JPH04727B2 - - Google Patents

Info

Publication number
JPH04727B2
JPH04727B2 JP62234270A JP23427087A JPH04727B2 JP H04727 B2 JPH04727 B2 JP H04727B2 JP 62234270 A JP62234270 A JP 62234270A JP 23427087 A JP23427087 A JP 23427087A JP H04727 B2 JPH04727 B2 JP H04727B2
Authority
JP
Japan
Prior art keywords
core material
outer tube
composite
die
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62234270A
Other languages
Japanese (ja)
Other versions
JPS6475114A (en
Inventor
Masao Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNICHI KOGYO KK
Original Assignee
SHINNICHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNICHI KOGYO KK filed Critical SHINNICHI KOGYO KK
Priority to JP23427087A priority Critical patent/JPS6475114A/en
Publication of JPS6475114A publication Critical patent/JPS6475114A/en
Publication of JPH04727B2 publication Critical patent/JPH04727B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、外管に心材を挿通した状態でダイス
に通して引抜くことにより両者を接合させる複合
棒又は複合管の引抜成形方法において、外管と心
材との界面に生ずる「すべり」を大きくし、この
「すべり」を利用して両者を金属的に接合するこ
とにより、接合強度を大きくした複合棒又は複合
管の引抜成形方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for pultrusion forming a composite rod or composite tube, in which a core material is inserted into an outer tube and the core material is passed through a die and pulled out to join the two. This relates to a pultrusion method for composite rods or composite tubes that increases the joint strength by increasing the "slip" that occurs at the interface between the outer tube and the core material, and using this "slip" to metallically join the two. It is.

尚、本明細書において「外管」とは、金属薄板
をロール成形して管状にしたものも含まれる。
Note that in this specification, the term "outer tube" includes a tube formed by roll-forming a thin metal plate.

〔従来の技術〕[Conventional technology]

複合棒又は複合管の成形方法には、熱間加工で
ある押出し法、鋳ぐるみ法、冷間加工である爆着
法があり、これらはいずれも接合強度の大きな複
合棒又は複合管が得られる利点はあるが、生産性
が低くコスト高となる問題がある。
Methods for forming composite rods or composite tubes include hot working such as extrusion, casting, and cold working such as explosion bonding, and all of these methods yield composite rods or tubes with high joint strength. Although there are advantages, there are problems of low productivity and high costs.

この点、冷間加工で行われる引抜成形法により
十分な接合強度を有する複合棒又は複合管が成形
できれば、生産性の高いため低コストとなる。
In this regard, if a composite rod or composite tube with sufficient bonding strength can be formed by a pultrusion method performed by cold working, productivity will be high and costs will be low.

従来の複合棒又は複合管の引抜成形方法におい
ては、第6図に示されるように、外管22に心材
24を〓間が殆どない状態か、或いはその〓間が
小さい状態にして挿通し、ダイス26を通して引
抜く際に加わるダイス圧力によつて両者22,2
4を接合している。
In the conventional pultrusion method for composite rods or composite tubes, as shown in FIG. 6, the core material 24 is inserted into the outer tube 22 with almost no gap or with a small gap. Due to the die pressure applied when drawing through the die 26, both 22, 2
4 are joined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、外管22の内径と、心材24の外
径との差が殆どないため、外管22の内表層部と
心材24の表層部との変形量に殆ど差がない。よ
つて、外管22と心材24との界面においては、
両者22,24がほぼ一体となつて変形し、界面
において生ずる両素材の間のすべりは小さいか、
或いは殆どない。
In this way, since there is almost no difference between the inner diameter of the outer tube 22 and the outer diameter of the core material 24, there is almost no difference in the amount of deformation between the inner surface layer portion of the outer tube 22 and the surface layer portion of the core material 24. Therefore, at the interface between the outer tube 22 and the core material 24,
Both 22 and 24 are deformed almost as one, and the slippage between the two materials that occurs at the interface is small.
Or almost none.

