JPH0473422B2 - - Google Patents

Info

Publication number
JPH0473422B2
JPH0473422B2 JP22586084A JP22586084A JPH0473422B2 JP H0473422 B2 JPH0473422 B2 JP H0473422B2 JP 22586084 A JP22586084 A JP 22586084A JP 22586084 A JP22586084 A JP 22586084A JP H0473422 B2 JPH0473422 B2 JP H0473422B2
Authority
JP
Japan
Prior art keywords
rnh2
reaction
acid
lactic acid
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22586084A
Other languages
Japanese (ja)
Other versions
JPS61103858A (en
Inventor
Takeshi Irie
Shunichi Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP22586084A priority Critical patent/JPS61103858A/en
Publication of JPS61103858A publication Critical patent/JPS61103858A/en
Publication of JPH0473422B2 publication Critical patent/JPH0473422B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はターシヤリー(以下、t−と略記す
る)アルキルアミン(以下、RNH2と略記する)
と乳酸とを製造する方法に関し、更に詳しくはN
−t−アルキルラクトアミド(以下、t−ALA
と略記する)をアルカリおよび水の存在下で加水
分解して、t−RNH2と乳酸とを同時に製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to tertiary (hereinafter abbreviated as t-)alkylamine (hereinafter abbreviated as RNH2)
For more details on the method for producing lactic acid and
-t-alkyl lactamide (hereinafter referred to as t-ALA
The present invention relates to a method for simultaneously producing t-RNH2 and lactic acid by hydrolyzing t-RNH2 and lactic acid in the presence of an alkali and water.

t−RNH2は各種化合物の中間原料として多
くの利用分野を有しており、ゴム薬・高分子化合
物の改質用モノマー・医薬・農薬・界面活性剤・
帯電防止剤などの原料として重要である。
t-RNH2 has many applications as an intermediate raw material for various compounds, including rubber drugs, monomers for modifying polymer compounds, pharmaceuticals, agricultural chemicals, surfactants,
It is important as a raw material for antistatic agents, etc.

また、乳酸は醸造・飲料・皮革・織物仕上・染
色媒染剤・製薬・医薬などの広い分野に用いられ
ている。
In addition, lactic acid is used in a wide range of fields such as brewing, beverages, leather, textile finishing, dyeing mordants, pharmaceuticals, and pharmaceuticals.

従来の技術 アミン類の一般的な工業的製造方法としては、 (イ) 脱水触媒の存在下で、アルコール類とアンモ
ニアとを反応させる方法. (ロ) 水素添加触媒と水素の存在下で、アルコール
類とアンモニアとを反応させる方法. (ハ) 水素添加触媒と水素の存在下で、アルデヒド
またはケトン類とアンモニアとを反応させる方
法. などがあるが、いずれの方法も2種以上のアミン
類の混合物が得られ、単一のt−RNH2の製造
方法として適当ではない。
BACKGROUND TECHNIQUES General industrial methods for producing amines include (a) a method in which alcohols and ammonia are reacted in the presence of a dehydration catalyst; (b) A method of reacting alcohols with ammonia in the presence of a hydrogenation catalyst and hydrogen. (c) A method of reacting aldehydes or ketones with ammonia in the presence of a hydrogenation catalyst and hydrogen. However, each method yields a mixture of two or more amines and is not suitable as a single method for producing t-RNH2.

t−RNH2の合成方法として、たとえばt−
ブチルアミン(以下、t−BAと略記する)に関
して、 (ニ) トリメチルアセトアミドのホフマン分解. (ホ) 2,2−ジメチルエチレンイミンの水素添加
(ORGANIC SYNTHESES COLLECTIVE、
VOL.3、148) (ヘ) t−ブチル尿素の加水分解 (ORG.SYN.COLLECTIVE、VOL.3、154) などが報告されているが、これらの方法は原料入
手の点から工業化には難点がある。
As a method for synthesizing t-RNH2, for example, t-
Regarding butylamine (hereinafter abbreviated as t-BA), (d) Hoffman decomposition of trimethylacetamide. (e) Hydrogenation of 2,2-dimethylethyleneimine (ORGANIC SYNTHESES COLLECTIVE,
VOL.3, 148) (f) Hydrolysis of t-butyl urea (ORG.SYN.COLLECTIVE, VOL.3, 154) has been reported, but these methods are difficult to industrialize due to raw material availability. There is.

