JPH0472804A - Strip line filter - Google Patents

Strip line filter

Info

Publication number
JPH0472804A
JPH0472804A JP18280990A JP18280990A JPH0472804A JP H0472804 A JPH0472804 A JP H0472804A JP 18280990 A JP18280990 A JP 18280990A JP 18280990 A JP18280990 A JP 18280990A JP H0472804 A JPH0472804 A JP H0472804A
Authority
JP
Japan
Prior art keywords
dielectric
temperature coefficient
filter
resonance frequency
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18280990A
Other languages
Japanese (ja)
Inventor
Shinsuke Yano
信介 矢野
Takami Hirai
隆己 平井
Tetsuya Fukai
深井 徹也
Yuji Sarukawa
去川 勇次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Soshin Electric Co Ltd
Original Assignee
NGK Insulators Ltd
Soshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Soshin Electric Co Ltd filed Critical NGK Insulators Ltd
Priority to JP18280990A priority Critical patent/JPH0472804A/en
Publication of JPH0472804A publication Critical patent/JPH0472804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To make the filter small by employing a 1st dielectric material whose temperature coefficient with respect to its resonance frequency is positive for a 1st dielectric base and a 2nd dielectric material whose temperature coefficient with respect to its resonance frequency is negative for a 2nd dielectric base. CONSTITUTION:A 1st dielectric material whose temperature coefficient with respect to its resonance frequency is positive is employed for a 1st dielectric base 1 and a 2nd dielectric material whose temperature coefficient with respect to its resonance frequency is negative is employed for a 2nd dielectric base 11. Thus, the dielectric materials whose temperature coefficient with respect to its resonance frequency has a different sign are used for one and same filter, then even when the absolute value itself of the temperature coefficient of the dielectric material is large, the temperature coefficients of resonance conductors 3 between the 1st and 2nd dielectric bases 1, 11 are cancelled with each other. Thus, even when the dielectric bodies whose absolute value of temperature coefficient with respect to its resonance frequency is large are in use, the absolute value of the temperature coefficient in practical use of the filter is decreased. Thus, the filter is made small in size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1〜リブレート型のストリップラインフィル
ターに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a single-ribrate type stripline filter.

(従来の技術及びその問題点) 自動車電話や携帯電話などの高周波機器の発達に伴い、
それらに使用する電子部品にも小型化が要求されており
、特に誘電体共振器を使用したフィルターも小型化を要
求されている。
(Conventional technology and its problems) With the development of high frequency devices such as car phones and mobile phones,
There is also a demand for miniaturization of the electronic components used in these devices, and in particular, there is a demand for miniaturization of filters using dielectric resonators.

一方、誘電体共振器を使用したフィルターのなかには、
共振用導体を二枚の誘電体基板で挟んで構成したトリプ
レート型ストリップラインフィルターがあり、小型で構
造か簡単であるため、小型電子回路に好適に使用されて
いる。こうしたトリプレート型ストリップラインフィル
ターにおいても、前述のように一層の小型化か要求され
ている。
On the other hand, some filters using dielectric resonators have
There is a triplate type stripline filter, which is constructed by sandwiching a resonant conductor between two dielectric substrates, and is suitable for use in small electronic circuits because it is small and has a simple structure. As mentioned above, there is also a demand for further miniaturization of such triplate type stripline filters.

こうした誘電体共振器は、誘電体中で波長が1/Ji:
′(εは誘電率)に短縮されることを利用したものであ
り、誘電率か太きいはとストリップラ≦2.0 インフィルターを小型化できる。従って、前述のように
一層の小型化を実現するためには、誘電率の大きな材料
を使用する必要かある。
Such a dielectric resonator has a wavelength of 1/Ji:
' (ε is the dielectric constant), and if the dielectric constant is large and the stripline is ≤2.0, the in-filter can be made smaller. Therefore, in order to achieve further miniaturization as described above, it is necessary to use a material with a high dielectric constant.

