JPH0472357B2 - - Google Patents

Info

Publication number
JPH0472357B2
JPH0472357B2 JP61203823A JP20382386A JPH0472357B2 JP H0472357 B2 JPH0472357 B2 JP H0472357B2 JP 61203823 A JP61203823 A JP 61203823A JP 20382386 A JP20382386 A JP 20382386A JP H0472357 B2 JPH0472357 B2 JP H0472357B2
Authority
JP
Japan
Prior art keywords
sulfur
vacuum
manufacturing
conductive material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61203823A
Other languages
Japanese (ja)
Other versions
JPS6362164A (en
Inventor
Hisamitsu Hato
Hiroyuki Kawamoto
Hajime Wada
Koji Kusakabe
Hitoshi Sugawara
Sadao Mori
Masao Ogino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP61203823A priority Critical patent/JPS6362164A/en
Publication of JPS6362164A publication Critical patent/JPS6362164A/en
Publication of JPH0472357B2 publication Critical patent/JPH0472357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ナトリウム−硫黄電池の硫黄極成形
体の製造法に係り、特に、充放電サイクルの経過
に伴なうナトリウム−硫黄電池の内部抵抗の上昇
をおさえ、高性能、長寿命化を達成するに好適
な、ナトリウム−硫黄電池の硫黄極成形体の製造
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a sulfur electrode molded body for a sodium-sulfur battery, and in particular, to The present invention relates to a method for manufacturing a sulfur electrode molded body for a sodium-sulfur battery, which is suitable for suppressing an increase in resistance and achieving high performance and long life.

〔従来の技術〕[Conventional technology]

従来のナトリウム−硫黄電池の硫黄極成形体の
製造方法に関しては、特開昭第55−133775号に記
載のように、多孔質電子伝導材(一般には比抵抗
が低く、硫黄、多硫化ナトリウムに対する耐蝕
性、固体電解質と硫黄極容器との接触性等を考慮
し、PAN、ピツチ系の繊維を焼成して得られる
炭素、黒鉛繊維物質のシート、フエルト、ウエブ
等が用いられる)を、型の中に圧縮収納し、型を
100〜400℃に加熱し、真空とした後、あらかじめ
硫黄供給貯蔵器に収納した硫黄を溶融させ、不活
性ガスにより加圧し、型との圧力差により、硫黄
を多孔質電子伝導材の中に含浸させるとなつてい
た。しかし硫黄供給貯蔵器に収納された硫黄に含
まれる、あるいは吸着される不純物、また多孔質
電子伝導材に吸着される不純物(特開昭第55−
133775号において、多孔質電子伝導材を加熱真空
引するとの記載があるが、これは硫黄の含浸にあ
たり圧力差をつけるための作業であり、不純物の
除去を目的とした真空焼成ではない)のナトリウ
ム−硫黄電池に与える悪影響については考慮され
ていなかつた。
Regarding the manufacturing method of the sulfur electrode molded body of the conventional sodium-sulfur battery, as described in Japanese Patent Application Laid-open No. 55-133775, porous electronic conductive material (generally has a low resistivity and is resistant to sulfur and sodium polysulfide). In consideration of corrosion resistance and contactability between the solid electrolyte and the sulfur electrode container, sheets, felts, webs, etc. of carbon and graphite fibers obtained by firing PAN and pitch-based fibers are used. Compress and store the mold inside.
After heating to 100 to 400℃ and creating a vacuum, the sulfur previously stored in the sulfur supply storage device is melted, pressurized with inert gas, and the pressure difference with the mold causes the sulfur to be transferred into the porous electron conductive material. It was supposed to be impregnated. However, impurities contained in or adsorbed to the sulfur stored in the sulfur supply storage device, and impurities adsorbed to the porous electron conductive material
In No. 133775, there is a description of heating and vacuuming the porous electronic conductive material, but this is a process to create a pressure difference during impregnation with sulfur, and is not vacuum firing for the purpose of removing impurities). - No consideration was given to the negative effects on sulfur batteries.