最近では、有機酸のN−t−ブチルアミドをア
ルカリ加水分解して、t−BAおよび対応する有
機酸を得る方法が報告されている。
Recently, a method for obtaining t-BA and the corresponding organic acid by alkaline hydrolysis of the organic acid N-t-butylamide has been reported.

(1) N−t−ブチルホルムアミド(J.Am.Chem.
Soc.、VOL.70、4048、1948) (2) N−t−ブチル(メタ)アクリルアミド(特
公昭54−881号) (3) N,N′−ジ−t−ブチル−3,3′−チオジプ
ロピオン酸アミド(特開昭50−95210号) などである。
(1) N-t-butylformamide (J.Am.Chem.
Soc., VOL.70, 4048, 1948) (2) N-t-butyl (meth)acrylamide (Special Publication No. 54-881) (3) N,N'-di-t-butyl-3,3'- Thiodipropionic acid amide (JP-A-50-95210) and the like.

一方、乳酸の工業的製造方法としては、発酵法
のほか、化学合成法としてアセトアルデヒドとシ
アン化水素とを付加反応させる方法によつてラク
トニトリル(以下、LCNと略記する)を製造し、
得られたLCNを酸の存在下で加水分解する方法
が実施されている。
On the other hand, as an industrial method for producing lactic acid, in addition to the fermentation method, lactonitrile (hereinafter abbreviated as LCN) is produced by an addition reaction of acetaldehyde and hydrogen cyanide as a chemical synthesis method.
A method has been implemented in which the obtained LCN is hydrolyzed in the presence of an acid.

本発明が解決しようとする問題点 有機酸のN−t−アルキルアミドを加水分解し
てt−RNH2と有機酸とを併産する方法を工業
化するには、併産される有機産が取扱い上安定で
あつて、そして、利用価値の高いものであること
が望ましく、なおかつ、その需要量が対応するt
−RNH2の生産量よりも多いことが必要である。
さもないと併産される有機産が余剰となり不都合
を生ずる。
Problems to be Solved by the Present Invention In order to industrialize the method of co-producing t-RNH2 and organic acids by hydrolyzing N-t-alkylamides of organic acids, it is difficult to handle the co-produced organic products. It is desirable that it is stable and has high utility value, and that the amount of demand corresponds to t.
-It is necessary that the amount of production is higher than that of RNH2.
Otherwise, the co-produced organic products will become surplus and cause inconvenience.

前記のt−BAと有機酸とを併産する方法にお
ける問題点としては、 (1)の方法では、副生するギ酸は利用価値が高く
ないことからこれを水溶液から回収することは経
済的に得策でない。
The problem with the above-mentioned method of co-producing t-BA and organic acids is that in method (1), the by-product formic acid does not have high utility value, so it is not economical to recover it from the aqueous solution. It's not a good idea.

(2)の方法では、併産される(メタ)アクリル酸
は重合しやすい性質を有するため加水分解あるい
は精製処理中に重合し易く、(メタ)アクリル酸
の好収率が期待できない。
In method (2), since the co-produced (meth)acrylic acid has a property of being easily polymerized, it is easily polymerized during hydrolysis or purification treatment, and a good yield of (meth)acrylic acid cannot be expected.

(3)の方法では、加水分解工程において有毒で腐
食性を有する硫化水素が発生する可能性がある。
In method (3), toxic and corrosive hydrogen sulfide may be generated during the hydrolysis process.

というようにそれぞれに問題点がある。As mentioned above, each has its own problems.

かかる見地より本発明者らは、有機酸併産法に
よるt−RNH2の製造方法に関して種々のN−
t−アルキル有機酸アミドについて検討を行な
い、その結果としてt−ALAをアルカリ水溶液
で加水分解してt−RNH2と乳酸とを併産する
方法が前記の問題点を解決するのに優れた方法で
あることを見い出し、本発明を完成するに至つ
た。
From this perspective, the present inventors have developed various N-RNH2 production methods using organic acid co-production methods.
We investigated t-alkyl organic acid amides and found that a method of hydrolyzing t-ALA with an alkaline aqueous solution to co-produce t-RNH2 and lactic acid is an excellent method for solving the above problems. This discovery led to the completion of the present invention.