このため、従来、高誘電率の誘電体材料の開発か進めら
れており、例えば、特公昭56−26321号公報等に
記載のBaO−Nd203−TiO□−PbO系誘電体
材料等においては、誘電率80〜90程度のものが得ら
れている。しかし、現状では、この程度の誘電率の材料
では、小型化に限界かある。一方、誘電率か100を越
える材料も開発されてはいるか、この種の材料を使用す
ると、フィルターの共振周波数の温度係数か大きくなり
、ストリップラインフィルタに要求される許容範囲を越
えてしまう。
For this reason, the development of dielectric materials with high dielectric constants has been progressing, for example, BaO-Nd203-TiO□-PbO-based dielectric materials described in Japanese Patent Publication No. 56-26321, etc. A ratio of about 80 to 90 has been obtained. However, at present, there is a limit to miniaturization using materials with such a dielectric constant. On the other hand, materials with dielectric constants exceeding 100 have been developed, and if such materials are used, the temperature coefficient of the filter's resonant frequency becomes large, exceeding the tolerance required for stripline filters.

(発明か解決しようとする課題) 本発明の課題は、従来よりもフィルターを小型化するこ
とが可能であり、しかもフィルターの共振周波数の温度
係数の絶対値を低い値に抑えることかてきるようなスト
リップラインフィルターを提供することである。
(Problem to be solved by the invention) An object of the present invention is to make it possible to make the filter smaller than before, and to suppress the absolute value of the temperature coefficient of the resonance frequency of the filter to a low value. The purpose of this invention is to provide a stripline filter with a wide range of characteristics.

(課題を解決するための手段) 本発明は、第一の誘電体基板と第二の誘電体基板との間
に共振用導体を形成してなるトリプレート型のストリッ
プラインフィルターにおいて、前記第一の誘電体基板を
構成する第一の誘電体材料の共振周波数の温度係数か正
の値であり、前記第二の誘電体基板を構成する第二の誘
電体材料の共振周波数の温度係数か負の値であることを
特徴とするストリップラインフィルターに係るものであ
る。
(Means for Solving the Problems) The present invention provides a triplate type stripline filter in which a resonance conductor is formed between a first dielectric substrate and a second dielectric substrate. The temperature coefficient of the resonant frequency of the first dielectric material constituting the dielectric substrate is a positive value, and the temperature coefficient of the resonant frequency of the second dielectric material constituting the second dielectric substrate is a negative value. This relates to a stripline filter characterized by a value of .

(実施例) 第1図はトリプレート型ストリップラインフィルターを
示す断面図である。
(Example) FIG. 1 is a sectional view showing a triplate type stripline filter.

このフィルターにおいては、第一の誘電体基板1と第二
の誘電体基板11とを互いに固定し、これらの間に共振
用導体3を設け、共振用導体3を設けない間隙4は、ガ
ラス、樹脂、無機系接着剤等によって充填する。共振用
導体3の配設パターンについては、後に例示する。各基
板1,11の外側面には、それぞれアース電極2を設け
る。
In this filter, a first dielectric substrate 1 and a second dielectric substrate 11 are fixed to each other, a resonance conductor 3 is provided between them, and a gap 4 where the resonance conductor 3 is not provided is made of glass, Fill with resin, inorganic adhesive, etc. The arrangement pattern of the resonance conductor 3 will be exemplified later. A ground electrode 2 is provided on the outer surface of each substrate 1, 11, respectively.

必要に応じて第1と第2の誘電体基板のアース電極2を
接続するために、それぞれの基板の側面にも短絡用の電
極を設ける場合もある。
In order to connect the ground electrodes 2 of the first and second dielectric substrates as necessary, shorting electrodes may also be provided on the side surfaces of each substrate.

そして、本実施例のフィルターにおいては、第一の誘電
体基板1を構成する第一の誘電体材料として、共振周波
数の温度係数か正の値であるものを使用し、第二の誘電
体基板11を構成する第二の誘電体材料として、共振周
波数の温度係数か負の値であるものを使用する。
In the filter of this embodiment, a material having a positive temperature coefficient of the resonant frequency is used as the first dielectric material constituting the first dielectric substrate 1, and the second dielectric material As the second dielectric material constituting 11, a material having a negative temperature coefficient of resonance frequency is used.

