JPH0473422A - Ball bearing made of ceramics - Google Patents

Ball bearing made of ceramics

Info

Publication number
JPH0473422A
JPH0473422A JP18559090A JP18559090A JPH0473422A JP H0473422 A JPH0473422 A JP H0473422A JP 18559090 A JP18559090 A JP 18559090A JP 18559090 A JP18559090 A JP 18559090A JP H0473422 A JPH0473422 A JP H0473422A
Authority
JP
Japan
Prior art keywords
contact surface
initial contact
stress relaxation
outer ring
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18559090A
Other languages
Japanese (ja)
Inventor
Itaru Kawaguchi
川口 格
Keigo Yasui
安井 啓剛
Kazuo Rokkaku
和夫 六角
Hiroaki Takebayashi
竹林 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP18559090A priority Critical patent/JPH0473422A/en
Publication of JPH0473422A publication Critical patent/JPH0473422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce abrasion by forming a stress relaxation part having a prescribed width so as to include the center part in the longer axis direction of an elliptical initial contact surface which is generated in the case when a radial load is applied on the raceway track of a bearing ring made of ceramics. CONSTITUTION:A stress relaxation part 4 consisting of an arcuate annular fine recessed part having the less radius of curvature than a raceway groove 2a of an outer ring 2 is formed so as to include the center part in the longer axis X direction of an elliptical initial contact surface F which is generated in the case when a radial load is applied on the raceway groove 2a of the outer ring 2. For instance, the annular fine recessed part has a width of 500mum or less and a depth of 5mum or less. When the outer ring 2 and a ball 3 are applied with a radial load, both are put into surface contact, and a circular initial contact surface F is formed. The outer ring 2 and the ball 3 contact on the whole of the initial contact surface including the stress relaxation part 4. Accordingly, the max. shear stress reduces, and abrasion reduces. Further, the deterioration of the rolling performance is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は内外両輪および玉がセラミックスで形成され
ているセラミック玉軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a ceramic ball bearing in which both inner and outer rings and balls are made of ceramic.

従来の技術と発明の課題 転がり軸受に耐熱性、耐食性なとが要求される場合や、
転がり軸受が真空中で使用される場合、内外両輪および
転動体である玉が、たとえば窒化ケイ素などのセラミッ
クスで形成されたセラミック玉軸受が用いられている。
Problems with conventional technology and invention In cases where heat resistance and corrosion resistance are required for rolling bearings,
When a rolling bearing is used in a vacuum, a ceramic ball bearing is used in which both the inner and outer wheels and the balls serving as the rolling elements are made of ceramic, such as silicon nitride.

セラミック玉軸受を上記のような特殊環境で用いる場合
には、油やグリースなどの液体潤滑剤を用いることがで
きないので、たとえばグラファイト、二硫化モリブデン
、二硫化タングステンなどの固体潤滑剤が用いられる。
When ceramic ball bearings are used in special environments such as those mentioned above, liquid lubricants such as oil and grease cannot be used, so solid lubricants such as graphite, molybdenum disulfide, and tungsten disulfide are used.

しかしながら、セラミック玉軸受においては、次のよう
な問題がある。すなわち、ヤング率の大きなセラミック
スどうしの接触であり、しがち固体潤滑剤を用いた場合
には、液体潤滑剤を用いた場合のようにくさび作用によ
る潤滑がなされないので、最大接触圧力が大きくなり、
内外輪の疲労剥離が発生し易く、寿命が短くなる。
However, ceramic ball bearings have the following problems. In other words, it is a contact between ceramics with a large Young's modulus, and when a solid lubricant is used, there is no wedge action lubrication like when a liquid lubricant is used, so the maximum contact pressure becomes large. ,
Fatigue peeling of the inner and outer rings is likely to occur, shortening the service life.

