JPH0473046B2 - - Google Patents

Info

Publication number
JPH0473046B2
JPH0473046B2 JP61196967A JP19696786A JPH0473046B2 JP H0473046 B2 JPH0473046 B2 JP H0473046B2 JP 61196967 A JP61196967 A JP 61196967A JP 19696786 A JP19696786 A JP 19696786A JP H0473046 B2 JPH0473046 B2 JP H0473046B2
Authority
JP
Japan
Prior art keywords
speed
ignition
motor
air
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61196967A
Other languages
Japanese (ja)
Other versions
JPS6354517A (en
Inventor
Hachiro Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61196967A priority Critical patent/JPS6354517A/en
Publication of JPS6354517A publication Critical patent/JPS6354517A/en
Publication of JPH0473046B2 publication Critical patent/JPH0473046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石油ストーブなど液体燃料燃焼装置、
特に空然比、すなわち、燃焼空気量と燃焼油量と
の比が燃焼量の変化に影響を受けずほぼ同じ値と
なる特性を持つシンクロガス化バーナを使用した
液体燃料燃焼装置において指導時の点火特性を向
上せしめ得る構造に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to liquid fuel combustion devices such as kerosene stoves,
Especially when teaching about liquid fuel combustion equipment using a synchronized gasification burner, which has the characteristic that the air-to-air ratio, that is, the ratio between the amount of combustion air and the amount of combustion oil, remains almost the same without being affected by changes in the amount of combustion. The present invention relates to a structure that can improve ignition characteristics.

(従来の技術) 液体燃料燃焼装置、例えば灯油を燃料とする温
風暖房機で、予熱、点火、着火完了による送温風
の一連の作動を無人で自動的に行い得る装置は従
来から数多く提案されており、特開昭60−122821
号等によつて公知とされるものがあるが、これ等
は自動着火の安定性をはかるために種々の工夫が
成されている。
(Prior Art) Many devices have been proposed in the past that can automatically perform a series of operations for preheating, ignition, and blowing hot air upon completion of ignition in liquid fuel combustion devices, such as hot air heaters that use kerosene as fuel. It has been published in Japanese Unexamined Patent Publication No. 122821/1986.
There are some well-known devices such as No. 1, which incorporate various measures to improve the stability of automatic ignition.

例えば上記公報に開示のものは、定常運転時と
同じように送風機構と送油機構とを作動させなが
ら送油量を変動せしめて、燃焼運転開始時の空然
比を小さくし、換言するならば燃料油量の割合を
多くすることによつて、オイルリツチ点火方式を
とらせ、安定した着火を行わせるようにしてい
る。
For example, the method disclosed in the above-mentioned publication changes the amount of oil fed while operating the air blowing mechanism and oil feeding mechanism in the same way as during steady operation, thereby reducing the air-to-air ratio at the start of combustion operation. For example, by increasing the proportion of the amount of fuel oil, an oil-rich ignition method is adopted and stable ignition is achieved.

(発明が解決しようとする問題点) 上述する公知の装置は、送風機構とは独立させ
て送油機構の送油量調整を行わせ得る構造である
ので、オイルリツチ点火方式が簡単に採用可能で
あるが、これと種類が異なつていて、定常運転範
囲では空然比がほぼ同じ値で駆動用モータの回転
を変えることによつて任意の燃焼量が得られる構
造のシンクロガス化バーナ(構造については詳細
に後述する)を用いてなる液体燃料燃焼装置の場
合には、オイルチツチ点火方式が容易には行えな
いのが問題であり、さらに以下述べる如きシンク
ロガス化バーナに固有の特性があつて、この点も
併せて改善をはからなければ着火の安定性が果さ
れないのである。
(Problems to be Solved by the Invention) The above-mentioned known device has a structure in which the amount of oil fed by the oil feeding mechanism can be adjusted independently of the air blowing mechanism, so an oil-rich ignition system can be easily adopted. However, there is a synchronized gasification burner (structure) that has a structure in which an arbitrary combustion amount can be obtained by changing the rotation of the drive motor while keeping the air-to-air ratio at approximately the same value in the steady operation range. In the case of a liquid fuel combustion device using a synchro gasification burner (which will be described in detail later), there is a problem that the oil-chip ignition method cannot be easily performed. Unless this point is also improved, ignition stability will not be achieved.