問題点を解決するための手段 本発明の方法は、一般式()で示されるN−
t−アルキルラクトアミドをアルカリ水溶液によ
り、温度130〜220℃で加水分解することによつて
乳酸を同時に製造することを特徴とする、一般式
()で示されるt−アルキルアミンの製造方法
である。
Means for Solving the Problems The method of the present invention provides N-
A method for producing a t-alkylamine represented by the general formula (), which comprises simultaneously producing lactic acid by hydrolyzing t-alkyl lactamide with an aqueous alkaline solution at a temperature of 130 to 220°C. .

CH3−CH(OH)−CONHR () R−NH2 () (R:炭素数4〜22のt−アルキル基) 乳酸は前記のように広い分野に用いられていて
利用価値が高く、需要量が多いのでt−RNH2
の生産量がそのために制約を受けることがない。
更に、乳酸は(メタ)アクリル酸などの不飽和カ
ルボン酸と異なつて、反応あるいは精製処理中に
重合せず安定である。また、t−ALAの加水分
解ではチオジプロピオン酸アミドの場合と異な
り、毒性あるいは腐食性の物質の生成がない。こ
のように併産する有機酸として乳酸は非常に好都
合である。
CH 3 -CH(OH)-CONHR () R-NH 2 () (R: t-alkyl group having 4 to 22 carbon atoms) As mentioned above, lactic acid is used in a wide range of fields, has high utility value, and is in high demand. Since the amount is large, t-RNH2
The amount of production is not constrained by this.
Furthermore, unlike unsaturated carboxylic acids such as (meth)acrylic acid, lactic acid does not polymerize during reactions or purification processes and is stable. Furthermore, unlike the case of thiodipropionic acid amide, no toxic or corrosive substances are produced in the hydrolysis of t-ALA. Lactic acid is very convenient as an organic acid to be co-produced in this way.

さらに、本発明の方法の工業化に必要な要件と
して、t−ALAを製造するための原料の入手が
容易であることが重要であるが、この点でも本発
明の方法は優れている。
Furthermore, as a necessary requirement for industrialization of the method of the present invention, it is important that raw materials for producing t-ALA are easily available, and the method of the present invention is also excellent in this respect.

本発明の方法で用いる原料t−ALAを製造す
るのに、前記したように工業的規模で製造されて
いるLCNを使用することができる。しかも、ア
セトアルデヒドとシアン化水素とを反応させて得
られる反応生成物(通常、LCN:75〜80%を含
む水溶液)を精製処理することなくそのまま使用
することができる。
To produce the raw material t-ALA used in the method of the present invention, LCN produced on an industrial scale as described above can be used. Moreover, the reaction product obtained by reacting acetaldehyde and hydrogen cyanide (usually an aqueous solution containing 75 to 80% LCN) can be used as it is without purification.

すなわち、t−ALAは、対応するt−アルキ
ルアルコール(以下、t−ROHと略記する)ま
たはオレフインとLCNとを反応させて得ること
ができる。
That is, t-ALA can be obtained by reacting a corresponding t-alkyl alcohol (hereinafter abbreviated as t-ROH) or olefin with LCN.

反応条件は、濃度40〜95%、好ましくは55〜85
%の硫酸水溶液を反応媒体とし、温度0〜80℃、
好ましくは30〜60℃で、LCNとt−ROHまたは
オレフインを反応させる。LCNとt−ROHまた
はオレフインのモル比は1:0.9〜1.2;硫酸の使
用量はLCNに対して0.9〜2.0倍モルとする。反応
時間は、反応条件および使用するt−ROHまた
はオレフインの種類によつて異なるが1〜10時間
である。
Reaction conditions are concentration 40-95%, preferably 55-85%
% sulfuric acid aqueous solution as the reaction medium, temperature 0~80℃,
Preferably, LCN and t-ROH or olefin are reacted at 30 to 60°C. The molar ratio of LCN and t-ROH or olefin is 1:0.9 to 1.2; the amount of sulfuric acid used is 0.9 to 2.0 times the mole of LCN. The reaction time varies depending on the reaction conditions and the type of t-ROH or olefin used, but is 1 to 10 hours.