また、一般に接触面が滑り運動しているときの摩耗は、
純転がり運動しているときの摩耗に比ベてはるかに大き
くなるが、玉軸受においても、接触面の長軸方向の長さ
が長くなれば、玉の回転中心軸から接触面各部までの距
離の差によってヒースコツト(Heathcote )
の差動滑りを生じ、余分な摩耗か起こる。さらに、接触
表面に焼付けられた固体潤滑剤が直接高圧力を受けるの
で、短期間に摩耗粉として飛散し、その機能を果たさな
くなる。
In addition, wear when the contact surface is in sliding motion is generally
Although the wear is much greater than that during pure rolling motion, even in ball bearings, as the length of the contact surface in the longitudinal direction increases, the distance from the center of rotation of the ball to each part of the contact surface increases. Heathcote (Heathcote)
resulting in differential slippage and excessive wear. Furthermore, since the solid lubricant baked on the contact surface is directly subjected to high pressure, it scatters as wear powder in a short period of time and ceases to perform its function.

この発明の目的は、上記問題を解決したセラミック玉軸
受を提供することにある。
An object of the present invention is to provide a ceramic ball bearing that solves the above problems.

課題を解決するための手段 この発明によるセラミック玉軸受は、 内外両輪のうち少なくとも一方の軌道輪、および玉がそ
れぞれセラミックスで形成されているセラミック玉軸受
において、 所定の曲率を有するセラミックス製軌道輪の軌道に、ラ
ジアル荷重を受けたさいに生じるだ円状初期接触面の長
軸方向の中心部を含むように、該接触面内に位置する所
定幅の応力緩和部が形成されているものである。
Means for Solving the Problems A ceramic ball bearing according to the present invention has the following features: A ceramic ball bearing in which at least one of the inner and outer rings and the balls are each made of ceramic, the ceramic ball bearing having a predetermined curvature. A stress relaxation part of a predetermined width is formed in the raceway so as to include the center in the long axis direction of the elliptical initial contact surface that occurs when receiving a radial load, and is located within the contact surface. .

また、上記セラミック玉軸受において、応力緩和部か、
微小な環状凹部であるのかよい。この場合、微小凹部内
に固体潤滑剤か充填されているのかよい。
In addition, in the above ceramic ball bearing, the stress relaxation part
It may be a minute annular recess. In this case, a solid lubricant may be filled in the minute recesses.

本発明者等は上記問題が生じる原因を究明するために種
々研究を重ねた結果、次の事実を見出して本発明を完成
したのである。すなわち、本出願人が先に出願した転が
り摩耗試験装置(特願平1−245734号参照)を用
いて、垂直荷重40ON、無潤滑で、セラミックス製玉
と円筒の転がり摩耗試験を行って、種々の総回転数にお
ける玉および円筒の断面形状を測定したところ、第5図
に示すような結果を得た。
The inventors of the present invention have conducted various studies to investigate the causes of the above-mentioned problems, and as a result, they have discovered the following facts and completed the present invention. That is, using a rolling wear testing device previously filed by the present applicant (see Japanese Patent Application No. 1-245734), rolling wear tests were carried out on ceramic balls and cylinders under a vertical load of 40 ON and without lubrication. When the cross-sectional shapes of the ball and cylinder were measured at the total number of rotations, the results shown in FIG. 5 were obtained.