すなわち、シンクロガス化バーナは第4図に示
される構造を有していて、運転操作によつて気化
器28の予熱用電気ヒータ29に通電が成され、
気化器28が温度上昇してきてある温度になる
と、これを検知する温度検知器からの指令によつ
て点火作動させるようになつているが、この場
合、第11図に示す線図の通り、気化器28とバ
ーナ炎口32との間には漸増する温度上昇程度の
違いによつて、可成り大きい温度下(△T)が生
じる。
That is, the synchro gasification burner has the structure shown in FIG. 4, and the preheating electric heater 29 of the vaporizer 28 is energized by operation.
When the temperature of the vaporizer 28 increases and reaches a certain temperature, the ignition is activated by a command from a temperature sensor that detects this temperature. In this case, as shown in the diagram shown in FIG. A considerably large temperature drop (ΔT) occurs between the vessel 28 and the burner nozzle 32 due to the difference in the degree of gradual temperature rise.

これは気化器28の熱がバーナ炎口32に伝達
する過程で気化器28の温度上昇速度がはやいか
らに他ならない。
This is due to the fact that the temperature of the vaporizer 28 increases rapidly during the process in which the heat of the vaporizer 28 is transferred to the burner flame port 32.

このように温度差(△T)が大きくついてくる
と、気化器28で気化した燃料がバーナ炎口32
に送られたときに冷却されることとなり、従つて
最良の着火状態が実現し難いのである。
When the temperature difference (△T) becomes large in this way, the fuel vaporized in the vaporizer 28 flows into the burner flame port 32.
It is therefore difficult to achieve the best ignition conditions.

特に厳寒時の低温着火運転の場合には、気化器
28で気化した燃料蒸気がこのバーナ炎口32の
部分で凝縮して着火不良となることさえ起る。
Particularly in the case of low-temperature ignition operation in extremely cold weather, fuel vapor vaporized in the carburetor 28 may condense at the burner nozzle 32, resulting in poor ignition.

なお、シンクロガス化バーナ3は、空然比の設
定について、定常運転時の条件にもとづいて行つ
ているために、このような低温着火時には空気密
度が大きくて空気過剰気味となり、リフト燃焼で
立上つて着火してもすぐに消えるなど燃焼が継続
しない状態が低温雰囲気の場合に屡々生じるもの
である。
In addition, since the synchronized gasification burner 3 sets the air-to-air ratio based on the conditions during steady operation, the air density is high during such low-temperature ignition, resulting in a slight excess of air, which may cause lift combustion to occur. In low-temperature atmospheres, combustion often occurs in low-temperature atmospheres, such as when something ignites but quickly goes out.

このように、シンクロガス化バーナがオイルリ
ツチ点火方式を容易には採用し難く、しかも低温
時における着火性が不安定な問題があるのに鑑み
て本発明は成されたものであつて、特に、燃焼運
転始動の際、気化器の温度が上昇してくると、シ
ンクロガス化バーナのモータを微速で予備回転さ
せ、次いで点火作動と同時に高速度運転に切換え
るようにモータ回転数を制御することによつて、
点火特性の向上ならびに暖房立上がり特性の改善
をはかることを目的とする。
As described above, the present invention has been made in view of the fact that it is difficult for synchro gasification burners to easily adopt an oil-rich ignition system, and furthermore, there is a problem of unstable ignition performance at low temperatures. At the start of combustion operation, when the temperature of the vaporizer rises, the motor of the synchro gasification burner is pre-rotated at a slow speed, and then the motor rotation speed is controlled so that it switches to high-speed operation at the same time as ignition. Then,
The purpose is to improve ignition characteristics and heating start-up characteristics.

(問題点を解決するための手段) しかして本発明は添付図面によつても明らかな
如く、燃料油用ポンプ14と燃焼空気用フアン2
7とを変速可能なモータ12に連結して一体駆動
可能となし、前記モータ12を変速することによ
り空然比がほぼ同じ値で任意の燃焼量が得られる
如くなしたシンクロガス化バーナ3を有する液体
燃料燃焼装置に構成せしめて、燃焼運転開始時の
点火作動直前における予熱時間帯の後半に、前記
燃料油用ポンプ14が送油作用を生じない程度の
微速で前記モータ12を運転して送風作用を生ぜ
しめ、次いで、点火作動の確認と同時に定常運転
範囲の速度よりも大きい高速度に前記モータ12
を増速させて着火完了により送温風が開始するま
で持続した後、定常運転時における速度に切り換
えるモータ制御手段9を備えしめたことを特徴と
する。
(Means for Solving the Problems) As is clear from the accompanying drawings, the present invention provides a fuel oil pump 14 and a combustion air fan 2.
7 is connected to a variable speed motor 12 so that it can be integrally driven, and by changing the speed of the motor 12, a synchronized gasification burner 3 is constructed such that an arbitrary combustion amount can be obtained with substantially the same air-to-air ratio. The motor 12 is operated at a slow speed to the extent that the fuel oil pump 14 does not cause an oil feeding action in the latter half of the preheating period immediately before the ignition operation at the start of the combustion operation. Then, the motor 12 is raised to a high speed higher than the speed in the steady operating range at the same time as confirmation of ignition operation.
The present invention is characterized in that it is equipped with a motor control means 9 that increases the speed of the motor and maintains the speed until the heating air starts when the ignition is completed, and then switches the speed to the speed during steady operation.