固体電解質における不純物がナトリウム−硫黄
電池に与える悪影響については化学工業1980年、
8月号、P69「β−アルミナ(2)」に記載されてい
る。すなわち、固体電解質は、K、Ca、水分等
の不純物の混入により劣化及び抵抗値が増加す
る。また、大気中に放置しておくと大気中の水分
を吸湿し風化する等、記載されている。
Regarding the adverse effects of impurities in solid electrolytes on sodium-sulfur batteries, Kagaku Kogyo 1980,
Described in August issue, P69 "β-Alumina (2)". That is, the solid electrolyte deteriorates and its resistance value increases due to the mixing of impurities such as K, Ca, and moisture. It is also stated that if left in the atmosphere, it will absorb moisture from the atmosphere and weather.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、硫黄極成形体中に含有される
不純物の固体電解質に与える悪影響について配慮
がされておらず、ナトリウム−硫黄電池の固体電
解質の劣化による抵抗上昇による出力低下、寿命
低下の問題があつた。
The above-mentioned conventional technology does not take into account the adverse effects of impurities contained in the sulfur electrode molded body on the solid electrolyte, resulting in problems such as decreased output and shortened life due to increased resistance due to deterioration of the solid electrolyte of sodium-sulfur batteries. It was hot.

本発明の目的は、硫黄極成形体の製作に当り、
多孔質電子伝導材の酸素雰囲気焼成および真空焼
成、硫黄の真空溶融、硫黄の多孔質電子伝導材へ
の含浸を一連の作業で行ない、硫黄極成形体中に
含有される不純物を除去することにより、ナトリ
ウム−硫黄電池のサイクルの経過に伴なう抵抗の
上昇をおさえ、高性能、長寿命化を達成すること
にある。
The purpose of the present invention is to produce a sulfur electrode molded body,
By performing a series of operations including oxygen atmosphere firing and vacuum firing of the porous electronic conductive material, vacuum melting of sulfur, and impregnation of the porous electronic conductive material with sulfur, impurities contained in the sulfur electrode molded body are removed. The object of the present invention is to suppress the increase in resistance of a sodium-sulfur battery as the cycle progresses, thereby achieving high performance and long life.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的は、ナトリウム−硫黄電池の硫黄極成
形体の製作に当り、下記3点を実施することによ
り達成される。
The above object can be achieved by carrying out the following three points when producing a sulfur electrode molded body for a sodium-sulfur battery.

1 多孔質電子伝導材の焼成 1−1 多孔質電子伝導材は、比表面積が大きく
多孔質であることが必要条件であるが、逆
に、このことにより高い吸着性があることが
わかる。従つて吸着された不純物(特に有機
物に注目して)を除去するために、酸素雰囲
気中で焼成することが必要である。
1 Firing of Porous Electron-Conductive Material 1-1 It is necessary for the porous electron-conductive material to have a large specific surface area and be porous, and conversely, it can be seen that this has high adsorption properties. Calcining in an oxygen atmosphere is therefore necessary in order to remove adsorbed impurities (particularly focusing on organics).

この焼成温度は、電池の作動温度300〜350
℃より高く、かつ多孔質電子伝導材が焼成し
ない範囲で選定され、400℃程度が望ましい。
This firing temperature is the operating temperature of the battery 300-350
It is selected within a range higher than ℃ and does not cause the porous electron conductive material to be fired, preferably about 400℃.

1−2 上記焼成の終了した多孔質電子伝導材を
温度を維持した状態で、真空引きし完全脱水
する。
1-2 The fired porous electron conductive material is evacuated and completely dehydrated while maintaining the temperature.

2 硫黄の真空中での溶融 硫黄を気密容器の中に収納し、真空状態とし
て加熱溶融させ、脱水する。あるいはさらに蒸
留による硫黄の精製を行なつてもよい。
2 Melting sulfur in a vacuum Sulfur is stored in an airtight container, heated and melted in a vacuum state, and dehydrated. Alternatively, sulfur may be further purified by distillation.