このため、外管22と心材24とは、引抜時に
加わるダイス圧力によつて密着されているのみで
あり、両者22,24の界面において素材の相対
的な移動(すべり)が生じて接合されるいわゆる
金属的な接合には至つていない。よつて、接合部
強度は小さい。
Therefore, the outer tube 22 and the core material 24 are only in close contact with each other due to the die pressure applied during drawing, and the materials are joined by relative movement (sliding) at the interface between the two materials 22 and 24. So-called metallic bonding has not yet been achieved. Therefore, the joint strength is low.

この金属的な接合が得られない原因は、引抜時
における両素材(外管22と心材24)の界面に
おける変形量が小さいので、変形によつて生ずる
接合に有効な活性面(新生面)の発生が少ないか
らであり、接合強度を大きくするには、両素材の
界面を十分に活性にすることが必要である。
The reason why this metallic bond cannot be obtained is that the amount of deformation at the interface between the two materials (outer tube 22 and core material 24) during drawing is small, and the deformation creates an active surface (new surface) that is effective for bonding. This is because the bonding strength is small, and in order to increase the bonding strength, it is necessary to make the interface between the two materials sufficiently active.

本発明は、このような問題点に鑑み、引抜時に
外管と心材との界面に大きなすべりを生じさせて
界面を活性にし、これにより両者を金属的に接合
して、その接合強度を増大させることを目的とし
てなされたものである。
In view of these problems, the present invention creates a large slip at the interface between the outer tube and the core material during drawing to activate the interface, thereby metallically joining the two to increase the joint strength. It was done for that purpose.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明の採用した
手段は、棒状又は管状の心材を外管に挿通した状
態でダイスに通して引抜くことにより両素材を接
合する複合棒又は複合管の引抜成形方法におい
て、前記心材の絞り成形が開始される部分におけ
る心材と外管との各速度の比で定義される相対す
べりが、外管と心材との界面に生ずるすべりのみ
により両素材が金属的接合に至る大きさ以上とな
るように、外管の内径を心材の外径よりも大きく
するか、或いは外管に後方張力を加えて引抜くこ
とである。
In order to solve the above-mentioned problems, the means adopted by the present invention is to pultrude a composite rod or composite tube in which the rod-shaped or tubular core material is inserted into the outer tube and then passed through a die and pulled out to join the two materials. In this method, the relative slip defined by the ratio of the respective velocities of the core material and the outer tube at the point where drawing forming of the core material starts is such that the two materials are joined to each other metallically by only the slip occurring at the interface between the outer tube and the core material. Either make the inner diameter of the outer tube larger than the outer diameter of the core material, or apply backward tension to the outer tube and pull it out.

〔発明の作用〕[Action of the invention]

「相対すべり」が上記した大きさ以上となるよ
うにして、外管に心材を挿通してダイスを通して
両素材を一緒に引抜くと、心材に対する外管の変
形量が大きくなつて、ダイスの入口部分において
両素材の間に大きな「すべり」が生ずる。この
「すべり」は、ダイスの入口から出口に向かつて
漸次小さくなつて、ダイスの出口においては、両
素材は接合されて「すべり」はなくなる。両素材
の界面に大きな「すべり」が生ずると、界面に存
在していた酸化膜などが破壊されて界面が活性と
なつて、両素材が、単に密着して一体となるので
はなくて、大きな接合強度を以て金属的に強固に
接合される。
If the core material is inserted into the outer tube and both materials are pulled out together through the die with the "relative slip" being greater than or equal to the amount described above, the amount of deformation of the outer tube relative to the core material will increase, causing the inlet of the die to A large amount of "slip" occurs between the two materials in some areas. This "slip" gradually decreases from the inlet to the exit of the die, and at the exit of the die, both materials are joined and the "slip" disappears. When a large amount of "slip" occurs at the interface between the two materials, the oxide film that existed at the interface is destroyed, the interface becomes active, and the two materials do not simply stick together and become one body, but a large amount of slip occurs. It is firmly joined metallically with high bonding strength.

〔実施例〕〔Example〕

最初に、第1図を参照にして、特許請求の範囲
第1項に記載の発明について説明する。
First, the invention set forth in claim 1 will be described with reference to FIG.