同図(a)〜(C)か玉の断面形状であり、同図(d)
〜(r)は円筒の断面形状である。円筒(11)の断面
形状は、玉(10)の形状から予想される第6図に破線
で示すようにはならず、誇張して示せば、同図に実線で
示すようになっている。これは、円筒(11)か摩耗し
て転がり溝(11,a)が生じ、第7図に示すように、
溝(lla)の断面の半径(RG)が、玉(lO)の半
径(17B)に近づいてくると、接触面(S)の長軸(
T)の長さか長くなってその長軸(T)上の各点(A)
 (B) (C)の玉(10)の回転中心軸(0)から
の距離(rA) (rB) (rC)の差か大きくなる
ので、仮に点(B)で純転がりをしていても、点(A)
および(C)では、ヒースコツトの差動滑りを伴った転
がりをするからである。すなわち、滑り接触における摩
耗は、転がり接触における摩耗よりもはるかに大きいの
で、純転かりをする点(B)ではあまり摩耗せず、滑り
を伴う転がりをする点(A)および(C)で激しく摩耗
し、結果的に第6図に実線で示すような形状となるので
ある。そして、接触面(S)の長軸(T)上の圧力分布
は、総回転数の増加に伴って第8図に示すように変化す
ることが判明した。第8図によれば、回転初期において
、だ円状初期接触面【S)の長軸(T)上の接触圧力は
、その中心部で最大値(P3)をとり、総回転数が増加
するにつれて摩耗が進み、その結果接触面(S)の長軸
(T)の長さが長くなるとともに、長軸(T)上におけ
る中心を挾んだ2つの位置で接触圧力か最大値をとり、
その値は初期接触面(S)の長軸(T)の中心部での接
触圧力の最大値(P3)に比べて徐々に小さくなってい
くことかわかる。そして、本発明者等は、初期接触圧力
の最大値(P3)か大きければ、疲労剥離が生じ易くな
るとともに、摩耗量が多くなることを見出だして本発明
を完成したのである。
Figures (a) to (C) are the cross-sectional shapes of the balls, and Figure (d) is the cross-sectional shape of the ball.
~(r) is the cross-sectional shape of the cylinder. The cross-sectional shape of the cylinder (11) is not as shown by the broken line in FIG. 6 as expected from the shape of the ball (10), but is exaggerated as shown by the solid line in the same figure. This is because the cylinder (11) is worn out and rolling grooves (11, a) are formed, as shown in Figure 7.
When the radius (RG) of the cross section of the groove (lla) approaches the radius (17B) of the ball (lO), the long axis (
Each point (A) on its long axis (T) becomes longer than the length of T)
(B) The difference in distance (rA) (rB) (rC) from the rotation center axis (0) of the ball (10) in (C) will be large, so even if it is purely rolling at point (B) , point (A)
This is because in (C), rolling occurs with Heath-Scott differential slip. In other words, the wear in sliding contact is much larger than the wear in rolling contact, so there is not much wear at the point (B) where pure rolling occurs, and there is severe wear at points (A) and (C) where rolling with sliding occurs. It wears out, resulting in a shape as shown by the solid line in FIG. It was also found that the pressure distribution on the long axis (T) of the contact surface (S) changes as shown in FIG. 8 as the total number of rotations increases. According to Fig. 8, at the initial stage of rotation, the contact pressure on the long axis (T) of the elliptical initial contact surface [S] takes a maximum value (P3) at its center, and the total number of rotations increases. As a result, the length of the long axis (T) of the contact surface (S) increases, and the contact pressure reaches its maximum value at two positions sandwiching the center on the long axis (T).
It can be seen that the value gradually becomes smaller than the maximum value (P3) of the contact pressure at the center of the long axis (T) of the initial contact surface (S). The present inventors have completed the present invention by discovering that if the maximum value (P3) of the initial contact pressure is large, fatigue peeling is more likely to occur and the amount of wear increases.

作   用 所定の曲率を有するセラミックス製軌道輪の軌道に、ラ
ジアル荷重を受けたさいに生じるだ円状初期接触面の長
軸方向の中心部を含むように、該接触面内に位置する所
定幅の応力緩和部が形成されていると、応力緩和部が形
成されている部分におけるラジアル荷重を受けたさいの
玉と軌道との初期接触圧力が、これが形成されていない
場合の初期接触圧力よりも小さくなる。
Function: A raceway of a ceramic bearing ring having a predetermined curvature has a predetermined width located within the contact surface so as to include the center in the long axis direction of the elliptical initial contact surface that occurs when a radial load is applied. If a stress relief part is formed, the initial contact pressure between the ball and the raceway when receiving a radial load in the part where the stress relief part is formed will be higher than the initial contact pressure when the stress relief part is not formed. becomes smaller.

しかも、応力緩和部が形成されていない場合に比べて、
接触面が広がって初期接触圧力が広い範囲に分布する。
Moreover, compared to the case where no stress relaxation part is formed,
The contact surface expands and the initial contact pressure is distributed over a wide range.

したがって、接触面下に生じる最大ぜん断応力が小さく
なるとともに、摩耗量か減少する。
Therefore, the maximum shear stress generated under the contact surface is reduced and the amount of wear is reduced.