3 多孔質電子伝導材への硫黄の含浸 上記1、2を気密ループの中で行ない、処理
を施した多孔質電子伝導材、硫黄を大気にふれ
ることなくして多孔質電子伝導材への硫黄の含
浸を行ない、冷却してから硫黄極成形体を取り
出す。
3 Impregnation of sulfur into porous electronically conductive material By carrying out steps 1 and 2 above in an airtight loop, sulfur is impregnated into the porous electronically conductive material without exposing the treated porous electronically conductive material or sulfur to the atmosphere. After impregnation and cooling, the sulfur electrode molded body is taken out.

本発明で用いる多孔質電子伝導材としては、
炭素、黒鉛繊維物質のシート、フエルト、ウエ
ブ等がある。
Porous electronically conductive materials used in the present invention include:
Examples include sheets, felts, webs, etc. of carbon and graphite fiber materials.

〔作用〕[Effect]

ナトリウム−硫黄電池の基本動作について記載
する。ナトリウム−硫黄電池は、ナトリウムイオ
ンのみを透過させる固体電解質を介して一方に溶
融ナトリウム、他方に溶融硫黄が設けられ、約
300〜350℃で充放電が行なわれる高温二次電池で
ある。このときの充放電反応は 2Na+xS放電 ――― ――― 充電Na2Sx となり放電時にはナトリウムは電子を遊離してナ
トリウムイオンとなり、固体電解質を透過して硫
黄と反応し、多硫化ナトリウム(Na2Sx)を生
成する。そして充電時には電池の開路電圧より大
きな負電圧を付加することにより、多硫化ナトリ
ウム(Na2Sx)はナトリウムイオンと硫黄に分
離する。
The basic operation of sodium-sulfur batteries will be described. A sodium-sulfur battery has molten sodium on one side and molten sulfur on the other side through a solid electrolyte that only allows sodium ions to pass through.
It is a high-temperature secondary battery that is charged and discharged at 300-350°C. The charging and discharging reaction at this time is 2Na + xS discharge --- --- Charged Na 2 Sx During discharge, sodium liberates electrons and becomes sodium ions, which pass through the solid electrolyte and react with sulfur, forming sodium polysulfide (Na 2 Sx). During charging, sodium polysulfide (Na 2 Sx) is separated into sodium ions and sulfur by applying a negative voltage greater than the open circuit voltage of the battery.

ナトリウム−硫黄電池の劣化機構については以
下のように考えられる。
The deterioration mechanism of sodium-sulfur batteries is thought to be as follows.

1 充電時に生じたNa金属が固体電解質である
β−アルミナに存在するクラツクから流出する
ときに、その粘性によつて応力を発生させクラ
ツクを進展させる。
1. When Na metal generated during charging flows out of the cracks present in β-alumina, which is a solid electrolyte, its viscosity generates stress and causes the cracks to develop.

2 Na金属がβ−アルミナを腐蝕する。とくに
応力がかかつている部分では腐蝕速度が大き
い。
2 Na metal corrodes β-alumina. The corrosion rate is particularly high in areas where stress is applied.

3 β−アルミナのポア部分にNa金属が生成し
NaAlO2を作り、クラツクを発生させる。
3 Na metal is generated in the pores of β-alumina.
Creates NaAlO 2 and generates cracks.

4 大電流が集中する部分では結晶粒界が破壊す
る。
4. Grain boundaries are destroyed in areas where large currents are concentrated.

5 K+がNa+に置換することによつて応力が発
生し破壊する。
5 Stress is generated due to the substitution of K + with Na + , leading to destruction.

6 Ca2+がβ−アルミナ焼結体の粒界部分に入
り粒界抵抗を増大させ、かつ粒界での劣化を加
速する。
6 Ca 2+ enters the grain boundary portion of the β-alumina sintered body, increases the grain boundary resistance, and accelerates deterioration at the grain boundary.

7 水分の存在によりNaOHを生成し、劣化す
る。
7 Produces NaOH and deteriorates due to the presence of moisture.