外管2の外径Doは、心材4の外径Diに対して
引抜中に割れない範囲でできるだけ大きくする。
このため、外管2の内径doと、心材4の外径Di
との差は大きく、両素材の間に大きな〓間8が形
成されている。
The outer diameter Do of the outer tube 2 is made as large as possible than the outer diameter Di of the core material 4 within a range that does not break during drawing.
Therefore, the inner diameter do of the outer tube 2 and the outer diameter Di of the core material 4 are
There is a large difference between the two materials, and a large gap 8 is formed between the two materials.

実施例の心材4は棒材から成り、上記のような
寸法構成の外管2に心材4を挿通し、ダイス6に
通して引抜くと、外管2の内径doと、心材4の
外径Diとの差が大きいために、ダイス6の入口
部6aでは外管2のみが空引きとなり、これによ
り絞り部6bの入口Aに張力が作用して外管2が
変形し易くなる。このため、引抜時における外管
2の変形量は心材4に比較して大きくなる。
The core material 4 of the embodiment is made of a bar material, and when the core material 4 is inserted into the outer tube 2 having the above-mentioned dimensional structure and pulled out through the die 6, the inner diameter do of the outer tube 2 and the outer diameter of the core material 4 are changed. Since the difference with Di is large, only the outer tube 2 is drawn empty at the inlet portion 6a of the die 6, and as a result, tension acts on the inlet A of the constricted portion 6b, making the outer tube 2 easy to deform. For this reason, the amount of deformation of the outer tube 2 during drawing is larger than that of the core material 4.

この結果、ダイス6に入る外管2の引抜速度
Voは、心材4の引抜速度Viに比較してはるかに
小さくなり、ダイス6の絞り部6bにおいては、
外管2と心材4との引抜速度の差によつて両素材
2,4の界面に大きな「相対すべり」が生ずる。
この「相対すべり」は、心材4の絞り成形が開始
される部分であるダイス6の絞り部6bの入口A
における心材4と外管2の引抜速度(Vi/Vo)
で定義される。
As a result, the drawing speed of the outer tube 2 entering the die 6 is
Vo is much smaller than the drawing speed Vi of the core material 4, and at the drawing section 6b of the die 6,
Due to the difference in drawing speed between the outer tube 2 and the core material 4, a large "relative slip" occurs at the interface between the two materials 2 and 4.
This "relative slip" is caused by the entrance A of the drawing part 6b of the die 6, which is the part where the drawing of the core material 4 starts.
The drawing speed of the core material 4 and the outer tube 2 at (Vi/Vo)
Defined by

ダイス6の絞り部6bから整形部6cに進むに
つれて外管2の引抜速度Voは徐々に増し、心材
4の引抜速度Viとの差が小さくなつてすべりも
小さくなり、絞り部6bの出口Bに至ると外管2
の引抜速度Voと、心材4の引抜速度Viとは等し
くなつて両素材の間のすべりはなくなる。このよ
うに、ダイス6の絞り部6bの入口Aから出口B
の間において外管2と心材4との界面に大きなす
べりが生じ、このすべりによつて界面が活性とな
る。
The drawing speed Vo of the outer tube 2 gradually increases as it progresses from the drawing section 6b of the die 6 to the shaping section 6c, and the difference with the drawing speed Vi of the core material 4 becomes smaller, and the slippage becomes smaller. Outer tube 2
The drawing speed Vo of the core material 4 becomes equal to the drawing speed Vi of the core material 4, and there is no slippage between the two materials. In this way, from the inlet A to the outlet B of the constriction part 6b of the die 6,
A large slip occurs at the interface between the outer tube 2 and the core material 4, and this slip makes the interface active.

一方、ダイス6の絞り部6bにおいて、素材
(外管2と心材4)にダイス圧力(σ)が加わり、
すべり作用によつて活性化された外管2と心材4
との界面にダイス圧力(σ)が加わつて外管2と
心材4とが金属的に接合され、複合棒となつてダ
イス6から出てくる。
On the other hand, die pressure (σ) is applied to the material (outer tube 2 and core material 4) at the constriction part 6b of the die 6.
Outer tube 2 and core material 4 activated by sliding action
A die pressure (σ) is applied to the interface between the outer tube 2 and the core material 4, and the outer tube 2 and the core material 4 are joined together metallically, and the compound rod comes out of the die 6 as a composite rod.