このように、本実施例のストリップラインフィルターに
よれば、共振周波数の温度係数の符号か異なるものを、
同一のフィルター構造中で同時に使用するので、たとえ
使用する誘電体の温度係数の絶対値自体が大きくとも、
第一と第二の誘電体基板の間の共振用導体3の部分にお
いては温度係数か互いに打ち消し合う。従って、たとえ
共振周波数の温度係数の絶対値か大きい誘電体を使用し
ても、フィルターの実用上の温度係数の絶対値を充分小
さくできるので、フィルターの小型化を実現できる。
In this way, according to the stripline filter of this embodiment, when the temperature coefficient of the resonant frequency has a different sign,
Since they are used simultaneously in the same filter structure, even if the absolute value of the temperature coefficient of the dielectric used is large,
In the portion of the resonant conductor 3 between the first and second dielectric substrates, the temperature coefficients cancel each other out. Therefore, even if a dielectric material with a large absolute value of the temperature coefficient of the resonant frequency is used, the absolute value of the practical temperature coefficient of the filter can be made sufficiently small, so that the size of the filter can be reduced.

更に、本実施例においては、上記の効果を一層有効に発
揮させ、フィルターの共振周波数の温度係数をOl)I
)m/°Cに近づけるために、新たに三つの要因、即ち
各誘電体材料の誘電率、各誘電体材料の共振周波数の温
度係数、及び各誘電体基板の厚みを考慮し、特徴的な構
成を採用している。
Furthermore, in this embodiment, the above effect is exhibited more effectively, and the temperature coefficient of the resonance frequency of the filter is
) m/°C, we newly considered three factors: the permittivity of each dielectric material, the temperature coefficient of the resonant frequency of each dielectric material, and the thickness of each dielectric substrate. The configuration is adopted.

即ち、第一の誘電体材料の誘電率、共振周波数の温度係
数及び前記第一の誘電体基板の厚みをそれぞれA、  
B、 Cとし、第二の誘電体材料の誘電率、共振周波数
の温度係数及び第二の誘電体基板の厚みをそれぞれa、
b、cとしたとき、下記の関係が成立するように構成し
た。
That is, the dielectric constant of the first dielectric material, the temperature coefficient of the resonance frequency, and the thickness of the first dielectric substrate are respectively A,
B and C, and the dielectric constant of the second dielectric material, the temperature coefficient of the resonant frequency, and the thickness of the second dielectric substrate are respectively a and
When b and c are used, the configuration is such that the following relationship holds true.

0.5≦|  (A−B/C)/ (a−b/c)l≦
2.0このように構成を特定することにより、フィルタ
ーの共振周波数の温度係数をOl)I)m/’C付近に
することができたのである。これは、各誘電体基板の共
振用電極で得られる容量が(A / C、a / c 
)関係する為と考えられる。そして、l  (A−B/
C)/ (a −b/c)lか上記範囲を外れると、共
振周波数の温度係数の打ち消しの効果か小さい。
0.5≦| (A-B/C)/ (a-b/c)l≦
2.0 By specifying the configuration in this way, it was possible to set the temperature coefficient of the resonance frequency of the filter to around Ol)I)m/'C. This means that the capacitance obtained at the resonance electrode of each dielectric substrate is (A/C, a/c
) is considered to be related to this. And l (A-B/
C)/(a-b/c)l is outside the above range, the effect of canceling the temperature coefficient of the resonance frequency is small.

(A−B/C)/ (a −b/c)lは、更に067
〜1.5の範囲内とする二とか好ましく、実質的に1.
0とすると一層好ましい。
(A-B/C)/(a-b/c)l is further 067
It is preferably within the range of 2 to 1.5, and substantially 1.
It is more preferable to set it to 0.

そして、トリプレート型のスプラインフィルターは、後
述するように、例えは所定の共振用導体パターンを有す
る2枚の誘電体基板を貼り合わせるだけで多段フィルタ
ーを実現できるので、本発明を適用しても、従来のよう
に各誘電体基板に同一の誘電体材料を使用した場合と製
造プロセスは変わらない。従って、本発明の要旨を実現
するのに最適なフィルター構造である。
As described later, a triplate type spline filter can be realized as a multi-stage filter simply by bonding two dielectric substrates having a predetermined resonant conductor pattern, so even if the present invention is applied. The manufacturing process is no different from the conventional case where the same dielectric material is used for each dielectric substrate. Therefore, it is an optimal filter structure for realizing the gist of the present invention.