(作用) 本発明は燃焼運転開始時の点火作動直前におけ
る予熱時間帯の後半に、すなわち、気化器28が
所定温度例えば250℃に達する時点から以後点火
作動直前までの間はモータ12を微速例えば
500r.p.mで回転することにより燃料油は送らない
で前記フアン27によつて送風せしめる結果、バ
ーナ3内に空気対流が生じてバーナ炎口32の温
度が上昇し着火性が容易になる。
(Function) The present invention operates the motor 12 at a slow speed, for example, during the latter half of the preheating period immediately before the ignition operation at the start of the combustion operation, that is, from the time when the carburetor 28 reaches a predetermined temperature, for example, 250°C, until immediately before the ignition operation.
By rotating at 500 rpm, air is blown by the fan 27 without sending fuel oil, and as a result, air convection occurs within the burner 3, the temperature of the burner flame port 32 rises, and ignition becomes easier.

そして、点火作動の確認と同時にモータ12を
高速度に増速せしめることにより、バーナ炎口3
2の温度が高い状況で空然比を定常運転範囲内の
値よりも下げてオイルチツチ状態を保持すること
が可能であり、低温運転時の安定燃焼が実現さ
れ、また、暖房の立上がり時間も早めることが可
能である。
Then, by increasing the speed of the motor 12 to a high speed at the same time as confirming the ignition operation, the burner nozzle 3
In situations where the temperature is high, it is possible to maintain an oil-rich state by lowering the air-to-air ratio below the value within the steady operating range, achieving stable combustion during low-temperature operation, and also speeding up the heating start-up time. Is possible.

(実施例) 以下、本発明の実施例を添付図面に基づいて説
明する。
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第2図及び第3図は本発明装置の各例に係る灯
油焚温風機の略示構造図であつて、エアフイルタ
ーを取り付けた空気取入口6と風向変向羽根を配
設した空気吹出口7とを有するケーシング1内
に、下方から対流フアン2、シンクロガス化バー
ナ(以下バーナと略称する)3、燃焼室4及び熱
交換器5を記載順序に夫々収設しているが、第2
図図示例は燃焼用空気として室内空気を利用し、
また、排ガスは室内放出又は煙突によつて室外に
排出する形態の石油フアンヒータと称されるもの
であり、一方、第3図図示例は、給排気筒9をバ
ーナ3及び熱交換器5に接続せしめていて、燃焼
用空気として室外空気を利用し、また、排ガスは
室外に排出する形態のFF温風機と称されるもの
である。なお、両図中、10は空気取入口6に近
く配置した室温検知サーミスタである。
FIGS. 2 and 3 are schematic structural diagrams of kerosene-fired warm air fans according to each example of the device of the present invention, and show an air intake port 6 equipped with an air filter and an air outlet provided with a wind direction changing blade. A convection fan 2, a synchro gasification burner (hereinafter abbreviated as burner) 3, a combustion chamber 4, and a heat exchanger 5 are housed in the casing 1 having a casing 7 in the order listed from below.
The illustrated example uses indoor air as combustion air,
Furthermore, this is a so-called oil fan heater in which the exhaust gas is discharged indoors or outdoors through a chimney.On the other hand, the example shown in FIG. This type of hot air blower uses outdoor air as combustion air and exhausts exhaust gas outdoors. In both figures, 10 is a room temperature detection thermistor placed near the air intake port 6.

上記両温風機には、同構造になるバーナ3及び
モータ制御手段9を備えていて、それ等を第4図
及び第1図によつて逐次説明する。
Both of the hot air blowers are equipped with a burner 3 and a motor control means 9 having the same structure, which will be explained sequentially with reference to FIG. 4 and FIG. 1.

バーナ3は定常運転状態を最低から最高まで無
段階的に能力切換えし得る構造であつて、11は
ハウジング、12はハウジング11内の中央に駆
動軸13を上下(垂直)方向にして配置された駆
動用の変速可能なモータで図示例は両軸モータ、
14は前記両軸モータ12の下方に配置されて該
モータ12により駆動される燃料油用ポンプであ
る。
The burner 3 has a structure in which the capacity can be changed steplessly from the lowest to the highest in the steady state of operation, and 11 is a housing, and 12 is disposed in the center of the housing 11 with a drive shaft 13 in the vertical (vertical) direction. The drive motor is variable speed; the example shown is a double-shaft motor,
Reference numeral 14 denotes a fuel oil pump that is disposed below the double-shaft motor 12 and is driven by the motor 12.