第1図において、ダイス6の入口部6aにおい
ては外管2のみが空引きされて変形する。この結
果、絞り部6bの入口Aの部分の外管2に後方張
力を加えているのと同様な状態となり、外管2に
後方張力を加えると、外管2と心材4との界面に
おける相対すべりが大きくなると考えられる。
In FIG. 1, only the outer tube 2 is drawn and deformed at the inlet portion 6a of the die 6. As a result, a state similar to applying rearward tension to the outer tube 2 at the entrance A of the constricted portion 6b is created, and when rearward tension is applied to the outer tube 2, the relative tension at the interface between the outer tube 2 and the core material 4 It is thought that the slippage will increase.

そこで、第2図に示されるように、外管2と心
材4とを接合するためのダイス6の上方に、外管
2のみを空引きする別のダイスを設ければ、外管
2に後方張力(σb)を加えたのと同様な状態と
なる。
Therefore, as shown in FIG. 2, if another die for emptying only the outer tube 2 is provided above the die 6 for joining the outer tube 2 and the core material 4, the outer tube 2 can be The state is the same as when tension (σb) is applied.

また、第3図に示される実施例は、心材4とし
て管を使用して複合管を成形する例である。心材
4が管であると、引抜時に心材である内管が内側
に逃げて変形し易いので、内管にマンドレル、プ
ラグを使用してその変形を防止して引抜くと接合
強度を大きくすることができる。
The embodiment shown in FIG. 3 is an example in which a tube is used as the core material 4 to form a composite tube. If the core material 4 is a tube, the inner tube, which is the core material, tends to escape inward and deform when it is pulled out. Therefore, by using a mandrel or a plug on the inner tube to prevent this deformation and then pulling it out, the joint strength can be increased. I can do it.

以下、本発明に係わる方法により成形した複合
棒の実験結果を挙げる。
Below, the experimental results of composite rods formed by the method according to the present invention will be listed.

第4図aは、心材の外径を一定にして、外管の
外径とダイス径との比(Do/D)の変化に対す
る外管及び心材の断面減少率を示す図であり、同
bは、外管の外径とダイス径との比(Do/D)
の変化に対する相対すべり及び接合強度を示す図
である。本実験においては、外管はアルミニウム
管(A1050)を使用し、心材は外径15.5mmの炭素
鋼(S45C)製の丸棒を使用いた。ダイスの内径
は16mmのものを使用し、外管の肉厚は、心材と外
管との総合断面減少率が28%の一定となるように
定めた。ここで、「断面減少率」とは、引抜成形
により減少した断面積を引抜前の断面積で除した
値をいい、「総合断面減少率」とは、引抜成形に
より減少した外管と心材の各断面積の和を、引抜
成形前の外管と心材との総断面積で除した値をい
う。
Figure 4a is a diagram showing the cross-sectional reduction rate of the outer tube and core material with respect to changes in the ratio (Do/D) of the outer diameter of the outer tube and the die diameter, with the outer diameter of the core material kept constant; is the ratio of the outer diameter of the outer tube to the die diameter (Do/D)
FIG. 3 is a diagram showing relative slip and bond strength with respect to changes in . In this experiment, an aluminum tube (A1050) was used as the outer tube, and a round bar made of carbon steel (S45C) with an outer diameter of 15.5 mm was used as the core material. The inner diameter of the die used was 16 mm, and the wall thickness of the outer tube was determined so that the overall cross-sectional reduction rate between the core material and the outer tube was constant at 28%. Here, "cross-section reduction rate" refers to the value obtained by dividing the cross-sectional area reduced by pultrusion by the cross-sectional area before pultrusion, and "total cross-section reduction ratio" refers to the value obtained by dividing the cross-sectional area reduced by pultrusion by the cross-sectional area before pultrusion. This is the value obtained by dividing the sum of each cross-sectional area by the total cross-sectional area of the outer tube and core material before pultrusion.