上記の劣化機構の1〜3は、固体電解質の性状
により決まる。5〜7は、電池中に含有される不
純物により決まる。4は電池内の応力の不均一に
より決まる。
The above deterioration mechanisms 1 to 3 are determined by the properties of the solid electrolyte. 5 to 7 are determined by impurities contained in the battery. 4 is determined by the non-uniformity of stress within the battery.

これらのことより、硫黄極成形体中に含有され
る不純物を極力除去することにより、固体電解質
の劣化をおさえ寿命を向上させることが出来る。
From these facts, by removing impurities contained in the sulfur electrode molded body as much as possible, it is possible to suppress deterioration of the solid electrolyte and improve its life.

本発明の製造法において多孔質電子伝導材の酵
素雰囲気での焼成を行うと、不純物である高分子
系の有機物が分解し炭化することにより除去され
る。次いで多孔質電子伝導材を真空焼成すると脱
水が行なわれる。この2段階の焼成処理により、
多孔質電子伝導材の表面及び空孔間より高分子系
の有機物、水分が除去されて表面が活性化され
る。
In the production method of the present invention, when the porous electron conductive material is fired in an enzyme atmosphere, the polymeric organic substances that are impurities are decomposed and carbonized to be removed. Next, the porous electron conductive material is vacuum fired to perform dehydration. Through this two-step firing process,
Polymer organic substances and moisture are removed from the surface and between the pores of the porous electron conductive material, and the surface is activated.

硫黄の溶融を真空中で行なうと、硫黄中に含ま
れる水分が除去され、こうして得られた硫黄を、
大気に触れることのないようにして、上記多孔質
電子伝導材に含浸させると不純物を含まない硫黄
極成形体を製造することができる。
When sulfur is melted in a vacuum, the moisture contained in the sulfur is removed, and the sulfur thus obtained is
By impregnating the above-mentioned porous electron conductive material without exposing it to the atmosphere, a sulfur electrode molded body containing no impurities can be produced.

〔実施例〕〔Example〕

硫黄極成形体の製作方法と硫黄極成形体製作装
置の構成を第1,2図により説明する。第2図に
示す装置において、規定の寸法に切断した多孔質
電子伝導材1を圧縮し硫黄極成形型3にセツトす
る。硫黄極成形型3は、芯金3a、外管3b、金
属パツキン3c、上下ふた3d、ボルト3eにて
構成されている。ここで芯金は、硫黄極の組立を
考慮し、β−アルミナの外径より0.5〜1.0mm大き
めに製作されている。また、硫黄極成形体の取出
しの便宜上、鏡面に仕上げられている。外管は同
様の理由で硫黄極容器の内径より0.5〜1.0mm小さ
めに製作され鏡面に仕上げられている。金属パツ
キンは、耐蝕性の関係からアルミパツキンを用い
る。
The method for manufacturing a sulfur electrode molded body and the configuration of the sulfur electrode molded body manufacturing apparatus will be explained with reference to FIGS. 1 and 2. In the apparatus shown in FIG. 2, a porous electron conductive material 1 cut to a specified size is compressed and set in a sulfur electrode mold 3. The sulfur electrode mold 3 includes a core metal 3a, an outer tube 3b, a metal packing 3c, upper and lower lids 3d, and bolts 3e. Here, the core metal is manufactured to be 0.5 to 1.0 mm larger than the outer diameter of the β-alumina in consideration of the assembly of the sulfur electrode. In addition, the sulfur electrode molded body is finished to a mirror surface for convenience in taking out the molded body. For the same reason, the outer tube is made 0.5 to 1.0 mm smaller than the inner diameter of the sulfur electrode container and finished with a mirror finish. Aluminum gaskets are used as metal gaskets due to their corrosion resistance.