共振周波数の温度係数か正の値である第一の誘電体材料
としては、大きな誘電率か得られる、5rO−TiO□
系、Ca0−TiO□系、T10□系、SrOSnO□
系、PbO−Nb2O,系、BaO−TiO2系やこれ
らにRe203(Re :レアアース)やその他の金属
酸化物を添加物として加えた組成のセラミック等を例示
できる。共振周波数の温度係数か負の値である第二の誘
電体材料としては、PbOZrO□系、PbOTlO2
系やこれらにRe203(Re :レアアース)やアル
カリ土類金属の酸化物やその他金属酸化物を添加物とし
て加えた組成のセラミック等を例示できる。
As the first dielectric material whose temperature coefficient of resonance frequency is a positive value, 5rO-TiO□ can obtain a large dielectric constant.
system, Ca0-TiO□ system, T10□ system, SrOSnO□
Examples include ceramics having compositions such as PbO-Nb2O, BaO-TiO2, and these with Re203 (Re: rare earth) and other metal oxides added as additives. As the second dielectric material whose temperature coefficient of resonance frequency is a negative value, PbOZrO□ system, PbOTlO2
Examples include ceramics having compositions in which Re203 (Re: rare earth), oxides of alkaline earth metals, and other metal oxides are added as additives.

第2図は、本発明の適用される他の構造のl〜リプレー
1〜型ススプラインフィルター示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a 1-type Replay 1-type spline filter having another structure to which the present invention is applied.

本実施例においても、第1図のフィルターと同様に、第
一の誘電体基板1と第二の誘電体基板11との間で、誘
電体材料の共振周波数の温度係数の符号を変えており、
前記A、  B、 C,a、  b、  cの設計も同
様に行っている。そして、第2図においては、円筒状の
共振用導体5を、各誘電体基板1.11の凹状の溝の部
分に形成する。こうした構造を採用すれは、第1図のフ
ィルターと比較して共振器のQを一層高くすることかで
き、また各共振器間の結合を大きくてきる。
In this embodiment as well, the sign of the temperature coefficient of the resonant frequency of the dielectric material is changed between the first dielectric substrate 1 and the second dielectric substrate 11, as in the filter shown in FIG. ,
A, B, C, a, b, and c are designed in the same way. In FIG. 2, a cylindrical resonance conductor 5 is formed in the concave groove of each dielectric substrate 1.11. By adopting such a structure, the Q of the resonator can be made higher than that of the filter shown in FIG. 1, and the coupling between each resonator can be increased.

第2図に示した様に、各共振器間の結合を調整する為に
、−点鎖線で示したような、結合調節用の溝6を設ける
場合もある。これは共振器間の間に誘電率の小さな部分
を設ける為で、こうすることにより、各共振器間の結合
を調整したり、あるいは結合を生じさせたりできる。従
って、この部分には、誘電率の小さな他の材料を充填し
ても良い。
As shown in FIG. 2, in order to adjust the coupling between each resonator, a groove 6 for coupling adjustment as shown by a dashed line may be provided. This is to provide a portion with a small dielectric constant between the resonators, and by doing so, the coupling between each resonator can be adjusted or generated. Therefore, this portion may be filled with another material having a small dielectric constant.

第3図〜第7図は、それぞれ共振用導体パターンの例を
示す概略平面図である。むろん、本発明の要旨に適うス
トリップラインフィルターであれば、これらの共振用導
体パターンに限定されない。
FIGS. 3 to 7 are schematic plan views showing examples of resonance conductor patterns, respectively. Of course, the stripline filter is not limited to these resonant conductor patterns as long as it meets the gist of the present invention.

第3図の例においては、誘電体基板の図面において上下
縁部にアース電極2を設け、各アース電極2から交互に
インターデジタル型の共振用電極13を設け、最端側の
共振用電極13に入出力端子用電極I4を接続する。
In the example shown in FIG. 3, ground electrodes 2 are provided at the upper and lower edges of the dielectric substrate, interdigital resonance electrodes 13 are provided alternately from each ground electrode 2, and the resonance electrode 13 on the farthest side is provided. The input/output terminal electrode I4 is connected to the terminal.

第4図の例においては、共振用電極13の開放端に近い
13a部分か隣接する共振路と結合する。
In the example shown in FIG. 4, a portion 13a near the open end of the resonance electrode 13 is coupled to the adjacent resonance path.

第5図〜第7図の例は、いずれもいわゆるコムライン型
の共振用導体パターンを示すものである。
The examples shown in FIGS. 5 to 7 all show so-called combline type resonant conductor patterns.