また、応力緩和部か微小な環状凹部からなり、この微小
環状凹部内に固体潤滑剤が充填されていると、この部分
の接触圧力か小さいために、固体潤滑剤の摩耗が緩やか
に進行し、固体潤滑剤の機能が長期間にわたって維持さ
れる。さらに、固体潤滑剤は、摩耗が進行するにつれて
微小凹部から出て接触面の他の部分にも侵入するので、
接触面全体での潤滑にも寄与する。
In addition, if the stress relaxation part consists of a minute annular recess and solid lubricant is filled in this minute annular recess, the wear of the solid lubricant progresses slowly because the contact pressure in this part is small. Solid lubricant functionality is maintained over a long period of time. Furthermore, as the wear progresses, the solid lubricant comes out of the micro recesses and invades other parts of the contact surface.
It also contributes to lubrication across the entire contact surface.

実  施  例 以下、この発明の実施例を、図面を参照して説明する。Example Embodiments of the invention will be described below with reference to the drawings.

なお、第2図および第3図は、外輪の軌道溝と玉の曲率
の差を、実際よりは大きくとって示している。
In addition, FIG. 2 and FIG. 3 show the difference in curvature between the raceway groove of the outer ring and the ball to be larger than it actually is.

以下の説明において、全図面を通じて同一物および同一
部分には同一符号を付して説明を省略する。
In the following description, the same parts and parts are denoted by the same reference numerals throughout the drawings, and the description thereof will be omitted.

第1図はこの発明による深溝型のセラミック玉軸受の内
外両輪および玉を示す。第1図において、セラミック玉
軸受は、内外両輪(1)(2)およびこれらの間に配置
された複数の玉(3)よりなる。玉(3)は、図示しな
い保持器により保持されている。内外両輪(1) (2
)および複数の玉(3)は、それぞれたとえば窒化ケイ
素のようなセラミックスで形成されている。内外両輪(
1)(2)には、それぞれ所定曲率の軌道溝(la) 
(2a)が形成されている。
FIG. 1 shows both the inner and outer rings and balls of a deep groove type ceramic ball bearing according to the present invention. In FIG. 1, the ceramic ball bearing consists of both inner and outer rings (1) and (2) and a plurality of balls (3) arranged between them. The ball (3) is held by a holder (not shown). Both inner and outer wheels (1) (2
) and the plurality of balls (3) are each made of ceramics such as silicon nitride. Both inner and outer wheels (
1) and (2) each have a raceway groove (la) with a predetermined curvature.
(2a) is formed.

第2図は、内外両輪(1) (2)および玉(3)が、
ラジアル方向の荷重を受けたさいの外輪(2)と玉(3
)との接触部を拡大して示す。外輪(2)の軌道溝(2
a)には、ラジアル荷重を受けたさいに生じるだ円状初
期接触面(P)の長軸(X)方向の中心部を含むように
、たとえば軌道溝(2a)よりも小さい曲率半径を有す
る円弧状の環状微小凹部からなる応力緩和部(4)が形
成されている。
Figure 2 shows that both the inner and outer wheels (1) (2) and the ball (3) are
Outer ring (2) and balls (3) when receiving a load in the radial direction
) is shown in an enlarged view. Raceway groove (2) of outer ring (2)
a) has a radius of curvature smaller than, for example, the raceway groove (2a) so as to include the center in the long axis (X) direction of the elliptical initial contact surface (P) that occurs when receiving a radial load. A stress relaxation portion (4) is formed which is an arcuate annular minute recess.

たとえば、環状微小凹部の幅は500μm以下、深さは
最大部分で5μm以下程度となされる。
For example, the width of the annular micro-concave portion is approximately 500 μm or less, and the depth is approximately 5 μm or less at its maximum portion.

微小凹部の幅、深さなどは、軸受に要求される性能など
を考慮した上で、第8図に示すグラフに基き、初期接触
圧力か最適値となるように、適宜決定するのかよい。環
状微小四部からなる応力緩和部(4)の内部には、グラ
ファイト、二硫化モリブデン、二硫化タングステンなど
からなる固体潤滑剤(図示節)が充填焼付けされている
The width, depth, etc. of the minute recesses may be appropriately determined based on the graph shown in FIG. 8, taking into consideration the performance required of the bearing, etc., so that the initial contact pressure is the optimum value. The inside of the stress relaxation part (4) consisting of four annular minute parts is filled and baked with a solid lubricant (as shown) made of graphite, molybdenum disulfide, tungsten disulfide, or the like.