反応の手順は、反応容器に硫酸水溶液を仕込
み、これにLCNとt−ROHまたはオレフインを
添加していく方法、または逆にLCNとt−ROH
またはオレフインとの混合物に硫酸水溶液を添加
していく方法が発生する反応熱の除去、および副
反応による不純物の生成抑制の点から好ましい。
The reaction procedure is to charge an aqueous sulfuric acid solution into a reaction vessel and add LCN and t-ROH or olefin, or vice versa.
Alternatively, a method of adding an aqueous sulfuric acid solution to the mixture with olefin is preferable from the viewpoint of removing the reaction heat generated and suppressing the formation of impurities due to side reactions.

反応終了後に、反応液に水酸化ナトリウム、水
酸化カリウムなどのアルカリ金属水酸化物、また
はアンモニウムを加えて中性域まで中和するか、
あるいは水を加えて硫酸濃度を5〜30%に希釈
し、遊離されたt−ALAを常法によつて分離す
る。
After the reaction is complete, add an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, or ammonium to the reaction solution to neutralize it to a neutral range, or
Alternatively, water is added to dilute the sulfuric acid concentration to 5-30%, and liberated t-ALA is separated by a conventional method.

次にt−ALAの加水分解は、t−ALAにアル
カリ水溶液を加えて密閉型耐圧反応容器中で行な
う。
Next, hydrolysis of t-ALA is carried out in a closed pressure-resistant reaction vessel by adding an alkaline aqueous solution to t-ALA.

反応条件は、温度130〜220℃、好ましくは150
〜190℃で、アルカリとしてはNa、K、Liなどの
アルカリ金属またはCa、Baなどのアルカリ土類
金属の水酸化物が用いられる。アルカリ水溶液の
濃度は3〜50重量%、好ましくは7〜45重量%が
用いられる。加水分解による乳酸の生成につれて
アルカリが消費されるので、アルカリの使用量
は、原料t−ALAに対して少くとも等モルが必
要であり、通常1.0〜1.5倍モル、好ましくは1.05
〜1.30倍モルとする。
The reaction conditions are a temperature of 130-220°C, preferably 150°C.
~190°C, and the alkali used is a hydroxide of an alkali metal such as Na, K, or Li or an alkaline earth metal such as Ca or Ba. The concentration of the alkaline aqueous solution used is 3 to 50% by weight, preferably 7 to 45% by weight. Since alkali is consumed as lactic acid is produced by hydrolysis, the amount of alkali used should be at least equimolar to the raw material t-ALA, usually 1.0 to 1.5 times the mole, preferably 1.05
~1.30 times the molar amount.

加水分解反応の進行とともに反応容器内の圧力
が上昇するが、加圧状態のまま3〜15時間反応さ
せる。
The pressure inside the reaction vessel increases as the hydrolysis reaction progresses, and the reaction is allowed to continue under pressure for 3 to 15 hours.

生成したt−RNH2を反応生成液から分離す
る方法として、反応終了後に生成液を蒸留処理す
る方法がある。しかし、より好ましくは、加水分
解反応が進行し適当な圧力(7〜15Kg/cm2)に達
したら加水分解反応を進めながら容器内の気相部
の有するエネルギーを利用して生成したアミンを
系外へ少量づつ溜出させる方法がよい。
As a method for separating the produced t-RNH2 from the reaction product liquid, there is a method of distilling the product liquid after the reaction is completed. However, more preferably, once the hydrolysis reaction has progressed and reached an appropriate pressure (7 to 15 Kg/cm 2 ), the generated amine can be released into the system by utilizing the energy of the gas phase inside the container while the hydrolysis reaction is progressing. It is best to let it drain out in small amounts.

この際、反応容器内の圧力は3Kg/cm2、(abs.)
以上に保持することを要する。圧力が低い状態で
操作すると、容器内の水の溜出が多くなり系内の
アルカリ濃度が高くなつて副反応が起り、不純物
が増大することになる。
At this time, the pressure inside the reaction vessel was 3Kg/cm 2 (abs.)
It is necessary to hold it more than that. If the system is operated under low pressure, a large amount of water in the container will be distilled out, and the alkali concentration in the system will increase, side reactions will occur, and impurities will increase.