燃料油用ポンプ14は、ポンプ受け15内に油
供給口16を介して燃料油が供給されるポンプ室
17を有し、該ポンプ室17は、中心に前記駆動
軸13を貫通せしめる中心穴を有する仕切板18
によつて上下に仕切られて、油供給口16に連通
する油溜室17aと、該油溜室17aに前記仕切
板18の中心穴を介し連通するロータ室17bと
が形成され、該ロータ室17bには、前記両軸モ
ータ12の駆動軸13の下端部が延設されて、駆
動軸13下端部に油ロータ19が固定されてお
り、両軸モータ12の駆動軸13の回転と共に回
転する油ロータ19により油を油溜室17aから
ロータ室17bの下方部に吸入せしめて該ロータ
室17bの下方部から後述する油供給通路20を
通つて吐出するように構成されている。
The fuel oil pump 14 has a pump chamber 17 into which fuel oil is supplied through an oil supply port 16 in a pump receiver 15, and the pump chamber 17 has a center hole through which the drive shaft 13 passes. Partition plate 18 having
There are formed an oil reservoir chamber 17a which is divided into upper and lower parts by an oil reservoir chamber 17a and communicates with the oil supply port 16, and a rotor chamber 17b which communicates with the oil reservoir chamber 17a through the center hole of the partition plate 18. The lower end of the drive shaft 13 of the double-shaft motor 12 extends to 17b, and an oil rotor 19 is fixed to the lower end of the drive shaft 13, and rotates with the rotation of the drive shaft 13 of the double-shaft motor 12. The oil rotor 19 is configured to suck oil from the oil reservoir chamber 17a into the lower part of the rotor chamber 17b, and discharge it from the lower part of the rotor chamber 17b through an oil supply passage 20, which will be described later.

さらに、前記両軸モータ12の駆動軸13の上
端部は、後述する気化器28内の中心部まで延長
されているとともに、該駆動軸13の中芯には油
供給通路20が形成され、この油供給通路20の
下端部はノズル21を介して前記ロータ室17b
に連通されている。
Furthermore, the upper end of the drive shaft 13 of the double-shaft motor 12 extends to the center of the carburetor 28, which will be described later, and an oil supply passage 20 is formed in the center of the drive shaft 13. The lower end of the oil supply passage 20 is connected to the rotor chamber 17b through the nozzle 21.
is communicated with.

一方、駆動軸13の上端部には、油供給通路2
0の上端部と連通する垂直方向の連通路22を有
するポス部材23が、該ボス部材23と駆動軸1
3上端部との間に拡散板24を挟持せしめて連設
され、該ボス部材23には前記連通路22の上端
部と連通して半径方向(水平方向)に開口する複
数個の水平吐出口25,25が穿設されていると
共に、ボス部材23の上端部外周には拡散羽根2
6が装着されている。
On the other hand, an oil supply passage 2 is provided at the upper end of the drive shaft 13.
A post member 23 having a vertical communication path 22 that communicates with the upper end of the boss member 23 and the drive shaft 1
The boss member 23 has a plurality of horizontal discharge ports that communicate with the upper end of the communication path 22 and open in the radial direction (horizontal direction). 25, 25 are bored, and a diffusion blade 2 is provided on the outer periphery of the upper end of the boss member 23.
6 is installed.

かかる構造を有することによつて、前記ポンプ
14からの油を油供給通路20及び連通路22を
介して各水平吐出口25,25から水平方向に吐
出し、この吐出された油を拡散板24及び拡散羽
根26で拡散し、かつ微粒化せしめて気化器28
内に供給するようになるのである。
By having such a structure, the oil from the pump 14 is discharged horizontally from each of the horizontal discharge ports 25, 25 via the oil supply passage 20 and the communication passage 22, and the discharged oil is transferred to the diffusion plate 24. and diffused by the diffusion vane 26 and atomized to the vaporizer 28.
It will be supplied internally.

