nは
1又は2の数を示す) で表わされる導電性有機化合物を提供するもので
ある。 本発明の導電性有機化合物は、例えば次式に従
つて公知合成法を組み合せることにより容易に製
造される。 (式中、YはCl、Br又はIを示し、R、Xは前
記と同じ) すなわち、シクロヘプタベンゾジアジン、シク
ロヘプタベンゾオキサジン、シクロヘプタベンゾ
チアジンをプロトン化又はアルキル化することに
より7員環系カチオンを得る〔日本化学会第47回
春季年会講演予稿集、4F34(1983);ブレテイ
ン・オブ・ザ・ケミカル・ソサイエテイ・オブ・
ジヤパン(Bull.Chem.Soc.Japan)51、2185
(1978);同、34、146(1961)〕。次いで当量の該カ
チオンとTCNQ-Li+の各々の沸騰エタノール溶
液を混合して7員環系カチオンのTCNQ(1:
1)錯体を、更に当量のTCNQ(1:1)錯体と
TCNQの各々の沸騰アセトニトリル溶液を混合
してTCNQ(1:2)錯体を得る〔カナデイア
ン・ジヤーナル・オブ・ケミストリイ(Can.J.
Chem.)43、1448(1965)〕。 斯くして得られる7員環系化合物・TCNQ錯
体としては、シクロヘプタ〔b〕〔1,4〕ベン
ゾジアジニウムTCNQ(1:1)錯体、同(1:
2)錯体;N−メチルシクロヘプタ〔b〕〔1,
4〕ベンゾジアジニウムTCNQ(1:1)錯体、
同(1:2)錯体;N−エチルシクロヘプタ
〔b〕〔1,4〕ベンゾジアジニウムTCNQ(1:
1)錯体、同(1:2)錯体;N−プロピルシク
ロヘプタ〔b〕〔1,4〕ベンゾジアジニウム
TCNQ(1:1)錯体、同(1:2)錯体;N,
N−ジメチルシクロヘプタ〔b〕〔1,4〕ベン
ゾジアジニウムTCNQ(1:1)錯体、同(1:
2)錯体;N−メチル、N−エチル−シクロヘプ
タ〔b〕〔1,4〕ベンゾジアジニウムTCNQ
(1:1)錯体、同(1:2)錯体;シクロヘプ
タ〔b〕〔1,4〕ベンゾオキサジニウムTCNQ
(1:1)錯体、同(1:2)錯体;N−メチル
シクロヘプタ〔b〕〔1,4〕ベンゾオキサジニ
ウムTCNQ(1:1)錯体、同(1:2)錯体;
N−エチルシクロヘプタ〔b〕〔1,4〕ベンゾ
オキサジニウムTCNQ(1:1)錯体、同(1:
2)錯体;シクロヘプタ〔b〕〔1,4〕ベンゾ
チアジニウムTCNQ(1:1)錯体、同(1:
2)錯体;N−メチルシクロヘプタ〔b〕〔1,
4〕ベンゾチアジニウムTCNQ(1:1)錯体、
同(1:2)錯体、N−プロピルシクロヘプタ
〔b〕〔1,4〕ベンゾチアジニウムTCNQ(1:
1)錯体、同(1:2)錯体等が挙げられる。 〔作用〕 本発明の7員環系化合物・TCNQ錯体、従来
の導電性有機化合物のうち最も高い導電性を有す
るものの1つてあるTTF・TCNQ錯体を常法に
より加圧成形した後、その比抵抗を二端子法によ
り測定し、これら錯体の導電性の比較を行つた。
なお、測定は室温で行つた。その結果を第1表に
示す。 【表】 通常のTCNQ錯体化合物の比抵抗は一般に102
〜108Ωcmの範囲にある〔「現代化学」、No.141、第
13頁(1982)〕。これに対し本発明の7員環系化合
物・TCNQ錯体、就中その(1:2)錯体は、
第1表に示す如く非常に高い導電性を有する。従
つて、本発明の導電性有機化合物は、TTF・
TCNQ錯体の導電性には及ばないが従来の
TCNQ錯体と比べて最高度に近い導電性を有す
るものである。 〔発明の効果〕 本発明の導電性有機化合物は、上記の如く導電
性の点ではTTF・TCNQ錯体に一歩譲るもので
あるが、これに比べ合成が極めて容易であること
から、導電性有機化合物素材として工業的に非常
に有利なものである。 例えば、TTFと本発明化合物の原料の1つで
あるシクロヘプタ〔b〕〔1,4〕ベンゾチアジ
ンの合成法を比較すると、TTFは次式のように
チオホスゲンとジソジウムジメルカプトマレオニ
トリルとから7工程で合成されるのに対し、シク
ロヘプタ〔b〕〔1,4〕ベンゾチアジンは、2
−クロロトロポンとo−アミノチオフエノールと
から1工程で合成できる。 TTFの合成: 〔ジヤーナル・オブ・ジ・アメリカン・ケミカ
ル・ソサイエテイ(Journal of the American
Chemical Society)86、5290(1964);ケミカ
ル・コミユニケイシヨンズ(Chemical
Communications)1453(1970)〕 シクロヘプタ〔b〕〔1,4〕ベンゾチアジン
の合成: 〔ブレテイン・オブ・ザ・ケミカル・ソサイエテ
イ・オブ・ジヤパン(Bull.Chem.Soc.Japan)