硫黄2は、規定量計量し、硫黄貯蔵槽に収納さ
れる。硫黄貯蔵槽は、容器4a、金属パツキン4
b、ふた4cにて構成される。上記の方法により
準備された硫黄極成形型、硫黄貯蔵槽は、真空、
不活性ガス配管8,10、硫黄注入配管9、コー
ルドトラツプ5、真空ポンプ7、不活性ガスボン
ベ11と連結され、第2図に示す系統に組立てら
れる。又、加熱部は、加熱範囲7の部分に相当す
る。上記のごとく構成された硫黄極成形装置を昇
温する。昇温後、多孔質電子伝導材を酸素雰囲気
(大気中)で400℃において30分〜60分焼成する。
この焼成過程により、高分子系の有機物は分解し
炭化する。但し水分は、蒸発はするものの系が閉
ループとなつているため系内にとどまり除去され
ない。
A specified amount of sulfur 2 is measured and stored in a sulfur storage tank. The sulfur storage tank consists of a container 4a and a metal packing 4.
b, and a lid 4c. The sulfur electrode mold and sulfur storage tank prepared by the above method are
It is connected to inert gas pipes 8, 10, sulfur injection pipe 9, cold trap 5, vacuum pump 7, and inert gas cylinder 11, and assembled into the system shown in FIG. Further, the heating section corresponds to the heating range 7. The temperature of the sulfur electrode forming apparatus configured as described above is raised. After raising the temperature, the porous electronically conductive material is fired at 400° C. for 30 to 60 minutes in an oxygen atmosphere (in the air).
Through this firing process, the polymeric organic matter is decomposed and carbonized. However, although water evaporates, it remains in the system and is not removed because the system is a closed loop.

次に脱水の為、真空焼成を温度300〜450℃、真
空度10-3torr以下、時間は長い程良いがおおむね
2時間程度熱処理を施す。上記2段階の熱処理に
より、多孔質電子伝導材の表面及び空孔間より高
分子系の有機物、水分は除去される。
Next, for dehydration, heat treatment is performed in a vacuum at a temperature of 300 to 450°C, a degree of vacuum of 10 -3 torr or less, and the longer the better, but for about 2 hours. By the above two-step heat treatment, polymeric organic substances and moisture are removed from the surface and between the pores of the porous electron conductive material.

次に、硫黄貯蔵槽の硫黄を融点以上の温度130
〜160℃程度、真空度10-3torr以下の条件で溶融
させる。時間は長い程よいが、真空配管10の管
径6〜12mm程度を選定すれば、おおむね2時間程
度でよい。真空配管と真空ポンプの間に、コール
ドトラツプ5を設置し、硫黄の蒸気による影響を
少なくする。以上の作業により、硫黄中に含まれ
ている水分は除去される。又、更に不純物を除去
する為には、減圧下の圧力に相当する沸点以上の
温度で硫黄を気化させ、蒸留精製を行なう方法も
考えられる。但し硫黄は腐蝕性が高いため系の防
蝕等を考慮に入れる必要がある。
Next, the sulfur in the sulfur storage tank is heated to 130℃ above the melting point.
Melt at ~160℃ and vacuum level below 10 -3 torr. The longer the time, the better; however, if the diameter of the vacuum pipe 10 is selected to be about 6 to 12 mm, about 2 hours is sufficient. A cold trap 5 is installed between the vacuum piping and the vacuum pump to reduce the influence of sulfur vapor. Through the above operations, water contained in sulfur is removed. Further, in order to further remove impurities, a method of vaporizing sulfur at a temperature equal to or higher than the boiling point corresponding to the pressure under reduced pressure and performing distillation purification may be considered. However, since sulfur is highly corrosive, it is necessary to take into account the corrosion protection of the system.