次に、27は両軸モータ12の駆動軸13の上
部に固定されて駆動がなされる燃焼空気用フア
ン、28は該フアンの上方(下流)に所定距離を
存し配置されて燃料油を気化する気化器であつ
て、該気化器28の外周にはこれを加熱して気化
を促進する予熱用空気ヒータ29が配設され、さ
らに、気化器28の上方にはバツフル板30を介
して截頭円錐形状の気化筒31が設けられ、この
気化筒31の外側には、金網筒で形成したバーナ
炎口32が同心配置で設けられる一方、バーナ炎
口32の近傍にはギヤツプを存して対峙する点火
用の電極プラグ33が配設されており、気化器2
8に供給されてここで気化された燃料油と、ハウ
ジング11に開口した吸気口34から燃焼空気用
フアン27によつて吸入した燃焼用空気とを混合
し、かくして得られた気体状燃料をバーナ炎口3
2において電極プラグ33からの放電アークによ
り点火して燃焼するように作動するのである。
Next, reference numeral 27 is a combustion air fan fixed to and driven by the upper part of the drive shaft 13 of the double-shaft motor 12, and 28 is arranged at a predetermined distance above (downstream) of the fan to vaporize fuel oil. A preheating air heater 29 is disposed on the outer periphery of the vaporizer 28 to heat the vaporization to promote vaporization. A vaporizer tube 31 having a conical head shape is provided, and a burner flame port 32 formed of a wire mesh tube is provided concentrically on the outside of the vaporizer tube 31, while a gap is provided near the burner flame port 32. A facing electrode plug 33 for ignition is arranged, and the carburetor 2
The fuel oil supplied to the fuel oil tank 8 and vaporized here is mixed with the combustion air taken in by the combustion air fan 27 from the intake port 34 opened in the housing 11, and the gaseous fuel thus obtained is fed into the burner. flame mouth 3
At step 2, the discharge arc from the electrode plug 33 ignites and burns the fuel.

なお、35は着火状態を確認するかめにバーナ
炎口32の炎噴出孔から噴出する炎に接し得る位
置に設けたフレームセンサ、36は燃料油の気化
温度を検知するために気化器28の器壁に取りつ
けたバーナ温度検知サーミスタである。
In addition, 35 is a flame sensor provided at a position where it can come into contact with the flame ejected from the flame outlet of the burner flame port 32 to confirm the ignition state, and 36 is a flame sensor of the vaporizer 28 to detect the vaporization temperature of the fuel oil. This is a burner temperature detection thermistor mounted on the wall.

しかしてモータ制御手段9は第1図にブロツク
示されるが、フレームセンサ35がバーナ炎口3
2で着火が行われたことを電流の変化で検出した
際にこれを検知し増幅する電流検出回路45と、
この電流検出回路45の出力電流と設定値とを比
較して着火が行われたことを「H」信号で出力す
る比較回路46とからなる炎検出器40、気化器
28の気化温度を検出するバーナ温度検知サーミ
スタ36の抵抗変化による電流変化を増幅する温
度検出回路47と、この温度検出回路47の出力
電流と設定値とを比較して気化器28の温度が設
定温度に達したことを「H」信号で出力する比較
回路48とからなるバーナ温度検出器41、室温
を検出する室温検知サーミスタ10の抵抗変化に
よる電流変化を増幅する温度検出回路49と、こ
の温度検出回路49の出力電流と設定値とを比較
して室温が設定値よりも低いことを「H」信号で
出力する比較回路50とからなる室温検出器4
2、論理回路からなつていて前記各検出器40,
41,42の信号を受けて作動し運転モード指令
を発信する運転モード指令回路43、この指令回
路43の運転モード指令を受けて作動し前記モー
タ12に対して回転数の減速、増速の出力を発す
る出力回路44の5つの要素からなつており、こ
の作動態様について、第5図のタイムチヤートな
らびに第6図乃至第11図の各特性線図を参照し
ながら以下説明する。
Although the motor control means 9 is shown as a block in FIG.
a current detection circuit 45 that detects and amplifies when the ignition is detected by a change in current in step 2;
A flame detector 40 comprising a comparison circuit 46 that compares the output current of this current detection circuit 45 with a set value and outputs an "H" signal indicating that ignition has occurred, detects the vaporization temperature of the vaporizer 28. A temperature detection circuit 47 that amplifies the current change caused by the resistance change of the burner temperature detection thermistor 36 compares the output current of this temperature detection circuit 47 with a set value to determine that the temperature of the vaporizer 28 has reached the set temperature. A burner temperature detector 41 consisting of a comparator circuit 48 that outputs an "H" signal, a temperature detection circuit 49 that amplifies current changes due to resistance changes of the room temperature detection thermistor 10 that detects room temperature, and an output current of this temperature detection circuit 49. A room temperature detector 4 comprising a comparison circuit 50 that compares the room temperature with a set value and outputs an "H" signal indicating that the room temperature is lower than the set value.
2. Each of the detectors 40 is composed of a logic circuit;
An operation mode command circuit 43 operates in response to signals from 41 and 42 and issues an operation mode command, and an operation mode command circuit 43 operates in response to the operation mode command of this command circuit 43 and outputs speed reduction or speed increase to the motor 12. The output circuit 44 is composed of five elements, and its operating mode will be explained below with reference to the time chart in FIG. 5 and the characteristic diagrams in FIGS. 6 to 11.