51、2185(1978)〕 〔実施例〕 次に合成例及び実施例を挙げて本発明を説明す
る。 合成例 1 N−メチルシクロヘプタ〔b〕〔1,4〕ベン
ゾジアジニウム塩酸塩の合成: 無水エタノール50mlにHClガスを30分間通気
し、塩酸酸性エタノール液を調製した。これにN
−メチルシクロヘプタ〔b〕〔1,4〕ベンゾジ
アジン100mg(0.481mmol)を溶解し、30分間室
温で撹拌した。エタノールを留去して得られた固
形物をエタノールより再結晶して暗緑色針状晶N
−メチルシクロヘプタ〔b〕〔1,4〕ベンゾジ
アジニウム塩酸塩95mg(0.388mmol)が得られ
た(収率80.5%)。 m.p.258〜260℃(分解)。 合成例 2 N,N−ジメチルシクロヘプタ〔b〕〔1,4〕
ベンゾジアジニウムヨウ化物の合成: 乾燥エーテル5mlにN−メチルシクロヘプタ
〔b〕〔1,4〕ベンゾジアジン208mg(1.00m
mol)を溶解し、これにヨウ化メチル11.4g
(80.3mmol)を加え、45時間加熱還流した。反
応が進むにつれ、ジメチル体が結晶として析出し
た。エーテルと過剰のヨウ化メチルを留去して得
た残留物にエーテルを加えて可溶部(未反応の原
料が含まれる)を除去し、不溶部をエタノールよ
り再結晶して暗緑色板状晶N,N−ジメチルシク
ロヘプタ〔b〕〔1,4〕ベンゾジアジニウムヨ
ウ化物263mg(0.75mmol)が得られた(収率75
%)。 m.p.267〜268℃(分解)。 実施例 1 シクロヘプタ〔b〕〔1,4〕ベンゾオキサジ
ニウムTCNQ(1:1)錯体の合成: シクロヘプタ〔b〕〔1,4〕ベンゾオキサジ
ニウム塩酸塩59mg(0.256mmol)の無水エタノ
ール沸騰溶液(4ml)にTCNQ-Li+49mg(0.256
mmol)の無水エタノール沸騰溶液(4ml)を混
合し、N2ガス雰囲気下に2時間室温に放置した。
析出した結晶を別し、少量の無水エタノール、
3mlの乾燥エーテルで洗い、紫色針状晶シクロヘ
プタ〔b〕〔1,4〕ベンゾオキサジニウム
TCNQ(1:1)錯体55mg(0.137mmol)を得た
(収率53.4%)。このものの物性を第2表に示し
た。 実施例 2 N−メチルシクロヘプタ〔b〕〔1,4〕ベン
ゾジアジニウムTCNQ(1:1)錯体の合成: 実施例1のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウム塩酸塩の代りにN−メチルシク
ロヘプタ〔b〕〔1,4〕ベンゾジアジニウム塩
酸塩63mg(0.256mmol)を用い、実施例1と同
様に行い、青紫色針状晶の標記化合物77mg
(0.186mmol)を得た(収率72.9%)。このものの
物性を第2表に示した。 実施例 3 N,N−ジメチルシクロヘプタ〔b〕〔1,4〕
ベンゾジアジニウムTCNQ(1:1)錯体の合
成: 実施例1のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウム塩酸塩の代りにN,N−ジメチ
ルシクロヘプタ〔b〕〔1,4〕ベンゾジアジニ
ウムヨウ化物90mg(0.256mmol)を用い、実施
例1と同様に行い、紫色針状晶の標記化合物90mg
(0.210mmol)を得た(収率82.0%)。このものの
物性を第2表に示した。 実施例 4 N−メチルシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウムTCNQ(1:1)錯体の合
成: 実施例1のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウム塩酸塩の代りにN−メチルシク
ロヘプタ〔b〕〔1,4〕ベンゾオキサジニウム
塩酸塩63mg(0.256mmol)を用い、実施例1と
同様に行い、赤紫色針状晶の標記化合物84mg
(0.202mmol)を得た(収率78.9%)。このものの
物性を第2表に示した。 実施例 5 シクロヘプタ〔b〕〔1,4〕ベンゾチアジニ
ウムTCNQ(1:1)錯体の合成: 実施例1のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウム塩酸塩の代りにシクロヘプタ
〔b〕〔1,4〕ベンゾチアジニウム塩酸塩63mg
(0.256mmol)を用い、実施例1と同様に行い、
紫色針状晶の標記化合物59mg(0.142mmol)を
得た(収率55.6%)。このものの物性を第2表に
示す。 【表】 【表】 実施例 6 シクロヘプタ〔b〕〔1,4〕ベンゾオキサジ
ニウムTCNQ(1:2)錯体の合成: 実施例1で得たシクロヘプタ〔b〕〔1,4〕