内外両輪(1)(2)および玉(3)が、ラジアル方向
の荷重を受けると、外輪(2)の軌道溝(2a)の周面
と玉(3)が弾性変形し、両者が面接触してだ円状初期
接触面(F)が生じる。そして、外輪(2)と玉(3)
とは応力緩和部(4)を含んで初期接触面(P)全体で
接触する。図示は省略したが、内輪(1)の軌道溝(1
a)にも、ラジアル荷重を受けたさいに生じるだ円状初
期接触面の長軸方向の中心部を含むように、所定幅の環
状微小凹部からなる応力緩和部が形成され、この微小凹
部の内部に固体潤滑剤が充填焼付けされている。
When both the inner and outer rings (1), (2) and the ball (3) receive a load in the radial direction, the circumferential surface of the raceway groove (2a) of the outer ring (2) and the ball (3) elastically deform, causing surface contact between the two. This results in an elliptical initial contact surface (F). And outer ring (2) and ball (3)
and the entire initial contact surface (P) including the stress relaxation part (4). Although not shown, the raceway groove (1) of the inner ring (1)
In a), a stress relaxation section is also formed, which is an annular micro-concavity with a predetermined width, so as to include the center in the longitudinal direction of the elliptical initial contact surface that occurs when a radial load is applied. Solid lubricant is filled and baked inside.

そして、外輪(2)の場合と同様に、ラジアル荷重を受
けた場合には、軌道溝(1a)の周面と玉(3)が弾性
変形し、両者が面接触してだ円状初期接触面が生じる。
Then, as in the case of the outer ring (2), when a radial load is applied, the circumferential surface of the raceway groove (1a) and the balls (3) are elastically deformed, and the two come into surface contact and form an elliptical initial contact. A surface appears.

回転初期のだ円状初期接触面(P)の長軸(X)上の内
外両輪(1)(2)と玉(3)との初期接触圧力分布は
、第4図に実線(M)で示すようになり、その最大値(
Pl)は、同図に鎖線で示す応力緩和部(4)が形成さ
れていない場合の初期接触圧力分布における最大値(P
3)よりも小さくなる。そして、総回転数が増大すると
、その早い時期に、接触面(F)が広がってその長軸(
X)が長くなるとともに、長軸(X)上の接触圧力分布
が同図に実線(N)で示すようになる。すなわち、内外
両輪(1)(2)と玉(3)との接触圧力は、接触面(
P)内の応力緩和部(4)の両側において最大値(P2
)をとり、左右方向外側に向かって徐々に小さくなる。
The initial contact pressure distribution between the inner and outer wheels (1), (2) and the ball (3) on the long axis (X) of the elliptical initial contact surface (P) at the initial stage of rotation is shown by the solid line (M) in Fig. 4. The maximum value (
Pl) is the maximum value (P
3) will be smaller than. As the total number of rotations increases, the contact surface (F) expands at an early stage and its long axis (
As X) becomes longer, the contact pressure distribution on the long axis (X) becomes as shown by the solid line (N) in the figure. In other words, the contact pressure between the inner and outer wheels (1) (2) and the ball (3) is
The maximum value (P2) on both sides of the stress relaxation part (4) in P)
), and gradually decreases toward the outside in the left and right direction.

この値(P2)は、初期接触圧力の最大値(Pl)より
もさらに小さくなる。したがって、接触面(F)下に生
じる最大ぜん断応力が小さくなり、このせん断応力を原
因とする疲労剥離が発生しにくくなって寿命がのびると
ともに、摩耗量も少なくなる。
This value (P2) is even smaller than the maximum value (Pl) of the initial contact pressure. Therefore, the maximum shear stress generated under the contact surface (F) is reduced, and fatigue peeling due to this shear stress is less likely to occur, extending the service life and reducing the amount of wear.