運転開始と同時に予熱用電気モータ29に通電
され、気化器28が温度上昇してくるのに応じ
て、バーナ炎口32では自然対流による熱伝導の
結果、温度が低い値で漸次上昇する。
At the same time as the start of operation, the preheating electric motor 29 is energized, and as the temperature of the vaporizer 28 rises, the temperature at the burner flame opening 32 gradually rises at a low value as a result of heat conduction by natural convection.

このときのバーナ炎口32の温度上昇状態及び
気化器28に装着したバーナ温度検知サーミスタ
36の抵抗値変化状態は第7図及び第8図に示す
通りである。
At this time, the temperature increase state of the burner flame port 32 and the resistance value change state of the burner temperature detection thermistor 36 attached to the vaporizer 28 are as shown in FIGS. 7 and 8.

前記電気ヒータ29による予熱の時間の半ばに
至つてバーナ炎口32の温度が第7図の点Pに達
する(約200℃)とバーナ温度検出器41から発
信される「H」信号によつて運転モード指令回路
43が作動し両軸モータ12に対して微速例えば
500r.p.m.で駆動させる指令が発せらる。
When the temperature of the burner flame port 32 reaches point P in FIG. 7 (approximately 200° C.) in the middle of the preheating time by the electric heater 29, the “H” signal transmitted from the burner temperature detector 41 The operation mode command circuit 43 is activated, causing the double-shaft motor 12 to operate at a very low speed, for example.
A command is issued to drive at 500rpm.

かくして両軸モータ12は微速で回転するの
で、燃焼空気用フアン27による低風量の送風が
開始され、強制対流によつて気化器28の熱がバ
ーナ炎口32に伝達される結果、両者28,32
間の温度差(△T)は縮まつてくる。
Since the double-shaft motor 12 thus rotates at a slow speed, the combustion air fan 27 starts blowing a small amount of air, and as a result of the forced convection, the heat of the vaporizer 28 is transferred to the burner nozzle 32, and as a result, both 28, 32
The temperature difference (△T) between them will shrink.

なお、この微速回転ではポンプの送油作用は生
じないことは言うまでもない。
It goes without saying that the oil feeding action of the pump does not occur during this slow rotation.

蒸気予熱時間帯において気化器28とバーナ炎
口32とでの温度上昇状態は第9図に示される通
りであつて、両軸モータ12の微速運転により、
従来気化器28からバーナ炎口32への熱移動は
熱伝導、自然対流によるものであつて、相当大き
い温度差(△T)が存していたが、これを強制対
流とすることによつて(△t)まで縮めることが
可能であり、着火条件を改善し得るものである。
During the steam preheating period, the temperature rise state in the vaporizer 28 and the burner flame port 32 is as shown in FIG.
Conventionally, heat transfer from the vaporizer 28 to the burner flame port 32 was based on heat conduction and natural convection, and there was a considerably large temperature difference (△T), but by making this a forced convection, (Δt), and the ignition conditions can be improved.

一方、バーナ3における両軸モータ12の回転
とポンプ14の油量及びフアン27の風量との間
の関係は第6図に示されるが、図中、Aの範囲で
示す微速運転はポンプ14が送油作用を発揮しな
く油が気化器28にと噴霧されないで、低風量で
の送風作用だけが行われる状態になつている。
On the other hand, the relationship between the rotation of the double-shaft motor 12 in the burner 3, the oil volume of the pump 14, and the air volume of the fan 27 is shown in FIG. The oil supply function is not performed and oil is not sprayed into the vaporizer 28, and only the ventilation function is performed at a low air volume.

なお、蒸気微速運転の帯域で油の噴霧が生じな
いのは、第4図にバーナ3の構造が示されるよう
に、油溜室17aの油面から水平吐出口25,2
5…までのヘツド差と押上げ力との関係によるも
のである。
Note that oil spray does not occur in the steam slow operation zone, as shown in the structure of the burner 3 in FIG.
This is due to the relationship between the head difference up to 5 and the push-up force.

前記予熱時間帯が経過することにより、バーナ
炎口32の温度が約240℃に上昇して予熱が万全
となる状態に至ると、シーケンス制御回路からの
点火指令信号によつて、電極プラグ33に高電圧
が印加され点火作動する。
As the preheating time period elapses, the temperature of the burner nozzle 32 rises to approximately 240°C, and when preheating is fully achieved, the electrode plug 33 is activated by an ignition command signal from the sequence control circuit. High voltage is applied and ignition is activated.

この点火は瞬時に行われ、点火が行われたこと
を炎検出器40が「H」信号の出力により確認す
ると、運転モード指令回路43から増速指令が発
信され、かくして両軸モータ12は定常運転範囲
の速度よりも大きい最高速度に切り換つて運転さ
れる(第6図乃至第8図参照)。
This ignition occurs instantaneously, and when the flame detector 40 confirms that the ignition has occurred by outputting an "H" signal, a speed increase command is sent from the operation mode command circuit 43, and thus the double-shaft motor 12 is operated at a steady state. The vehicle is operated by switching to a maximum speed higher than the speed within the operating range (see FIGS. 6 to 8).