ベンゾオキサジニウムTCNQ(1:1)錯体50mg
(0.125mmol)の乾燥アセトニトリル沸騰溶液
(12ml)をTCNQ25.5mg(0.125mmol)の乾燥ア
セトニトリル沸騰溶液(3ml)に加え、N2ガス
雰囲気下に2時間室温に放置した。析出した結晶
を別し、少量の乾燥アセトニトリル、3mlの乾
燥エーテルで洗い、紫色針状晶シクロヘプタ
〔b〕〔1,4〕ベンゾオキサジニウムTCNQ
(1:2)錯体51mg(0.0894mmol)を得た(収
率67.5%)。このものの物性を第3表に示す。 実施例 7 N,N−ジメチルシクロヘプタ〔b〕〔1,4〕
ベンゾジアジニウムTCNQ(1:2)錯体の合
成: 実施例6のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウムTCNQ(1:1)錯体の代りに
実施例3で得たN,N−ジメチルシクロヘプタ
〔b〕〔1,4〕ベンゾジアジニウムTCNQ(1:
1)錯体53mg(0.125mmol)を用い、実施例6
と同様に行い、青紫色針状晶の標記化合物65mg
(0.103mmol)を得た(収率82.4%)。このものの
物性を第3表に示す。 実施例 8 N−メチルシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウムTCNQ(1:2)錯体の合
成: 実施例6のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウムTCNQ(1:1)錯体の代りに
実施例4で得たN−メチルシクロヘプタ〔b〕
〔1,4〕ベンゾオキサジニウムTCNQ(1:1)
錯体52mg(0.125mmol)を用い、実施例6と同
様に行い、紫色針状晶の標記化合物67mg(0.108
mmol)を得た(収率86.7%)。このものの物性
を第3表に示す。 実施例 9 シクロヘプタ〔b〕〔1,4〕ベンゾチアジニ
ウムTCNQ(1:2)錯体の合成: 実施例6のシクロヘプタ〔b〕〔1,4〕ベン
ゾオキサジニウムTCNQ(1:1)錯体の代りに
実施例5で得たシクロヘプタ〔b〕〔1,4〕ベ
ンゾチアジニウムTCNQ(1:1)錯体52mg
(0.125mmol)を用い、実施例6と同様に行い、
紫色針状晶の標記化合物57mg(0.091mmol)を
得た(収率72.5%)。このものの物性を第3表に
示す。 【表】
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a novel conductive organic compound, more specifically, as a raw material for conductive paint, conductive ink, resist ink, conductive plastic, conductive rubber, etc. It also relates to conductive organic compounds that can be used in a wide range of applications as constituent materials for electrodes, thick film ICs, liquid crystal display tubes, solar cells, ultra-high density memories, etc. [Prior art] Conductive organic compounds have advantages over metals, such as light weight, anisotropy of conductivity, ease of molding, and ease of chemical modification depending on the application. As the possibility of conduction phenomena is suggested,
It has attracted attention in recent years, and many materials are being developed, both low-molecular and polymeric. Among them, tetracyanoquinodimethane (hereinafter referred to as
"TCNQ") was used as the electron acceptor part.