また、接触圧力が小さくなっている微小凹部からなる応
力緩和部(4)内に固体潤滑剤が充填焼付けされている
ので、固体潤滑剤の摩耗が緩やかに進行し、潤滑性能の
劣化の度合いが緩やかになって、固体潤滑剤の機能か長
期間にわたって維持される。さらに、固体潤滑剤は、摩
耗が進行するにつれて応力緩和部(4)から出て接触面
(F)の他の部分にも侵入するので、接触面(F)全体
での潤滑にも寄与する。
In addition, since the solid lubricant is filled and baked into the stress relaxation part (4), which is a micro-concave part where the contact pressure is small, the wear of the solid lubricant progresses slowly and the degree of deterioration of the lubrication performance is reduced. The solid lubricant function is maintained over a long period of time. Furthermore, as the wear progresses, the solid lubricant leaves the stress relaxation part (4) and enters other parts of the contact surface (F), so it also contributes to lubrication of the entire contact surface (F).

この実施例において、応力緩和部(4)は、軌道溝の曲
率よりも大きな曲率を有する横断面円弧状の環状微小凹
部となされているが、これに限らず、その形状は、疲労
寿命および固体潤滑剤の保持時間を最大にするように、
実験または理論計算によって決められる。
In this embodiment, the stress relaxation section (4) is an annular micro-concave section with an arcuate cross section having a curvature larger than that of the raceway groove, but the shape is not limited to this, and its shape is To maximize lubricant retention time,
Determined by experiment or theoretical calculation.

第3図はこの発明のセラミック玉軸受の他の実施例を示
す第2図相当の図である。第4図において、外輪(2)
の軌道溝(2a)に、ラジアル荷重を受けたさいに生じ
るだ円状初期接触面(F)の長軸(X)方向の両端部を
含むように、所定幅の環状微小凹部からなる応力緩和部
(6)か形成され、この応力緩和部(6)の内部にも、
グラファイト、二硫化モリブデン、二硫化タングステン
などからなる固体潤滑剤か充填焼付けされている。
FIG. 3 is a view corresponding to FIG. 2 showing another embodiment of the ceramic ball bearing of the present invention. In Figure 4, outer ring (2)
The raceway groove (2a) of the raceway groove (2a) has a stress relief structure consisting of an annular micro-concavity of a predetermined width so as to include both ends in the long axis (X) direction of the elliptical initial contact surface (F) that occurs when receiving a radial load. A part (6) is formed, and inside this stress relaxation part (6),
It is filled and baked with a solid lubricant made of graphite, molybdenum disulfide, tungsten disulfide, etc.

内外両輪(1’)(2)および玉(3)か、ラジアル方
向の荷重を受けると、第3図に示すように、外輪(2)
の軌道溝(2a)の周面と玉(3)か弾性変形し、両者
が面接触してだ円状初期接触面(F)か生じる。そして
、外輪(2)と玉(3)とは両応力緩和部(4) (B
)を含んで初期接触面(F)全体で接触する。
When both the inner and outer wheels (1') (2) and the ball (3) receive a load in the radial direction, the outer ring (2)
The circumferential surface of the raceway groove (2a) and the ball (3) are elastically deformed, and the two come into surface contact to form an elliptical initial contact surface (F). The outer ring (2) and the balls (3) have both stress relaxation parts (4) (B
), contact is made over the entire initial contact surface (F).

回転初期の初期接触面(F)の長軸(X)上において、
内外両輪(L) (2)と玉(3)との初期接触圧力は
、外側の応力緩和部(6)の部分でも、これか存在しな
い場合よりも小さくなる。図示は省略したが、内輪(1
)の軌道溝(1a)にも、ラジアル荷重を受けたさいに
生じるた円状初期接触面の長軸方向の中心部を含むよう
に、所定幅の環状微小四部からなる応力緩和部が形成さ
れ、この内部に固体潤滑剤が充填焼付けされている。
On the long axis (X) of the initial contact surface (F) at the beginning of rotation,
The initial contact pressure between the inner and outer wheels (L) (2) and the ball (3) is also smaller at the outer stress relief portion (6) than if it were not present. Although not shown, the inner ring (1
) is also formed with a stress relaxation part consisting of four annular minute parts of a predetermined width, so as to include the center in the long axis direction of the circular initial contact surface generated when receiving a radial load. A solid lubricant is filled and baked inside this.