第5図の例においては、一方のアース電極2から、くし
歯状の共振用電極13を突設し、最外端部に一対の入出
力端子用電極14を設ける。
In the example shown in FIG. 5, a comb-shaped resonance electrode 13 is provided protruding from one of the ground electrodes 2, and a pair of input/output terminal electrodes 14 are provided at the outermost end.

第6図の例においては、くし歯状の共振用電極13の開
放端部に拡大部13bを設け、また更に飛び越し結合用
電送線路15を設けである。第7図の例においては、く
し歯状の各共振用電極13の間に、共振器結合用線路1
6を形成しである。
In the example shown in FIG. 6, an enlarged portion 13b is provided at the open end of the comb-shaped resonance electrode 13, and an interlaced coupling transmission line 15 is further provided. In the example shown in FIG. 7, the resonator coupling line 1
6 is formed.

共振用導体パターンを形成するための導体としては、A
g系、Cu系、Au系などの導通抵抗か小さなものか使
用される。
As a conductor for forming a resonant conductor pattern, A
A small conduction resistance such as g-based, Cu-based, or Au-based is used.

導体パターンを形成するには、例えば、第8図に示すよ
うに、まず金属箔を打ち抜いて所定の導体パターンを有
する導体金属板20を作製し、この導体金属板20を一
対の誘電体基板1.11間に挟み込む方法かある。
To form a conductor pattern, for example, as shown in FIG. There is a way to insert it between .11 and 11.

また例えば厚膜法により導体ペーストを誘電体基板上に
パターン印刷して焼成する方法や、メツキ、スパッタリ
ング、蒸着によって誘電体基板表面に薄膜を形成し、フ
ォトリソグラフィーによりパターンを形成する方法など
かある。これらの場合には、第9図に示すように、各誘
電体基板1゜11の対向する面にそれぞれ導体パターン
21を形成した後、誘電体基板1と11とを貼り合わせ
ることかてきるが、第10図に示すように、一方の誘電
体基板1 (又は11)のみに導体パターン22を形成
し、この後に誘電体基板1と11とを貼り合わせること
もてきる。
For example, there are methods such as printing a pattern of conductor paste on a dielectric substrate using a thick film method and baking it, or forming a thin film on the surface of a dielectric substrate by plating, sputtering, or vapor deposition, and forming a pattern using photolithography. . In these cases, as shown in FIG. 9, it is possible to form conductive patterns 21 on the opposing surfaces of each dielectric substrate 1 and 11, and then bond the dielectric substrates 1 and 11 together. As shown in FIG. 10, it is also possible to form a conductor pattern 22 only on one dielectric substrate 1 (or 11), and then bond the dielectric substrates 1 and 11 together.

以下、更に具体的な実施例を示す。More specific examples will be shown below.

実施例1 第一の誘電体基板を構成する第一の誘電体材料として、
誘電率Aか250、共振周波数の温度係数Bが1200
ppm/’Cの5rTi(L+にMnOを添加した組成
の材料を使用し、第一の誘電体基板の厚みCを2mmと
した。また、第二の誘電体基板を構成する第二の誘電体
材料として、誘電率aか14o、共振周波数)温度係数
b カ11000p1)/’CノPbZrO31m希土
類金属の酸化物を添加した組成の材料を使用し、第二の
誘電体基板の厚みCを0.93iunとした。従って、
(A−B/C)/ (a −b/c)lの値は1.0と
なる。
Example 1 As the first dielectric material constituting the first dielectric substrate,
The dielectric constant A is 250, and the temperature coefficient B of the resonance frequency is 1200.
A material having a composition of 5rTi (MnO added to L+) of ppm/'C was used, and the thickness C of the first dielectric substrate was 2 mm. As a material, a material having a dielectric constant (a) or 14o (resonant frequency), temperature coefficient (b), (f) 11000p1)/'CnoPbZrO31m, and a composition in which a rare earth metal oxide is added is used, and the thickness C of the second dielectric substrate is set to 0. It was set to 93 iun. Therefore,
The value of (A-B/C)/(a-b/c)l is 1.0.