第4図aから、外管の外径(Do)を大きくす
ると、外管の断面減少率は増加するが、心材のそ
れは減少し、その結果、第4図bに示されるよう
に、外管の外径(Do)が大きくなると、相対す
べりが増加して接合高度が大きくなる。本発明に
おいては、外管2と心材4との界面の相対すべり
が2.5以上になるようにすると、大きな接合強度
が得られ、この点が本発明の引抜成形方法の特徴
である。
From Fig. 4a, when the outer diameter (Do) of the outer pipe is increased, the cross-sectional reduction rate of the outer pipe increases, but that of the core material decreases, and as a result, as shown in Fig. 4b, the cross-sectional reduction rate of the outer pipe increases. As the outer diameter (Do) increases, the relative slip increases and the weld height increases. In the present invention, if the relative slippage at the interface between the outer tube 2 and the core material 4 is set to 2.5 or more, a large bonding strength can be obtained, and this point is a feature of the pultrusion molding method of the present invention.

よつて、外管の外径を大きくすると接合強度が
大きくなることがわかる。また、接合強度は相対
すべりにほぼ比例し、この相対すべりを大きくす
るには、外管の変形量を心材のそれよりも大きく
することが必要であり、外管、心材にそれぞれ軟
材及び硬材を使用すればよいことがわかる。
Therefore, it can be seen that the bonding strength increases as the outer diameter of the outer tube increases. In addition, the joint strength is approximately proportional to the relative slip, and in order to increase this relative slip, it is necessary to make the amount of deformation of the outer tube larger than that of the core, and the outer tube and the core must be made of soft and hard materials, respectively. It turns out that you can use materials.

第5図は、外管に後方張力を加えた場合と、加
えない場合とを比較した図である。本実験におい
ては、外管は工業用アルミニウム管(A1050)を
使用し、心材は工業用鈍銅(C1100)製の丸棒を
使用し、総合断面減少率を変化させて後方張力
(σb)の有無の影響をみた。
FIG. 5 is a diagram comparing the case where rearward tension is applied to the outer tube and the case where no backward tension is applied. In this experiment, an industrial aluminum tube (A1050) was used as the outer tube, a round bar made of industrial blunt copper (C1100) was used as the core material, and the total area reduction rate was varied to reduce the rear tension (σb). We looked at the effects of presence and absence.

後方張力を加えた場合(σb=4.5Kgf/mm2)の
方が加えない場合(σb=0Kgf/mm2)に比較し
て、変形量(断面減少率)は外管で大きく、心材
で小さく〔第5図a〕、この結果相対すべりは大
きくなり〔第5図b〕、相対すべりが大きいほど
接合強度は大きくなる〔第5図c〕。
When backward tension is applied (σb = 4.5Kgf/mm 2 ), the amount of deformation (cross-sectional reduction rate) is larger in the outer tube and smaller in the core material than when it is not applied (σb = 0Kgf/mm 2 ). [Fig. 5a], as a result, the relative slip increases [Fig. 5 b], and the larger the relative slip, the greater the bonding strength [Fig. 5 c].

よつて、後方張力を加えた方が接合強度が大き
くなることがわかる。
Therefore, it can be seen that the joint strength increases when backward tension is applied.