そして、外輪(2)の場合と同様に、ラジアル荷重を受
けた場合には、軌道溝(1a)の周面と玉(3)が弾性
変形し、両者が面接触してだ円状初期接触面が生じる。
Then, as in the case of the outer ring (2), when a radial load is applied, the circumferential surface of the raceway groove (1a) and the balls (3) are elastically deformed, and the two come into surface contact and form an elliptical initial contact. A surface appears.

上記2つの実施例は、保持器付きの深溝型玉軸受に適用
した場合を示しているが、総玉軸受にも適用可能である
。また、内外両輪のうちいずれか一方の軌道輪を、セラ
ミックスに代えて軸受鋼や、Al5I  M2Oなどの
耐熱鋼や、ステンレス鋼で形成してもよい。
Although the above two embodiments are applied to deep groove ball bearings with cages, they are also applicable to full ball bearings. Moreover, either one of the inner and outer rings may be formed of bearing steel, heat-resistant steel such as Al5I M2O, or stainless steel instead of ceramics.

発明の効果 この発明のセラミック玉軸受によれば、上述のように、
従来のセラミック玉軸受に比べて、接触面下部に生じる
最大ぜん断芯力が小さくなるので、疲労剥離が発生しに
くくなって寿命がのびる。また、摩耗量が減少するので
、発生する摩耗粉も少なくなり、これに起因する転がり
性能の劣化が防止される。
Effects of the Invention According to the ceramic ball bearing of the present invention, as described above,
Compared to conventional ceramic ball bearings, the maximum shear core force generated at the bottom of the contact surface is smaller, making it less likely that fatigue flaking will occur and extending the service life. Furthermore, since the amount of wear is reduced, the amount of abrasion powder generated is also reduced, and deterioration of rolling performance due to this is prevented.

また、固体潤滑剤の機能が長期間維持されて潤滑性能の
劣化を防止できるので、寿命ののびが一層著しくなると
ともに、摩耗量も一層少なくなる。
Furthermore, since the function of the solid lubricant is maintained for a long period of time and deterioration of the lubricating performance can be prevented, the life of the solid lubricant can be further significantly extended and the amount of wear can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるセラミック玉軸受の内外両輪お
よび玉を示す断面図、第2図はラジアル荷重を受けた場
合の外輪と玉との接触部の状態を拡大して示す図、第3
図この発明のセラミック玉軸受の他の実施例を示す第2
図相当の図、第4図はこの発明のセラミック玉軸受がラ
ジアル方向の荷重を受けたときの接触面の長軸上の接触
圧力分布を示すグラフ、第5図はセラミックス製円筒と
玉の転がり摩耗試験を行ったさいの円筒および玉の摩耗
面の断面形状の測定結果を示すグラフ、第6図は円筒の
転がり溝の断面形状を示す図、第7図はラジアル荷重を
受けた場合の円筒と玉との接触部の状態を拡大して示す
図、第8図は円筒と玉がラジアル方向の荷重を受けたと
きの接触面の長軸上の接触圧力分布を示すグラフである
。 ・・・内輪、 外輪、 ・・・玉、 応力緩和部、 (F) ・・・接触面、 (X) ・・・長軸。 以 上 第21匍 l。 第3図 a 第1図 第4図 第6図
Fig. 1 is a sectional view showing both the inner and outer rings and balls of a ceramic ball bearing according to the present invention, Fig. 2 is an enlarged view showing the state of the contact portion between the outer ring and the balls when subjected to a radial load, and Fig. 3
Figure 2 shows another embodiment of the ceramic ball bearing of this invention.
Figure 4 is a graph showing the contact pressure distribution on the long axis of the contact surface when the ceramic ball bearing of the present invention receives a load in the radial direction, and Figure 5 is a graph showing the rolling of the ceramic cylinder and balls. A graph showing the measurement results of the cross-sectional shape of the worn surfaces of the cylinder and balls during the wear test. Figure 6 is a diagram showing the cross-sectional shape of the rolling groove of the cylinder. Figure 7 is the cross-sectional shape of the cylinder under radial load. FIG. 8 is a graph showing the contact pressure distribution on the long axis of the contact surface when the cylinder and the ball are subjected to a load in the radial direction. ...Inner ring, outer ring, ...ball, stress relief part, (F) ...contact surface, (X) ...long axis. That's all for the 21st book. Figure 3a Figure 1 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 1、内外両輪のうち少なくとも一方の軌道輪、および玉
がそれぞれセラミックスで形成されているセラミック玉
軸受において、 所定の曲率を有するセラミックス製軌道輪の軌道に、ラ
ジアル荷重を受けたさいに生じるだ円状初期接触面の長
軸方向の中心部を含むように、該接触面内に位置する所
定幅の応力緩和部が形成されているセラミック玉軸受。 2、上記応力緩和部が、微小な環状凹部である請求項1
記載のセラミック玉軸受。 3、上記環状凹部内に固体潤滑剤が充填されている請求
項2記載のセラミック玉軸受。
[Claims] 1. In a ceramic ball bearing in which at least one of the inner and outer rings and balls are each made of ceramic, the raceway of the ceramic raceway having a predetermined curvature is subjected to a radial load. A ceramic ball bearing in which a stress relaxation portion of a predetermined width is formed within the contact surface so as to include the center portion in the longitudinal direction of the elliptical initial contact surface that occurs at the contact surface. 2. Claim 1, wherein the stress relaxation part is a minute annular recess.
Ceramic ball bearings listed. 3. The ceramic ball bearing according to claim 2, wherein the annular recess is filled with a solid lubricant.
JP18559090A 1990-07-13 1990-07-13 Ball bearing made of ceramics Pending JPH0473422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18559090A JPH0473422A (en) 1990-07-13 1990-07-13 Ball bearing made of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18559090A JPH0473422A (en) 1990-07-13 1990-07-13 Ball bearing made of ceramics