これらの誘電体基板を使用し、第11図に示す試験用の
導体パターンを有する1/4波長型のストリップライン
フィルターを作成し、このフィルターの共振周波数の温
度係数を測定したところ、はぼOI)I)m/’Cの値
を示した。
Using these dielectric substrates, we created a 1/4 wavelength stripline filter with a conductor pattern for testing as shown in Figure 11, and measured the temperature coefficient of the resonant frequency of this filter. ) I) The value of m/'C is shown.

実施例2 第一の誘電体材料として、Aか250.Bか1200p
pm/’Cの5rTi03にMnOを添加した組成の材
料を使用し、第一の誘電体基盤の厚みCを2化とした。
Example 2 As the first dielectric material, A or 250. B or 1200p
A material having a composition in which MnO was added to 5rTi03 of pm/'C was used, and the thickness C of the first dielectric substrate was set to 2.

また、第二の誘電体材料として、aが140、bか−I
ooolll)m/°CのPbZrO3に希土類金属の
酸化物を添加した組成の材料を使用し、第二の誘電体基
板Cの厚みを1.5証とした。従って、l  (A−B
/C)(a−b/c)1の値は1.6となる。
In addition, as the second dielectric material, a is 140, b is -I
A material having a composition in which a rare earth metal oxide was added to PbZrO3 of m/°C was used, and the thickness of the second dielectric substrate C was set to 1.5 mm. Therefore, l (A-B
/C)(ab/c)1 has a value of 1.6.

他は実施例1と同様にしてフィルターの共振周波数の温
度係数を測定したところ、はぼ300pI)m/°Cで
あった。
The temperature coefficient of the resonance frequency of the filter was measured in the same manner as in Example 1, and was found to be approximately 300 pI)m/°C.

実施例3 第二の誘電体基板の厚みCを0.6Mとし、(A −B
/C)/ (a −b/c)lの値を0.6とした以外
は、実施例2と同様にしてフィルターの共振周波数の温
度係数を測定したところ、はぼ250 ppm/’Cで
あった。
Example 3 The thickness C of the second dielectric substrate was 0.6M, and (A-B
/C)/(a - b/c) When the temperature coefficient of the resonance frequency of the filter was measured in the same manner as in Example 2 except that the value of l was set to 0.6, it was found to be approximately 250 ppm/'C. there were.

/ 実施例4 第2の誘電体基板の厚みCを1.1mmとし、(A−B
/C)/ (a−b/c)lの値を1.2とした以外は
、実施例2と同様にしてフィルターの共振周波数の温度
特性を測定したところ、はぼ120 ppm/°Cであ
った。
/ Example 4 The thickness C of the second dielectric substrate was 1.1 mm, and (A-B
/C)/(a-b/c)The temperature characteristics of the filter's resonance frequency were measured in the same manner as in Example 2, except that the value of l was set to 1.2. there were.

比較例l BaO−Ti02−Nd20a−Bi 203系組成材
料により、誘電率εr−92、共振周波数の温度特性O
111)m/’Cの誘電体基板を得た。この基板を実施
例1の第1および第2の誘電体基板の代わりに使用した
Comparative Example 1 BaO-Ti02-Nd20a-Bi 203-based composition material has a dielectric constant εr-92 and a temperature characteristic of resonance frequency O.
111) A dielectric substrate of m/'C was obtained. This substrate was used in place of the first and second dielectric substrates of Example 1.

図11の共振線路13の長さは約8.5mm、共振周波
数は900 MHzになり実施例1に比較して長さは約
40%大きくなった。
The length of the resonant line 13 in FIG. 11 was approximately 8.5 mm, and the resonant frequency was 900 MHz, which is approximately 40% longer than in Example 1.

比較例2 CaO−TiO□−NiO系の材料によりεr−160
の誘電体基板を得た。この基板を実施例1および2の誘
電体基板の代わりに使用した。
Comparative Example 2 εr-160 with CaO-TiO□-NiO-based material
A dielectric substrate was obtained. This substrate was used instead of the dielectric substrate in Examples 1 and 2.

共振周波数の温度特性は700 ppm/°Cと大きか
った。
The temperature characteristic of the resonance frequency was as large as 700 ppm/°C.