Those with a TCNQ complex structure generally have high conductivity and are the most well-known. And these conventional
Electron donor moieties of the TCNQ complex include tetra-n-butylammonium, quinoline, acridine, o-phenanthroline, N-methylphenazine (NMP), N-methylbenzothiazine, tetrathiafulvalene (TTF), tetrathia Tetracene (TTT), tetramethyltetraselenafulvalene (TMTSF), etc. have been used ["Synthesis and Application of Organic Semiconductor Materials" CNC (1981); "Modern Chemistry"
No. 141, pp. 12-19, Tokyo Kagaku Dojin (1982); Kagaku Review 42 "Chemistry of Conductive Low-dimensional Materials" Society Publishing Center (1983)]. [Problems to be solved by the invention] However, although many conductive organic compounds with the TCNQ complex structure are known, there are only a few that are satisfactory in terms of conductivity, and those with high conductivity are still lacking. Since most of them have complex chemical structures and are difficult to synthesize, there has been a desire to develop organic compound materials that have high conductivity and are easy to synthesize. [Means for Solving the Problems] As a result of intensive studies to find an organic compound that satisfies the above conditions, the present invention uses cycloheptabenzodiazine, cycloheptabenzoxazine, cycloheptabenzodiazine, and cycloheptabenzodiazine as electron donor moieties. The present invention was completed based on the discovery that a TCNQ complex using a 7-membered ring compound such as benzothiazine has nearly the highest electrical conductivity compared to conventional TCNQ complexes, and can be synthesized extremely easily. That is, the present invention provides the following general formula () (wherein, R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X represents HNCH 3 N, O or S, and n represents a number of 1 or 2) It is something. The conductive organic compound of the present invention can be easily produced, for example, by combining known synthesis methods according to the following formula. (In the formula, Y represents Cl, Br or I, and R and X are the same as above.) That is, by protonating or alkylating cycloheptabenzodiazine, cycloheptabenzoxazine, or cycloheptabenzothiazine, 7 Obtaining member ring system cations [Proceedings of the 47th Spring Annual Meeting of the Chemical Society of Japan, 4F34 (1983); Bulletin of the Chemical Society of Japan.
Bull.Chem.Soc.Japan 51 , 2185
(1978); Ibid., 34 , 146 (1961)]. Next, equivalent amounts of the cation and TCNQ - Li + were mixed in boiling ethanol solution to obtain the 7-membered ring cation TCNQ (1:
1) The complex is further treated with an equivalent amount of TCNQ (1:1) complex.
The TCNQ (1:2) complex is obtained by mixing the respective boiling acetonitrile solutions of TCNQ [Can.J.
Chem.) 43 , 1448 (1965)]. As the 7-membered ring compound/TCNQ complex obtained in this way, cyclohepta[b][1,4]benzodiazinium TCNQ (1:1) complex, cyclohepta[b][1,4]benzodiazinium TCNQ (1:1) complex,
2) Complex; N-methylcyclohepta[b][1,
4] Benzodiazinium TCNQ (1:1) complex,
Same (1:2) complex; N-ethylcyclohepta[b][1,4]benzodiazinium TCNQ (1:
1) Complex, same (1:2) complex; N-propylcyclohepta[b][1,4]benzodiazinium
TCNQ (1:1) complex, TCNQ (1:2) complex; N,
N-dimethylcyclohepta[b][1,4]benzodiazinium TCNQ (1:1) complex;
2) Complex; N-methyl, N-ethyl-cyclohepta[b][1,4]benzodiazinium TCNQ
(1:1) complex, (1:2) complex; cyclohepta[b][1,4]benzoxazinium TCNQ
(1:1) complex, the same (1:2) complex; N-methylcyclohepta[b][1,4]benzoxazinium TCNQ (1:1) complex, the same (1:2) complex;
N-Ethylcyclohepta[b][1,4]benzoxazinium TCNQ (1:1) complex;
2) Complex; cyclohepta[b][1,4]benzothiazinium TCNQ (1:1) complex;
2) Complex; N-methylcyclohepta[b][1,
4] Benzothiazinium TCNQ (1:1) complex,
(1:2) complex, N-propylcyclohepta[b][1,4]benzothiazinium TCNQ (1:
1) complex, the same (1:2) complex, and the like. [Function] After the 7-membered ring compound/TCNQ complex of the present invention and the TTF/TCNQ complex, which has one of the highest conductivity among conventional conductive organic compounds, is pressure-molded by a conventional method, its specific resistance is determined. was measured using the two-terminal method, and the conductivity of these complexes was compared.