上記の作業により得られる表面を活性化させた
多孔質電子伝導材に、脱水した硫黄を含浸させ
る。この多孔質電子伝導材に硫黄を含浸するに
は、多孔質電子伝導材のコンダクタンスと含浸温
度における硫黄の粘性を考慮し、硫黄極成形型と
硫黄貯蔵槽の圧力差および含浸時の温度を決定す
る必要がある。なお、硫黄注入配管の圧損も考慮
する必要があるが、多孔質電子伝導材のコンダク
タンスの影響が大きいので、配管サイズ6〜12mm
程度を用いれば無視出来る。又、多孔質電子伝導
材のコンダクタンスは、多孔質電子伝導材の圧縮
率(ポロシテイ)により決まる。本発明において
は、多孔質電子伝導材の圧縮率を54%とし、含浸
条件を温度130〜160度、圧力差1.0〜1.2気圧、時
間5時間とした。この条件により、多孔質電子伝
導材に硫黄を含浸して製作された硫黄極成形体
は、炉冷(160℃→50℃→6hr)された後、系内を
不活性ガスで置換した後、硫黄成形型より取り出
される。
The surface-activated porous electronic conductive material obtained by the above operation is impregnated with dehydrated sulfur. To impregnate this porous electron conductive material with sulfur, consider the conductance of the porous electron conductive material and the viscosity of sulfur at the impregnation temperature, and determine the pressure difference between the sulfur electrode mold and the sulfur storage tank and the temperature during impregnation. There is a need to. It is also necessary to consider the pressure drop of the sulfur injection pipe, but since the conductance of the porous electron conductive material has a large effect, the pipe size should be 6 to 12 mm.
It can be ignored by using degrees. Further, the conductance of the porous electronically conductive material is determined by the compressibility (porosity) of the porous electronically conductive material. In the present invention, the compressibility of the porous electronically conductive material was 54%, and the impregnation conditions were a temperature of 130 to 160 degrees, a pressure difference of 1.0 to 1.2 atmospheres, and a time of 5 hours. Under these conditions, the sulfur electrode molded body produced by impregnating the porous electron conductive material with sulfur was cooled in the furnace (160℃→50℃→6 hours), and after purging the system with inert gas, Removed from sulfur mold.

上記方法により得られる硫黄極成形体を用いた
ナトリウム−硫黄電池と従来の方式、すなわち不
純物を除去する工程なしで製作された硫黄極成形
体の特性比較について記載する。第3図は、サイ
クルの経過に伴なう電池の抵抗変化を示したもの
である。従来の方法による硫黄極成形体を用いた
ナトリウム−硫黄電池は、初期においては、設計
値である20〜30mΩの抵抗であるが、サイクルの
経過に伴ない(第3図においては50∞目の抵抗値
を示す)著しく抵抗が上昇している。この様に抵
抗が上昇すると、 1 電池の容量が低下する。
A comparison of the characteristics of a sodium-sulfur battery using a sulfur electrode molded body obtained by the above method and a sulfur electrode molded body manufactured by a conventional method, that is, without a step of removing impurities, will be described. FIG. 3 shows the change in resistance of the battery as the cycle progresses. A sodium-sulfur battery using a sulfur electrode formed by the conventional method initially has a resistance of 20 to 30 mΩ, which is the designed value, but as the cycle progresses (in Fig. 3, the resistance at the 50∞ (resistance value) shows a significant increase in resistance. When the resistance increases in this way: 1. The capacity of the battery decreases.

2 抵抗ロスにより発熱し、サイクル毎に熱サイ
クルがかかる。
2 Heat is generated due to resistance loss, and a heat cycle is applied for each cycle.

3 反応の不均一が発生し、電流密度の集中がお
こる。
3 Non-uniform reaction occurs and concentration of current density occurs.

などの問題が生じ、寿命上好ましくない。Problems such as this occur, which is unfavorable in terms of service life.

本発明により製造された硫黄極成形体を用いた
ナトリウム−硫黄電池においては、サイクルが経
過しても初期の抵抗値と、ほとんど変わらないこ
とがわかる。すなわち、前記従来型の問題が発生
せず、寿命向上に大きく貢献することがわかる。
第3図において、50∞経過後の抵抗値を比較的対
象としたのは、抵抗値の増大は30サイクル程度で
起こり、それ以後は安定微増するためである。
It can be seen that in the sodium-sulfur battery using the sulfur electrode molded body manufactured according to the present invention, the resistance value hardly changes from the initial resistance value even after cycles. That is, it can be seen that the above-mentioned problems of the conventional type do not occur, and this greatly contributes to the improvement of lifespan.
In FIG. 3, the resistance value after 50∞ has been relatively targeted is that the resistance value increases after about 30 cycles, and after that, it stably increases slightly.