(発明の効果) 本発明に係るストリップラインフィルターによれば、第
一の誘電体基板を構成する第一の誘電体材料の共振周波
数の温度係数を正の値とし、第二の誘電体材料の共振周
波数の温度係数を負の値としているので、たとえ使用す
る誘電体の温度係数の絶対値自体が大きくとも、第一と
第二の誘電体基板の間の共振用導体の部分においては温
度係数か互いに打ち消し合う。従って、たとえ共振周波
数の温度係数の絶対値が大きい誘電体を使用しても、フ
ィルターの実用上の共振周波数の温度係数の絶対値を充
分小さくできるので、フィルターの小型化を実現できる
(Effects of the Invention) According to the stripline filter according to the present invention, the temperature coefficient of the resonant frequency of the first dielectric material constituting the first dielectric substrate is a positive value, and the temperature coefficient of the resonant frequency of the first dielectric material constituting the first dielectric substrate is a positive value. Since the temperature coefficient of the resonance frequency is set to a negative value, even if the absolute value of the temperature coefficient of the dielectric used is large, the temperature coefficient of the resonance conductor between the first and second dielectric substrates is small. or cancel each other out. Therefore, even if a dielectric material having a large absolute value of the temperature coefficient of the resonant frequency is used, the absolute value of the temperature coefficient of the resonant frequency for practical use of the filter can be made sufficiently small, so that the size of the filter can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれトリプレート型ストリップラ
インフィルターの構造を示す断面図、第3図、第4図、
第5図、第6図、第7図はそれぞれ共振用導体の形成パ
ターンを示す概略平面図、 第8図、第9図、第1O図はそれぞれ誘電体基板を貼り
合わせる前の状態を示す正面図、第11図は試験用の共
振用導体の形成パターンを示す概略平面図である。 ■・・・第一の誘電体基板 2・・・アース電極3.5
・・・共振用導体  ■1・・・第二の誘電体基板13
・・・共振用電極    14・・・入出力端子用電極
I5・・・飛び越し結合用電送線路 16・・・共振器結合用線路 20・・・導体金属板2
1、22・・・導体パターン =15
Figures 1 and 2 are cross-sectional views showing the structure of a tri-plate stripline filter, Figures 3 and 4, respectively.
Figures 5, 6, and 7 are schematic plan views showing the formation patterns of the resonant conductors, and Figures 8, 9, and 10 are front views showing the state before dielectric substrates are bonded together. FIG. 11 is a schematic plan view showing the formation pattern of a resonant conductor for testing. ■...First dielectric substrate 2...Earth electrode 3.5
... Resonance conductor ■1 ... Second dielectric substrate 13
... Electrode for resonance 14 ... Electrode for input/output terminal I5 ... Transmission line for interlaced coupling 16 ... Line for resonator coupling 20 ... Conductor metal plate 2
1, 22...conductor pattern = 15

Claims (1)

【特許請求の範囲】 1.第一の誘電体基板と第二の誘電体基板との間に共振
用導体を形成してなるトリプレート型のストリップライ
ンフィルターにおいて、前記第一の誘電体基板を構成す
る第一の誘電体材料の共振周波数の温度係数が正の値で
あり、前記第二の誘電体基板を構成する第二の誘電体材
料の共振周波数の温度係数が負の値であることを特徴と
するストリップラインフィルター。 2.前記第一の誘電体材料の誘電率、共振周波数の温度
係数及び前記第一の誘電体基板の厚みをそれぞれA、B
、Cとし、前記第二の誘電体材料の誘電率、共振周波数
の温度係数及び前記第二の誘電体基板の厚みをそれぞれ
a、b、cとしたとき、下記の関係が成立するように構
成したことを特徴とする、請求項1記載のストリップラ
インフィルター。 0.5≦|(A・B/C)/(a・b/c)|≦2.0
[Claims] 1. In a triplate stripline filter in which a resonant conductor is formed between a first dielectric substrate and a second dielectric substrate, a first dielectric material constituting the first dielectric substrate; A strip line filter characterized in that the temperature coefficient of the resonance frequency of the second dielectric material constituting the second dielectric substrate is a negative value. 2. The dielectric constant of the first dielectric material, the temperature coefficient of the resonance frequency, and the thickness of the first dielectric substrate are A and B, respectively.
, C, and the dielectric constant of the second dielectric material, the temperature coefficient of the resonant frequency, and the thickness of the second dielectric substrate are a, b, and c, respectively, so that the following relationship holds true. The stripline filter according to claim 1, characterized in that: 0.5≦|(A・B/C)/(a・b/c)|≦2.0
JP18280990A 1990-07-12 1990-07-12 Strip line filter Pending JPH0472804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18280990A JPH0472804A (en) 1990-07-12 1990-07-12 Strip line filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18280990A JPH0472804A (en) 1990-07-12 1990-07-12 Strip line filter