Note that the measurements were performed at room temperature. The results are shown in Table 1. [Table] The specific resistance of ordinary TCNQ complex compounds is generally 10 2
~10 8 Ωcm [“Modern Chemistry”, No. 141, No.
13 pages (1982)]. On the other hand, the 7-membered ring compound/TCNQ complex of the present invention, especially the (1:2) complex,
As shown in Table 1, it has very high conductivity. Therefore, the conductive organic compound of the present invention has TTF/
The conductivity of the TCNQ complex is not as good as that of the conventional one.
It has nearly the highest degree of conductivity compared to the TCNQ complex. [Effects of the Invention] As mentioned above, the conductive organic compound of the present invention is one step ahead of the TTF/TCNQ complex in terms of conductivity, but since it is extremely easy to synthesize compared to the TTF/TCNQ complex, the conductive organic compound It is industrially very advantageous as a material. For example, when comparing the synthesis method of TTF and cyclohepta[b][1,4]benzothiazine, which is one of the raw materials of the compound of the present invention, TTF is synthesized in 7 steps from thiophosgene and disodium dimercaptomaleonitrile as shown in the following formula. whereas cyclohepta[b][1,4]benzothiazine is synthesized with 2
-Can be synthesized in one step from chlorotropone and o-aminothiophenol. Synthesis of TTF: [Journal of the American Chemical Society]
Chemical Society) 86 , 5290 (1964);
Communications) 1453 (1970)] Synthesis of cyclohepta[b][1,4]benzothiazine: [Bull.Chem.Soc.Japan]
51, 2185 (1978)] [Example] Next, the present invention will be explained by giving synthesis examples and examples. Synthesis Example 1 Synthesis of N-methylcyclohepta[b][1,4]benzodiazinium hydrochloride: HCl gas was bubbled through 50 ml of absolute ethanol for 30 minutes to prepare a hydrochloric acid acidic ethanol solution. N to this
-Methylcyclohepta[b][1,4]benzodiazine (100 mg, 0.481 mmol) was dissolved and stirred at room temperature for 30 minutes. The solid obtained by distilling off the ethanol was recrystallized from ethanol to give dark green needle crystals N.
95 mg (0.388 mmol) of -methylcyclohepta[b][1,4]benzodiazinium hydrochloride was obtained (yield 80.5%). mp258~260℃ (decomposition). Synthesis Example 2 N,N-dimethylcyclohepta[b][1,4]
Synthesis of benzodiazinium iodide: 208 mg of N-methylcyclohepta[b][1,4]benzodiazine in 5 ml of dry ether (1.00 m
11.4 g of methyl iodide
(80.3 mmol) was added, and the mixture was heated under reflux for 45 hours. As the reaction progressed, the dimethyl compound precipitated as crystals. Ether was added to the residue obtained by distilling off ether and excess methyl iodide to remove the soluble portion (containing unreacted raw materials), and the insoluble portion was recrystallized from ethanol to form a dark green plate. 263 mg (0.75 mmol) of crystalline N,N-dimethylcyclohepta[b][1,4]benzodiazinium iodide was obtained (yield 75
%). mp267-268℃ (decomposition). Example 1 Synthesis of cyclohepta[b][1,4]benzoxazinium TCNQ (1:1) complex: Boiling 59 mg (0.256 mmol) of cyclohepta[b][1,4]benzoxazinium hydrochloride in absolute ethanol TCNQ - Li + 49mg (0.256
mmol) of boiling absolute ethanol (4 ml) was mixed and left at room temperature for 2 hours under N2 gas atmosphere.
Separate the precipitated crystals, add a small amount of absolute ethanol,
Wash with 3 ml of dry ether to obtain purple needle-like crystals of cyclohepta[b][1,4]benzoxazinium.