本発明によつて製造された硫黄極成形体を用い
ることにより、高性能、長寿命のナトリウム−硫
黄電池が得られる。
By using the sulfur electrode molded body produced according to the present invention, a sodium-sulfur battery with high performance and long life can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、硫黄極成形体中の不純物を除
去できるので、このような硫黄極成形体を用いた
ナトリウム−硫黄電池においては、不純物による
固体電解質の劣化を防止でき、サイクルの経過に
伴なう抵抗値の上昇を抑え、電池の寿命を向上さ
せる効果がある。
According to the present invention, since impurities in the sulfur electrode molded body can be removed, deterioration of the solid electrolyte due to impurities can be prevented in a sodium-sulfur battery using such a sulfur electrode molded body, and the solid electrolyte can be prevented from deteriorating as the cycle progresses. This has the effect of suppressing the increase in resistance value and improving battery life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、硫黄極成形体製作流れ図、第2図
は、本発明を実施するための硫黄極成形体製作装
置の一実施例、第3図は、従来方法による硫黄極
成形体と本発明方法による硫黄極成形体を用いた
ナトリウム−硫黄電池の抵抗比較。 1……多孔質電子伝導材、2……硫黄、3……
硫黄極成形型、4……硫黄貯蔵槽、5……コール
ドトラツプ、6……真空ポンプ、7……加熱範
囲、8……真空ライン、9……硫黄注入ライン、
10……真空ライン、11……不活性ガスボン
ベ、3a……芯金、3b……外管、3c……金属
パツキン、3d……ふた、3e……ボルト、4a
……容器、4b……金属パツキン、4c……ふ
た。
Fig. 1 is a flowchart for producing a sulfur electrode formed body, Fig. 2 is an example of a sulfur electrode formed body manufacturing apparatus for carrying out the present invention, and Fig. 3 shows a sulfur electrode formed body by a conventional method and the present invention. Comparison of resistance of sodium-sulfur batteries using sulfur electrode molded bodies according to the method. 1...Porous electronic conductive material, 2...Sulfur, 3...
Sulfur electrode mold, 4... Sulfur storage tank, 5... Cold trap, 6... Vacuum pump, 7... Heating range, 8... Vacuum line, 9... Sulfur injection line,
10... Vacuum line, 11... Inert gas cylinder, 3a... Core bar, 3b... Outer tube, 3c... Metal gasket, 3d... Lid, 3e... Bolt, 4a
...Container, 4b...Metal gasket, 4c...Lid.

Claims (1)

【特許請求の範囲】 1 ナトリウム−硫黄電池の硫黄極成形体の製造
法において、多孔質電子伝導材を酸素雰囲気で焼
成後さらに真空焼成し、その表面を活性化させた
後、真空中で溶融した硫黄を、大気にふれさせる
ことなく多孔質電子伝導材に含浸させることを特
徴とするナトリウム−硫黄電池の硫黄極成形体の
製造法。 2 多孔質電子伝導材の酸素雰囲気での焼成を、
温度400℃、時間30分〜60分の条件で行うことを
特徴とする特許請求の範囲第1項記載の製造法。 3 多孔質電子伝導材の真空焼成を、温度300℃
〜450℃、真空度10-3torr以下、時間2時間以上
の条件で行うことを特徴とする特許請求の範囲第
1項記載の製造法。 4 硫黄の真空中での溶融を、温度130〜160度、
真空度10-3torr以下、時間2時間以上の条件で行
うことを特徴とする特許請求の範囲第1項記載の
製造法。 5 真空中で溶融した硫黄を、さらに減圧下の圧
力に相当する沸点以上の温度で気化させ蒸留精製
を行なうことを特徴とする特許請求の範囲第1項
記載の製造法。
[Claims] 1. In a method for manufacturing a sulfur electrode molded body for a sodium-sulfur battery, a porous electron conductive material is fired in an oxygen atmosphere, further fired in a vacuum to activate its surface, and then melted in a vacuum. A method for manufacturing a sulfur electrode molded body for a sodium-sulfur battery, characterized in that a porous electron conductive material is impregnated with sulfur without exposing it to the atmosphere. 2. Firing the porous electronically conductive material in an oxygen atmosphere,
The manufacturing method according to claim 1, wherein the manufacturing method is carried out at a temperature of 400° C. and a time of 30 to 60 minutes. 3 Vacuum firing of porous electronic conductive material at a temperature of 300℃
The manufacturing method according to claim 1, characterized in that the manufacturing method is carried out under conditions of ~450°C, a degree of vacuum of 10 -3 torr or less, and a time of 2 hours or more. 4 Melting sulfur in a vacuum at a temperature of 130 to 160 degrees,
The manufacturing method according to claim 1, characterized in that the manufacturing method is carried out under conditions of a degree of vacuum of 10 -3 torr or less and a time of 2 hours or more. 5. The manufacturing method according to claim 1, characterized in that the sulfur molten in vacuum is further vaporized at a temperature equal to or higher than the boiling point corresponding to the pressure under reduced pressure to carry out distillation purification.
JP61203823A 1986-09-01 1986-09-01 Manufacture of molded sulfur electrode for sodium-sulfur battery Granted JPS6362164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203823A JPS6362164A (en) 1986-09-01 1986-09-01 Manufacture of molded sulfur electrode for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203823A JPS6362164A (en) 1986-09-01 1986-09-01 Manufacture of molded sulfur electrode for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS6362164A JPS6362164A (en) 1988-03-18
JPH0472357B2 true JPH0472357B2 (en) 1992-11-18