Publications (1)

Publication Number Publication Date
JPH0472804A true JPH0472804A (en) 1992-03-06

Family

ID=16124819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18280990A Pending JPH0472804A (en) 1990-07-12 1990-07-12 Strip line filter

Country Status (1)

Country Link
JP (1) JPH0472804A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152804A (en) * 1991-03-29 1993-06-18 Ngk Insulators Ltd Dielectric filter and adjustment method of its frequency characteristic
JPH06120704A (en) * 1992-10-06 1994-04-28 Ngk Insulators Ltd Lamination type dielectric filter
US5461352A (en) * 1992-09-24 1995-10-24 Matsushita Electric Industrial Co., Ltd. Co-planar and microstrip waveguide bandpass filter
JPH10200304A (en) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd Laminated filter
US6529750B1 (en) 1998-04-03 2003-03-04 Conductus, Inc. Microstrip filter cross-coupling control apparatus and method
JP2007180684A (en) * 2005-12-27 2007-07-12 Tdk Corp Filter
US7610072B2 (en) 2003-09-18 2009-10-27 Superconductor Technologies, Inc. Superconductive stripline filter utilizing one or more inter-resonator coupling members
WO2015177411A1 (en) * 2014-05-23 2015-11-26 Prism Microwave Oy Rf filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152804A (en) * 1991-03-29 1993-06-18 Ngk Insulators Ltd Dielectric filter and adjustment method of its frequency characteristic
US5461352A (en) * 1992-09-24 1995-10-24 Matsushita Electric Industrial Co., Ltd. Co-planar and microstrip waveguide bandpass filter
JPH06120704A (en) * 1992-10-06 1994-04-28 Ngk Insulators Ltd Lamination type dielectric filter
JPH10200304A (en) * 1997-01-07 1998-07-31 Matsushita Electric Ind Co Ltd Laminated filter
US6529750B1 (en) 1998-04-03 2003-03-04 Conductus, Inc. Microstrip filter cross-coupling control apparatus and method
US7610072B2 (en) 2003-09-18 2009-10-27 Superconductor Technologies, Inc. Superconductive stripline filter utilizing one or more inter-resonator coupling members
JP2007180684A (en) * 2005-12-27 2007-07-12 Tdk Corp Filter
WO2015177411A1 (en) * 2014-05-23 2015-11-26 Prism Microwave Oy Rf filter

Similar Documents

Publication Publication Date Title
US5373271A (en) Dielectric filter having coupling electrodes for connecting resonator electrodes, and method of adjusting frequency characteristic of the filter
US5160905A (en) High dielectric micro-trough line filter
JP3115149B2 (en) Multilayer dielectric filter
JPH0472804A (en) Strip line filter
US5235298A (en) Temperature compensated stripline filter for microwaves
JPH07226602A (en) Laminated dielectric filter
JP2721626B2 (en) Multilayer dielectric filter
JP2957051B2 (en) Multilayer dielectric filter
JP3176859B2 (en) Dielectric filter
US8130062B2 (en) Microstripline filter
JPH05243812A (en) Layered dielectric filter
JP2780166B2 (en) Stripline filter bandwidth adjustment method
JP3381956B2 (en) Multilayer dielectric filter
JP3103420B2 (en) Multilayer dielectric filter
WO2022209122A1 (en) Dielectric filter
JP2810621B2 (en) Multilayer dielectric filter
JPH06125202A (en) Dielectric filter and its pass band width control method
JP2525311B2 (en) Dielectric resonator and dielectric filter
KR100304269B1 (en) Design for the multilayer bandpass filter using tapping method
US6281763B1 (en) Dielectric resonator, dielectric filter, dielectric duplexer, and method for manufacturing dielectric resonator
JP3306331B2 (en) Dielectric filter
JP3155721B2 (en) Dielectric filter
JP2000349532A (en) Antenna system
JP2577767Y2 (en) Stripline filter
JPH0472803A (en) Tem mode resonator