55 mg (0.137 mmol) of TCNQ (1:1) complex was obtained (yield 53.4%). The physical properties of this product are shown in Table 2. Example 2 Synthesis of N-methylcyclohepta[b][1,4]benzodiazinium TCNQ (1:1) complex: Synthesis of cyclohepta[b][1,4]benzoxazinium hydrochloride of Example 1 The same procedure as in Example 1 was carried out using 63 mg (0.256 mmol) of N-methylcyclohepta[b][1,4]benzodiazinium hydrochloride instead, and 77 mg of the title compound in the form of blue-purple needles was obtained.
(0.186 mmol) was obtained (yield 72.9%). The physical properties of this product are shown in Table 2. Example 3 N,N-dimethylcyclohepta [b] [1,4]
Synthesis of benzodiazinium TCNQ (1:1) complex: N,N-dimethylcyclohepta[b][1,4] in place of cyclohepta[b][1,4]benzoxazinium hydrochloride in Example 1 ] Using 90 mg (0.256 mmol) of benzodiazinium iodide, the same procedure as in Example 1 was carried out, and 90 mg of the title compound in the form of purple needle-like crystals was obtained.
(0.210 mmol) was obtained (yield 82.0%). The physical properties of this product are shown in Table 2. Example 4 Synthesis of N-methylcyclohepta[b][1,4]benzoxazinium TCNQ (1:1) complex: Synthesis of cyclohepta[b][1,4]benzoxazinium hydrochloride of Example 1 The same procedure as in Example 1 was carried out using 63 mg (0.256 mmol) of N-methylcyclohepta[b][1,4]benzoxazinium hydrochloride instead, and 84 mg of the title compound in the form of reddish-purple needles was obtained.
(0.202 mmol) was obtained (yield 78.9%). The physical properties of this product are shown in Table 2. Example 5 Synthesis of cyclohepta[b][1,4]benzothiazinium TCNQ (1:1) complex: Cyclohepta[b][1,4]benzoxazinium hydrochloride in Example 1 was replaced with cyclohepta[b][1,4]benzoxazinium hydrochloride. b] [1,4]benzothiazinium hydrochloride 63mg
(0.256 mmol) in the same manner as in Example 1,
59 mg (0.142 mmol) of the title compound in the form of purple needles was obtained (yield 55.6%). The physical properties of this product are shown in Table 2. [Table] [Table] Example 6 Synthesis of cyclohepta[b][1,4]benzoxazinium TCNQ (1:2) complex: Cyclohepta[b][1,4] obtained in Example 1
Benzoxazinium TCNQ (1:1) complex 50mg
(0.125 mmol) was added to a boiling dry acetonitrile solution (3 ml) of 25.5 mg (0.125 mmol) of TCNQ and left at room temperature for 2 hours under N2 gas atmosphere. Separate the precipitated crystals and wash with a small amount of dry acetonitrile and 3 ml of dry ether to obtain purple needle-like crystals of cyclohepta[b][1,4]benzoxazinium TCNQ.
51 mg (0.0894 mmol) of a (1:2) complex was obtained (yield 67.5%). The physical properties of this product are shown in Table 3. Example 7 N,N-dimethylcyclohepta [b] [1,4]
Synthesis of benzodiazinium TCNQ (1:2) complex: N,N obtained in Example 3 in place of the cyclohepta[b][1,4]benzoxazinium TCNQ (1:1) complex of Example 6 -dimethylcyclohepta[b][1,4]benzodiazinium TCNQ (1:
1) Using 53 mg (0.125 mmol) of the complex, Example 6
Proceed in the same manner as above to obtain 65 mg of the title compound in the form of blue-purple needles.
(0.103 mmol) (yield 82.4%). The physical properties of this product are shown in Table 3. Example 8 Synthesis of N-methylcyclohepta[b][1,4]benzoxazinium TCNQ(1:2) complex: Cyclohepta[b][1,4]benzoxazinium TCNQ(1:2) complex of Example 6 :1) N-methylcyclohepta [b] obtained in Example 4 instead of the complex
[1,4]Benzoxazinium TCNQ (1:1)
The same procedure as in Example 6 was carried out using 52 mg (0.125 mmol) of the complex, and 67 mg (0.108 mmol) of the title compound in the form of purple needles was obtained.