t−RNH2の分離操作段階では、生成したア
ミンは生成液からできるだけ分離することが望ま
しい。次の乳酸回収段階で酸を加えて生成液を酸
性にするので、生成液中に残留したアミンは酸塩
となつて固定され、アミンの回収率が低下するこ
ととなる。また、加える酸の所要量が増大するこ
とにもなり得策でない。t−RNH2の分離段階
でアミンの溜出率を上げると、得られるt−
RNH2は同伴する水のため通常、濃度40〜80重
量%の水溶液となるが、蒸留処理することにより
容易に高純度のt−RNH2を得ることができる。
In the step of separating t-RNH2, it is desirable to separate the produced amine from the product liquid as much as possible. In the next lactic acid recovery step, acid is added to make the product solution acidic, so the amine remaining in the product solution becomes an acid salt and is fixed, resulting in a decrease in the amine recovery rate. Furthermore, the amount of acid required to be added increases, which is not a good idea. By increasing the amine distillation rate in the t-RNH2 separation step, the resulting t-RNH2
Since RNH2 is accompanied by water, it is usually an aqueous solution with a concentration of 40 to 80% by weight, but highly pure t-RNH2 can be easily obtained by distillation.

t−RNH2を分離した生成液中には、乳酸が
乳酸ナトリウムなどのアルカリ塩の系で存在す
る。生成液に硫酸、塩酸などの無機酸を加えPH
2.5〜4.0にして遊離の乳酸を得る。得られた乳酸
は必要に応じて酸析、またはエステル化処理を行
なつて精製する。
In the product liquid from which t-RNH2 is separated, lactic acid exists in the form of an alkali salt such as sodium lactate. Add inorganic acids such as sulfuric acid and hydrochloric acid to the generated liquid to adjust the pH.
2.5-4.0 to obtain free lactic acid. The obtained lactic acid is purified by acid precipitation or esterification treatment, if necessary.

本発明の方法は、t−BA、t−オクチルアミ
ン、あるいは、C12H25NH2〜C14H29NH2、また
はC18H37NH2〜C22H45NH2からなるt−RNH2
などのt−RNH2類の製造に利用することがで
きる。
The method of the present invention uses t - BA, t - octylamine , or t - RNH2 consisting of C12H25NH2 to C14H29NH2 , or C18H37NH2 to C22H45NH2 .
It can be used for the production of t-RNH2 such as.

実施例 以下、本発明の方法を参考例、および実施例に
より説明するが、本発明はこの例のみに限定され
るものではない。
Examples The method of the present invention will be explained below by reference examples and examples, but the present invention is not limited only to these examples.

参考例 1 〔N−t−ブチルラクトアミド(以下、t−
BLAと略記する)の合成〕 撹はん機、冷却器、温度計、滴下漏斗を備えた
1リツトルの四つ口フラスコに、74.5%(以下、
重量基準とする)硫酸:260.1gを仕込み、温度
を30℃にする。
Reference example 1 [Nt-butyl lactamide (hereinafter referred to as t-
Synthesis of 74.5% (abbreviated as BLA)] In a 1 liter four-necked flask equipped with a stirrer, condenser, thermometer, and dropping funnel, 74.5% (hereinafter referred to as
(Based on weight) Sulfuric acid: Charge 260.1g and bring the temperature to 30℃.

これに濃度78.7%のLCN水溶液:90.9gとt−
ブチルアルコール:74.0gとの混合物を1時間か
けて滴下する。この間、反応温度を30℃に保つよ
う反応系を冷却する。
This is combined with 90.9 g of LCN aqueous solution with a concentration of 78.7% and t-
Butyl alcohol: A mixture with 74.0 g was added dropwise over 1 hour. During this time, the reaction system is cooled to maintain the reaction temperature at 30°C.

反応を完結させるため、滴下終了後、更に30℃
で1時間、50℃で4時間熟成した。
In order to complete the reaction, the temperature was further increased to 30℃ after the completion of the dropwise addition.
The mixture was aged for 1 hour at 50°C and for 4 hours at 50°C.

反応終了後、反応生成液に28%アンモニア水を
約300ml加えてPH7.5にした。液は二相に分離す
る。上層がt−BLAからなる相である。分液し
てt−BLAからなる相を分離した。なお、この
中和・分離操作時には温度を60℃に保持するとt
−BLAが液状を保つので処理し易い。
After the reaction was completed, about 300 ml of 28% aqueous ammonia was added to the reaction product solution to adjust the pH to 7.5. The liquid separates into two phases. The upper layer is a phase consisting of t-BLA. The layers were separated to separate a phase consisting of t-BLA. In addition, if the temperature is maintained at 60℃ during this neutralization/separation operation, t
- BLA remains liquid, making it easy to process.