〔発明の効果〕〔Effect of the invention〕

本発明は、複合棒又は複合管の引抜成形方法に
おいて、心材の絞り成形が開始される部分におけ
る心材と外管との各速度の比で定義される相対す
べりが一定値以上となるように、外管の内径を心
材の外径よりも大きくするか、或いは外管に後方
張力を加えて引抜くことにより、引抜時に外管と
心材との界面に大きなすべりを生じさせる構成で
あるので、この大きなすべりによつて外管と心材
との界面が活性となつて、その界面において両者
がすべりのみによつて金属的に接合される。この
結果、引抜成形のみによつて、接合強度の大きな
複合棒、或いは複合管を成形できる。
The present invention provides a method for pultrusion forming a composite rod or a composite tube, such that the relative slip defined by the ratio of the respective velocities of the core material and the outer tube at the part where drawing of the core material starts is a certain value or more. By making the inner diameter of the outer tube larger than the outer diameter of the core material, or by applying backward tension to the outer tube and pulling it out, a large amount of slippage is caused at the interface between the outer tube and the core material when the outer tube is pulled out. The interface between the outer tube and the core becomes active due to the large amount of sliding, and the two are metallically joined at that interface only by the amount of sliding. As a result, a composite rod or composite tube with high joint strength can be formed only by pultrusion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は、いずれも本発明に係わ
る引抜成形方法を説明するためのダイスの部分の
断面図、第4図aは、心材の外径を一定にして外
管の外径とダイス径の比(Do/D)の変化に対
する外管及び心材の断面減少率を示す図、同b
は、同様の比(Do/D)の変化に対する相対す
べり及び接合強度を示す図、第5図aは、外管に
後方張力を加えた場合と加えない場合における総
合断面減少率に対する外管及び心材の断面減少率
を示す図、同bは、同様に総合断面減少率に対す
る相対すべりを示す図、同cは、同様に相対すべ
りに対する接合強度を示す図、第6図は、従来の
複合棒の引抜成形方法を説明するためのダイスの
部分の断面図である。 〔主要部分の符号の説明〕、A:ダイスの絞り
部の入口、B:ダイスの絞り部の出口、Vo:ダ
イスの絞り部の入口における外管の引抜速度、
Vi:ダイスの絞り部の入口における心材の引抜
速度、2:外管、4:心材、6:ダイス、6a:
ダイスの入口部、6b:ダイスの絞り部、6c:
ダイスの整形部。
1 to 3 are cross-sectional views of the die portion for explaining the pultrusion method according to the present invention, and FIG. 4a shows the outer diameter of the outer tube with the outer diameter of the core material constant. Diagram showing the cross-sectional reduction rate of the outer tube and core material with respect to the change in die diameter ratio (Do/D), same b
Figure 5a shows the relative slip and joint strength for similar changes in the ratio (Do/D). Figure 6 shows the cross-sectional reduction rate of the core material, Figure 6 shows the relative slip against the overall cross-sectional reduction rate, Figure 6 shows the joint strength against the relative slip, and Figure 6 shows the relative slip compared to the total cross-sectional reduction. FIG. 2 is a cross-sectional view of a die portion for explaining the pultrusion method of FIG. [Explanation of symbols of main parts], A: Inlet of the constricted part of the die, B: Outlet of the constricted part of the die, Vo: Drawing speed of the outer tube at the inlet of the constricted part of the die,
Vi: drawing speed of the core material at the entrance of the constriction part of the die, 2: outer tube, 4: core material, 6: die, 6a:
Inlet part of the die, 6b: Squeezing part of the die, 6c:
Dice shaping section.

Claims (1)

【特許請求の範囲】 1 棒状又は管状の心材を外管に挿通した状態で
ダイスに通して引抜くことにより両素材を接合す
る複合棒又は複合管の引抜成形方法において、 前記心材の絞り成形が開始される部分における
心材と外管との各速度の比で定義される相対すべ
りが、外管と心材との界面に生ずるすべりのみに
より両素材が金属的接合に至る大きさ以上となる
ように、外管の内径を心材の外径よりも大きくし
て引抜くことを特徴とする複合棒又は複合管の引
抜成形方法。 2 棒状又は管状の心材を外管に挿通した状態で
ダイスに通して引抜くことにより両素材を接合す
る複合棒又は複合管の引抜成形方法において、 前記心材の絞り成形が開始される部分における
心材と外管との各速度の比で定義される相対すべ
りが、外管と心材との界面に生ずるすべりのみに
より両素材が金属的接合に至る大きさ以上となる
ように、外管に後方張力を加えて引抜くことを特
徴とする複合棒又は複合管の引抜成形方法。
[Scope of Claims] 1. A method for pultrusion forming a composite rod or a composite tube in which a rod-shaped or tubular core material is inserted into an outer tube and then passed through a die and drawn to join the two materials, comprising: drawing of the core material; The relative slip defined by the ratio of the velocities of the core material and the outer tube at the starting point is greater than or equal to the magnitude at which the two materials come to be metallically joined only by the slip occurring at the interface between the outer tube and the core material. A method for pultrusion forming a composite rod or composite tube, characterized in that the inner diameter of the outer tube is made larger than the outer diameter of the core material, and then the inner diameter of the outer tube is larger than the outer diameter of the core material. 2. In a pultrusion method for composite rods or composite tubes in which both materials are joined by inserting a rod-shaped or tubular core material into an outer tube and drawing it through a die, the core material in the part where drawing of the core material is started. A backward tension is applied to the outer tube so that the relative slip defined by the ratio of the respective speeds of A method for pultrusion forming a composite rod or composite tube, which comprises adding and drawing the composite rod or tube.
JP23427087A 1987-09-18 1987-09-18 Drawing method for composite bar or composite pipe Granted JPS6475114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23427087A JPS6475114A (en) 1987-09-18 1987-09-18 Drawing method for composite bar or composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23427087A JPS6475114A (en) 1987-09-18 1987-09-18 Drawing method for composite bar or composite pipe