mmol) (yield 86.7%). The physical properties of this product are shown in Table 3. Example 9 Synthesis of cyclohepta[b][1,4]benzothiazinium TCNQ (1:2) complex: Cyclohepta[b][1,4]benzoxazinium TCNQ (1:1) complex of Example 6 52 mg of cyclohepta[b][1,4]benzothiazinium TCNQ (1:1) complex obtained in Example 5 instead of
(0.125 mmol) in the same manner as in Example 6,
57 mg (0.091 mmol) of the title compound in the form of purple needles was obtained (yield 72.5%). The physical properties of this product are shown in Table 3. 【table】

Claims (1)

【特許請求の範囲】 1 次の一般式() (式中、Rは水素原子又は炭素数1〜3のアルキ
ル基を、XはHNCH3N、O又はSを、nは
1又は2の数を示す) で表わされる導電性有機化合物。
[Claims] First-order general formula () (In the formula, R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X represents HNCH 3 N, O or S, and n represents a number of 1 or 2).
JP4526485A 1985-03-07 1985-03-07 Electrically conductive organic compound Granted JPS61204173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4526485A JPS61204173A (en) 1985-03-07 1985-03-07 Electrically conductive organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4526485A JPS61204173A (en) 1985-03-07 1985-03-07 Electrically conductive organic compound

Publications (2)

Publication Number Publication Date
JPS61204173A JPS61204173A (en) 1986-09-10
JPH0473434B2 true JPH0473434B2 (en) 1992-11-20

Family

ID=12714435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4526485A Granted JPS61204173A (en) 1985-03-07 1985-03-07 Electrically conductive organic compound

Country Status (1)

Country Link
JP (1) JPS61204173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634429B2 (en) * 2007-10-19 2011-02-16 富士通株式会社 Mobile communication system using downlink shared channel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185951A (en) * 1987-01-27 1988-08-01 Nippon Synthetic Chem Ind Co Ltd:The Novel organic complex
JPS63185952A (en) * 1987-01-27 1988-08-01 Nippon Synthetic Chem Ind Co Ltd:The Novel organic composite complex
SG176316A1 (en) * 2001-12-05 2011-12-29 Semiconductor Energy Lab Organic semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634429B2 (en) * 2007-10-19 2011-02-16 富士通株式会社 Mobile communication system using downlink shared channel

Also Published As

Publication number Publication date
JPS61204173A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
Hauer et al. Structure of 2, 3-butanedione dihydrazone and IR study of higher polyazines: a new class of polymeric conductors
Fujioka Syntheses and physical properties of several polyphenylenes containing mixed linkages.
US3006822A (en) Electro-deposition of nickel coatings
JPH0473434B2 (en)
Hudson et al. The linear and nonlinear optical properties of organometallic chromophores derived from ferrocene,[Fe2 (η5-C5H5) 2 (CO) 2 (μ-CO)(μ-C CH3)]+[BF4]− and terthienyl spacers. Crystal structure of 2-[(E)-2-ferrocenylethenyl]-5-(2-thienyl) thiophene
Kini et al. Tetraalkyl-and dialkyl-substituted BEDT-TTF derivatives and their cation-radical salts: synthesis, structure, and properties
WO2018159834A1 (en) Enamine compound and use thereof
JPH0515700B2 (en)
Ashizawa et al. Synthesis and structures of neutral crystals and charge-transfer salts of selenium containing TMET-TTP derivatives
Oakley et al. Synthesis and Properties of Tetrathiadiazafulvalenes [RCNS2C: CS2NCR](R= H, Me, Ph)
EP0346276B1 (en) Substituted benzocyclobutenes, process for their preparation and their use
JPS6272665A (en) Organic electrically conductive complex
JPS6344564A (en) Novel tcnq complex
JPS6348276A (en) Novel tcnq complex
JPH0730023B2 (en) Method for producing organic conductive complex
Liu et al. PREPARATION AND ELECTROCHEMICAL PROPERTIES OF A NEW ORGANIC DONOR BIS-(HYDROXYMETHYLETHYLENEDITHIO)-TETRATHIAFULV ALENE
JPH0678311B2 (en) New TCNQ complex
CN117658882A (en) Single molecule resin based on polysulfide onium salt and photoresist composition thereof
JPS61263963A (en) Novel tcnq complex
Tani et al. Synthesis and Properties of 7, 10-Dthiafluoroanthenes and their 8, 9-Dihydro Derivatives with Chalcogen Substituents
JPS6317863A (en) Tcnq complex
JPH0710842B2 (en) New TCNQ complex
JPS6314769A (en) Novel tcnq complex
JPS6263571A (en) Novel tcnq complex
JPH027301B2 (en)