得られたt−BLABの得量:138.9g;純度:
87.6%で、収率(純度換算)は91.6%であつた。
Amount of obtained t-BLAB: 138.9g; Purity:
The yield (in terms of purity) was 91.6%.

実施例 1 撹はん機、温度計、圧力計、および留出管(調
節弁つき)を備えたステンレス製の耐圧反応容器
に、参考例1の方法で得られたt−BLA:892g
(純分:781g)、水酸化ナトリウム:250g、水:
1000gを仕込み、加熱して170℃にする。
Example 1 t-BLA obtained by the method of Reference Example 1: 892 g was placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, a thermometer, a pressure gauge, and a distillation tube (with a control valve).
(Purity: 781g), Sodium hydroxide: 250g, Water:
Prepare 1000g and heat to 170℃.

170℃に昇温後約30分で、内圧は7〜10Kg/cm2
(abs.)に上昇した。その後は液温を170〜173℃
に維持し、内圧を7Kg/cm2(abs.)に保ちながら
t−BAを留出させた。この際、水の一部が同伴
され留出してくる。約4時間経過すると圧力が7
Kg/cm2より低下してくるが、圧力が3Kg/cm2にな
るまでt−BAの留出操作を続けた。
Approximately 30 minutes after raising the temperature to 170℃, the internal pressure will be 7 to 10Kg/cm 2
(abs.) rose. After that, increase the liquid temperature to 170-173℃.
t-BA was distilled out while maintaining the internal pressure at 7 Kg/cm 2 (abs.). At this time, some of the water is entrained and distilled out. After about 4 hours, the pressure will decrease to 7.
The distillation operation of t-BA was continued until the pressure decreased to 3 Kg/cm 2 , but the pressure decreased below 3 Kg/cm 2 .

留出したt−BA水溶液の得量は662g;t−
BA濃度は61.9%(ガスクロマトグラフイー分析
による)であつた。t−BA収量(純分):410
g;収率:92.8%であつた。
The amount of distilled t-BA aqueous solution was 662 g;
The BA concentration was 61.9% (by gas chromatography analysis). t-BA yield (pure): 410
g; Yield: 92.8%.

得られたt−BA水溶液を蒸留装置(オルダシ
ヨー、10段)を用いて精留処理を行ない、塔頂温
度43.5℃の留分としてt−BA:404gを得た。純
度:98.5%;蒸留収率(純度換算):97.0%であ
つた。
The obtained t-BA aqueous solution was subjected to rectification treatment using a distillation apparatus (Oldasho, 10 stages) to obtain 404 g of t-BA as a fraction having a top temperature of 43.5°C. Purity: 98.5%; distillation yield (purity conversion): 97.0%.

t−BAを分離した後の生成液に、濃硫酸を加
えPH3.5にして遊離の乳酸を得た。乳酸含量:516
g(カルボン酸分析計による)収率:95%であつ
た。
After separating t-BA, concentrated sulfuric acid was added to the resulting solution to adjust the pH to 3.5 to obtain free lactic acid. Lactic acid content: 516
Yield (according to carboxylic acid analyzer): 95%.

本発明の効果 従来、それぞれ別個の製造ルートによつて別々
に製造されていたt−RNH2と乳酸とを本発明
の方法によつて容易に、かつ好収率で同時に製造
することができる。
Effects of the present invention By the method of the present invention, t-RNH2 and lactic acid, which were conventionally produced separately by separate production routes, can be produced simultaneously with ease and in good yield.

すなわち従来の方法では、(a)乳酸は; (a‐1) アセトアルデヒドとシアン化水素との付加
反応によつてLCNを製造する工程と、 (a‐2) LCNを加水分解する工程 とを経て製造され、また(b)t−RNH2は; (b‐1) t−ROHまたは対応するオレフインとシ
アン化水素との反応によつてt−アルキルホル
ムアミドを製造する工程と、 (b‐2) 得られたt−アルキルホルムアミドを加水
分解する工程 とを経て、別々に製造されている。
In other words, in the conventional method, (a) lactic acid is produced through the following steps: (a-1) producing LCN by an addition reaction between acetaldehyde and hydrogen cyanide; and (a-2) hydrolyzing LCN. , and (b) t-RNH2; (b-1) producing t-alkylformamide by reaction of t-ROH or the corresponding olefin with hydrogen cyanide; (b-2) the obtained t-RNH2; It is manufactured separately through a process of hydrolyzing alkylformamide.