その結果、強制対流の風量は増加すると共に、
気化器28での油噴霧が多量に行われるために気
化燃料に対する着火がバーナ炎口32において行
われる。
As a result, the air volume of forced convection increases, and
Since a large amount of oil is sprayed in the vaporizer 28, the vaporized fuel is ignited at the burner flame port 32.

この点火確認後の増速運転は、第6図のに示
される如く、空燃比に関して定常運転の場合より
もオイル・リツチの条件が満たされる運転領域で
あるから定温運転時の安定燃焼が得られる。
As shown in Fig. 6, this increased speed operation after ignition confirmation is in the operating region where the oil-rich condition is satisfied compared to the case of steady operation regarding the air-fuel ratio, so stable combustion can be obtained during constant temperature operation. .

かくして安定燃焼状態は例えば点火開始から約
1分経過することによつて確実に維持され、この
時点で対流フアン2が高速で駆動すると同時に、
両軸モータ12は定常運転時における減速例えば
高速度に切り換えられることにより燃焼運転始動
は終了する。
In this way, the stable combustion state is reliably maintained, for example, after approximately one minute has elapsed from the start of ignition, and at this point, the convection fan 2 is driven at high speed, and at the same time,
The combustion operation start is completed by decelerating the double-shaft motor 12 during steady operation, for example, by switching to a high speed.

その後、室温検知器42の出力によつて対流フ
アン2及び両軸モータ12は高速と低速との間の
自動切り換えが成され、室温度を一定に保持する
暖房運転が行われるのである。
Thereafter, the convection fan 2 and the double-shaft motor 12 are automatically switched between high speed and low speed based on the output of the room temperature detector 42, and heating operation is performed to maintain the room temperature constant.

以上述べた運転状態は第5図及び第10図に示
される通りである。
The operating conditions described above are as shown in FIGS. 5 and 10.

このように両軸モータ12を微速で運転してバ
ーナ炎口32を高速運転に入る前に十分予熱して
おいて高速度のオイル・リツチ方式で確実な着火
を行せることが可能であるが、実際には高速度で
両軸モータ12を運転することにより、運転音が
大きくなることを考慮して吸込空気が低い状態の
始動時のみで室温検知器42による速度切換えの
場合には、かかる高速度での運転が成されないよ
うに禁止回路を備えしめることが好ましい。ま
た、本発明は第3図図示のFF温風機に使用して
特に効果的である。
In this way, it is possible to operate the double-shaft motor 12 at a slow speed and preheat the burner nozzle 32 sufficiently before starting high-speed operation to ensure reliable ignition using the high-speed oil-rich method. In practice, considering that operating the double-shaft motor 12 at high speed increases the operating noise, such speed switching is performed by the room temperature detector 42 only at the time of startup when the intake air is low. Preferably, a prohibition circuit is provided to prevent operation at high speeds. Further, the present invention is particularly effective when used in the FF warm air fan shown in FIG.

(発明の効果) つづいて本発明の効果を述べると次の通りであ
る。
(Effects of the Invention) Next, the effects of the present invention will be described as follows.

(イ) 燃焼運転時には、予熱時間帯の前半に強制対
流を行わせて気化器28とバーナ炎口32との
温度差を小さくし着火が容易な条件を保持させ
ると共に後半においてオイル・リツチ方式によ
る点火を行わせているので、点火は確実に成さ
れ、低温時であつても着火が失敗する如き問題
はなくなり、点火特性が改善される。
(a) During combustion operation, forced convection is performed in the first half of the preheating period to reduce the temperature difference between the vaporizer 28 and the burner flame port 32 to maintain conditions for easy ignition, and in the second half, an oil rich method is used. Since ignition is performed, ignition is reliably achieved, there is no problem of ignition failure even at low temperatures, and ignition characteristics are improved.