Publications (1)

Publication Number Publication Date
JPH0473422A true JPH0473422A (en) 1992-03-09

Family

ID=16173465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18559090A Pending JPH0473422A (en) 1990-07-13 1990-07-13 Ball bearing made of ceramics

Country Status (1)

Country Link
JP (1) JPH0473422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082906A (en) * 1997-10-21 2000-07-04 Nsk Ltd. Rolling bearing
WO2013042701A1 (en) * 2011-09-23 2013-03-28 Ntn株式会社 Solid lubrication roller bearing
CN106640947A (en) * 2016-12-27 2017-05-10 洛阳轴研科技股份有限公司 Angular contact ball bearing and design method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082906A (en) * 1997-10-21 2000-07-04 Nsk Ltd. Rolling bearing
WO2013042701A1 (en) * 2011-09-23 2013-03-28 Ntn株式会社 Solid lubrication roller bearing
JP2013079720A (en) * 2011-09-23 2013-05-02 Ntn Corp Solid lubrication roller bearing
CN106640947A (en) * 2016-12-27 2017-05-10 洛阳轴研科技股份有限公司 Angular contact ball bearing and design method thereof

Similar Documents

Publication Publication Date Title
US4192560A (en) Bearing with bearing cage
US6371656B1 (en) Rolling element bearing with improved rolling contact surfaces
KR910006195B1 (en) Roller elements for roller bearing
US5816713A (en) Bearing cage with T-shaped pitoling pads
JP2009536998A (en) Cage and rolling bearing assembly for ball bearing
US3930693A (en) Full complement bearing having preloaded hollow rollers
KR100685252B1 (en) Rolling bearing
US6149311A (en) Rolling element bearing having at least one rolling element which is harder than the other rolling elements and harder than the races
JPH03172613A (en) Retainer of ball bearing
US7364365B2 (en) Conrad bearing cage
CN101512173B (en) Steel ball rolling structure and constant velocity universal joint
JP3934277B2 (en) Rolling bearing
US20070093302A1 (en) Needle roller retainer for tripot joint
JPH0473422A (en) Ball bearing made of ceramics
EP0159487A1 (en) A bearing member
JPH05501294A (en) radial roller bearing
JPH02221715A (en) Holder for ball bearing
JP3723247B2 (en) Roller bearing cage
EP1950434A1 (en) Tapered roller bearing
JP4915346B2 (en) Solid lubricated roller bearing
JP2003176826A (en) Rolling bearing
JPS5936730Y2 (en) Cage guided along the outer ring of a double-row spherical roller bearing
JPH04321816A (en) Gear box bearing of helicopter
EP1104855A1 (en) Pure rolling bearing
CN114502852A (en) Rolling bearing