これに対して、本発明の方法によれば、LCN
を原料として製造されたt−ALAを加水分解す
ることにより、従来法よりも少ない工程数で両製
品を好収率で生産することができる。
In contrast, according to the method of the present invention, LCN
By hydrolyzing t-ALA produced using t-ALA as a raw material, both products can be produced in good yields with fewer steps than conventional methods.

本発明の方法は、t−RNH2と乳酸の工業的
製造方法として極めて有利である。
The method of the present invention is extremely advantageous as an industrial method for producing t-RNH2 and lactic acid.

Claims (1)

【特許請求の範囲】 1 一般式()で示されるN−ターシヤリーア
ルキルラクトアミドをアルカリ水溶液により、温
度130〜220℃で加水分解することによつて乳酸を
同時に製造することを特徴とする、一般式()
で示されるターシヤリーアルキルアミンの製造方
法。 CH3−CH(OH)−CONHR () R−NH2 () (R:炭素数4〜22のターシヤリーアルキル基)
[Claims] 1. Lactic acid is simultaneously produced by hydrolyzing an N-tertiary alkyl lactamide represented by the general formula () with an alkaline aqueous solution at a temperature of 130 to 220°C. General formula ()
A method for producing a tertiary alkylamine represented by CH 3 -CH(OH)-CONHR () R-NH 2 () (R: tertiary alkyl group having 4 to 22 carbon atoms)
JP22586084A 1984-10-29 1984-10-29 Production of tertiary alkylamine Granted JPS61103858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22586084A JPS61103858A (en) 1984-10-29 1984-10-29 Production of tertiary alkylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22586084A JPS61103858A (en) 1984-10-29 1984-10-29 Production of tertiary alkylamine

Publications (2)

Publication Number Publication Date
JPS61103858A JPS61103858A (en) 1986-05-22
JPH0473422B2 true JPH0473422B2 (en) 1992-11-20

Family

ID=16835978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22586084A Granted JPS61103858A (en) 1984-10-29 1984-10-29 Production of tertiary alkylamine

Country Status (1)

Country Link
JP (1) JPS61103858A (en)

Also Published As

Publication number Publication date
JPS61103858A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
AU2018222327B2 (en) Process for preparing 2-exo-(2-Methylbenzyloxy)-1-methyl-4-isopropyl-7-oxabicyclo(2.2.1)heptane
EP0116198A1 (en) Process for preparation of tertiary butyl hydrazine
CN112739675A (en) Method for recovering high-quality 3-methyl-but-3-en-1-ol
JPS6212211B2 (en)
JPS5829296B2 (en) Method for producing monomethylhydrazine
JPH0473422B2 (en)
JPH06234689A (en) Continuous industrial production of dimethoxyethanal
US3065270A (en) Preparation of dimethylnitrosoamine
JP2001322955A (en) Method for producing 2-bromo-3,3,3-trifluoropropene
JPH01139559A (en) Production of 4-chloro-3-hydroxybutyronitrile
JPH0239502B2 (en) MONOMECHIRUHIDORAJINNOKAISHUHOHO
JP4024882B2 (en) Method for producing tertiary butyl hydrazine / hydrohalide
JPH0469362A (en) Preparation of acetoacetic acid l-menthyl ester
JPS62164656A (en) Production of cyanoisophorone
US5068415A (en) Process for the preparation of halogenotetrafluoropropionic acid
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
KR100673593B1 (en) Preparation method of l-carnitine
JPS6137748A (en) Manufacture of pure hydrate of furol and hexafuroloacetone from hemiacetal
JPS5914473B2 (en) Method for producing 1,1,3,3-tetrafluoro-1,3-dihydro-isobenzofuran
JPS63287739A (en) Production of chloroacetals
JPH04253948A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JP3270571B2 (en) Method for producing allyl bromide
JPS5955862A (en) Preparation of n-t-alkylamides
JPS59227844A (en) Production of aminomalonamide
MXPA97007345A (en) Process for ami