(ロ) 点火時期において送風量、油量を高める制御
を行つているので始動時の暖房立上り特性が向
上し快適環境の醸成に多大の効果を奏する。
(b) Since the air flow and oil volume are controlled to be increased at the ignition timing, the heating start-up characteristics at the time of startup are improved, which has a great effect on creating a comfortable environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る電気制御回路
図、第2図及び第3図は本発明の各例の略示構造
図、第4図は前記両例に用いられるバーナの機構
図、第5図は本発明に係る燃焼運転開始時のタイ
ムチヤート、第6図乃至第10図は本発明装置に
係る各特性線図、第11図は従来の液体燃料燃焼
装置に係る特性線図である。 3……シンクロガス化バーナ、9……モータ制
御手段、12……モータ、14……燃料油用ポン
プ、27……燃焼空気用フアン。
FIG. 1 is an electric control circuit diagram according to an embodiment of the present invention, FIGS. 2 and 3 are schematic structural diagrams of each example of the present invention, and FIG. 4 is a mechanical diagram of a burner used in both of the above examples. FIG. 5 is a time chart at the start of combustion operation according to the present invention, FIGS. 6 to 10 are characteristic diagrams of the device of the present invention, and FIG. 11 is a characteristic diagram of a conventional liquid fuel combustion device. be. 3... Synchro gasification burner, 9... Motor control means, 12... Motor, 14... Fuel oil pump, 27... Combustion air fan.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料油用ポンプ14と燃焼空気用フアン27
とを変速可能なモータ12に連結して一体駆動可
能となし、前記モータ12を変速することにより
空燃比がほぼ同じ値で任意の燃焼量が得られる如
くなしたシンクロガス化バーナ3を有する液体燃
料燃焼装置であつて、燃焼運転始動時の点火作動
直前における予熱時間帯の後半に、前記燃料油用
ポンプ14が送油作用を生じない程度の微速で前
記モータ12を運転して送風作用を生ぜしめ、次
いで、点火作動の確認と同時に定常運転範囲の速
度よりも大きい高速度に前記モータ12を増速さ
せて、着火完了により送温風が開始するまで持続
した後、定常運転時における速度に切り換えるモ
ータ制御手段9を備えしめたことを特徴とする液
体燃料燃焼装置。
1 Fuel oil pump 14 and combustion air fan 27
and a synchro gasification burner 3 connected to a variable speed motor 12 so that they can be integrally driven, and by changing the speed of the motor 12, an arbitrary combustion amount can be obtained with almost the same air-fuel ratio. In the fuel combustion apparatus, in the second half of the preheating period immediately before the ignition operation at the start of combustion operation, the motor 12 is operated at a slow speed to the extent that the fuel oil pump 14 does not produce an oil feeding action to perform an air blowing action. Then, at the same time as confirming the ignition operation, the speed of the motor 12 is increased to a high speed higher than the speed in the steady operation range, and after continuing until the ignition is completed and hot air starts to be sent, the speed at the time of steady operation is increased. A liquid fuel combustion device characterized in that it is equipped with a motor control means 9 that switches to the motor control means 9.
JP61196967A 1986-08-21 1986-08-21 Liquid fuel burner Granted JPS6354517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61196967A JPS6354517A (en) 1986-08-21 1986-08-21 Liquid fuel burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61196967A JPS6354517A (en) 1986-08-21 1986-08-21 Liquid fuel burner

Publications (2)

Publication Number Publication Date
JPS6354517A JPS6354517A (en) 1988-03-08
JPH0473046B2 true JPH0473046B2 (en) 1992-11-19

Family

ID=16366626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61196967A Granted JPS6354517A (en) 1986-08-21 1986-08-21 Liquid fuel burner

Country Status (1)

Country Link
JP (1) JPS6354517A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320306C (en) * 2002-12-25 2007-06-06 李延新 Burning control method of combustor and automatic control combustor

Also Published As

Publication number Publication date
JPS6354517A (en) 1988-03-08

Similar Documents

Publication Publication Date Title
EP0225655B1 (en) Process for the ignition of a burner
JPH0473046B2 (en)
JPH0949628A (en) Control device for combustion apparatus
JP3104994B2 (en) Gas burner device, gas burner and combustion control method
JP2002317929A (en) Combustion equipment
KR0156217B1 (en) Combustion system of hot air heater
KR200156819Y1 (en) Automatic control system of air rate for combustion by using gas sensor
JPS6015055Y2 (en) Instant hot air heating device with built-in gun type burner
JP2530863Y2 (en) Combustion equipment
JPH0752013B2 (en) Hot air heater security device
CN117490062A (en) Air-pushing type alcohol-based fuel combustion furnace and combustion furnace system
AU2013100184A4 (en) High Efficiency Gas Ducted Heater
JP3073316B2 (en) Combustor with heat exchanger
KR100287844B1 (en) control device for operating of gas furnace
JPH11118143A (en) Combustion apparatus
JP3411166B2 (en) Vaporization burner device
JPS61225548A (en) Hot air flow space heater
JPH05312320A (en) Combustion device
JPS605240Y2 (en) liquid fuel combustion equipment
CN116717791A (en) Low nitrogen submerged burner with grading control
JPH02126016A (en) Control device for hot air heater
JP3011223B2 (en) Pot type oil combustor ignition system
JPH11257649A (en) Combustion control method for combustion quantity variable burner
JP3075112B2 (en) Control device for combustion equipment
JP2805962B2 (en) Liquid fuel combustion device