Family

ID=16480302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203823A Granted JPS6362164A (en) 1986-09-01 1986-09-01 Manufacture of molded sulfur electrode for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS6362164A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436712B1 (en) * 2001-12-19 2004-06-22 삼성에스디아이 주식회사 Cathode electrode, method for manufacturing the same, and lithium battery containing the same
US8173302B2 (en) 2008-06-11 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Sulfur-carbon material
US8361659B2 (en) 2008-06-20 2013-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium-alloying-material/carbon composite
TWI782162B (en) * 2018-01-16 2022-11-01 德商巴斯夫歐洲公司 Process for the production of moldings made of porous material impregnated with polysulfide

Also Published As

Publication number Publication date
JPS6362164A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
US4360485A (en) Method for making improved separator plates for electrochemical cells
US4301222A (en) Separator plate for electrochemical cells
JP5991319B2 (en) Method for manufacturing molten salt battery and molten salt battery
KR970004301B1 (en) Electrode foil for electrolytic capacitor and process of manufacture thereof
CN1245536C (en) Impregnated graphite cathode for electrolysis of aluminium
CA1278034C (en) Cathodic electrode
US4143217A (en) Process for manufacture of positive electrode for lithium/metal sulfide secondary cell
JPH026191B2 (en)
JPH0472357B2 (en)
US20200343578A1 (en) Alkali-Ion Battery Based on Selected Allotropes of Sulphur, and Methods for the Production Thereof
CA2035815C (en) Carbon electrode, and method and apparatus for the electrolysis of a hydrogen fluoride-containing molten salt by the use of the carbon electrode
US3506490A (en) Solid electrolyte battery having lithium or lithium alloy anode
EP0716717B1 (en) Fluorine cell
US4070527A (en) Efficient sodium/sulfur battery
JP2002362915A (en) Carbon material and manufacturing method thereof and application thereof
TWI782162B (en) Process for the production of moldings made of porous material impregnated with polysulfide
US3462313A (en) Electrical energy storage device comprising molten metal halide electrolyte and tungsten-containing electrode
KR20150066889A (en) Complex Solid Electrolyte for Sodium Secondary Battery and the Fabrication Method Thereof
US4808354A (en) Method of making electrical discharge machining electrodes
JPH10188998A (en) Positive electrode conductive material for sodium-sulfur battery
RU2156512C2 (en) Improved capacitor with high specific capacitance
JPS61163571A (en) Manufacture of porous titanium disulfide electrode
JPH02262262A (en) Nonaqueous electrolyte liquid battery
JPS6028175A (en) Sodium-sulfur battery
JP2004327304A (en) Lithium primary cell