Publications (2)

Publication Number Publication Date
JPS6475114A JPS6475114A (en) 1989-03-20
JPH04727B2 true JPH04727B2 (en) 1992-01-08

Family

ID=16968336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23427087A Granted JPS6475114A (en) 1987-09-18 1987-09-18 Drawing method for composite bar or composite pipe

Country Status (1)

Country Link
JP (1) JPS6475114A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320758A (en) * 2004-05-10 2005-11-17 Nikko Co Ltd Shovel scoop
JP5796516B2 (en) * 2011-03-03 2015-10-21 新日鐵住金株式会社 Metal double pipe manufacturing method
CN104384212B (en) * 2014-11-27 2016-08-24 北京科技大学 A kind of metal and carbon fiber composite wire preparation method
JP2018051604A (en) * 2016-09-29 2018-04-05 矢崎エナジーシステム株式会社 Manufacturing method of composite conductor wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141311A (en) * 1979-04-21 1980-11-05 Sumitomo Metal Ind Ltd Manufacture of laminated metallic pipe
JPS609517A (en) * 1983-06-28 1985-01-18 Nippon Steel Corp Manufacture of clad pipe by drawing and expanding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141311A (en) * 1979-04-21 1980-11-05 Sumitomo Metal Ind Ltd Manufacture of laminated metallic pipe
JPS609517A (en) * 1983-06-28 1985-01-18 Nippon Steel Corp Manufacture of clad pipe by drawing and expanding

Also Published As

Publication number Publication date
JPS6475114A (en) 1989-03-20

Similar Documents

Publication Publication Date Title
JPH04727B2 (en)
US3355795A (en) Manufacture of tubing and clad rods or wire
US3631586A (en) Manufacture of copper-clad aluminum rod
US20190314877A1 (en) Connection tube and its method of manufacturing
KR910002864B1 (en) Composite article having a tubular sheath containing a compacted material for the treatment of liquid metals and process for the production of said article
JPH11351791A (en) Aluminum inner face grooved tube
JPS609517A (en) Manufacture of clad pipe by drawing and expanding
JPH0556205B2 (en)
JP3336925B2 (en) Pipe end thick steel pipe manufacturing method
JPH025485B2 (en)
JP4119557B2 (en) Axial pressing method
JPH08294719A (en) Die for al alloy extrusion
JPS62214165A (en) Manufacture of composite wire
JPS6251687B2 (en)
JPH0596306A (en) Manufacture of seamless metallic tube
JPS6213086B2 (en)
JPH03226307A (en) Extruding method of shape material
US1341204A (en) Process of preventing cores for tubular bodies from welding
JP3694752B2 (en) Compound pipe manufacturing method
JPS61283412A (en) Method and device for continuously manufacturing composite wire
JPH07185642A (en) Production of long-sized pipe with bottom
SU1058676A1 (en) Method of producing tubes with end increased thickness
JP2003245714A (en) Deformed tube for lock bolt and its manufacturing method
RU2014925C1 (en) Method of drawing tubes on cone mandrel
JPS63183717A (en) Manufacture of inner face silver clad aluminum pipe