JPH0471918B2 - - Google Patents

Info

Publication number
JPH0471918B2
JPH0471918B2 JP61047413A JP4741386A JPH0471918B2 JP H0471918 B2 JPH0471918 B2 JP H0471918B2 JP 61047413 A JP61047413 A JP 61047413A JP 4741386 A JP4741386 A JP 4741386A JP H0471918 B2 JPH0471918 B2 JP H0471918B2
Authority
JP
Japan
Prior art keywords
epoxyphosphine
producing
hydrogen peroxide
reaction
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61047413A
Other languages
Japanese (ja)
Other versions
JPS62207281A (en
Inventor
Koji Yamashita
Tatsuo Oshikawa
Hiroyuki Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP4741386A priority Critical patent/JPS62207281A/en
Publication of JPS62207281A publication Critical patent/JPS62207281A/en
Publication of JPH0471918B2 publication Critical patent/JPH0471918B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、有機リン化合物の合成法、特に1−
アルケニルホスフインオキシド類からα,β−エ
ポキシホスフイン誘導体を合成する方法に関す
る。 (従来の技術) ホスホン酸系抗生物質として知られているホス
ホマイシン等、リンのα,β−エポキシ化合物
は、それ自身重要な化合物であり、更に又α,β
−エポキシホスフイン誘導体は種々の有用な化合
物を合成するための重要な合成中間体である。 従来、1−アルケニルホスフインオキシド類そ
のもののエポキシド合成については提案された例
がない。それに関連した化合物として、ビニルホ
スフインオキシド類のエポキシドの合成法につい
ては、α−ケトトシラートへのリン化合物の付加
並びにトシル酸、すなわちp−トルエンスルホン
酸の脱離による方法が例えばシンセシス
(Synthesis)1985年第1号、第65頁、およびジヤ
ーナル・オブ・オーガニツク・ケミストリ(J.
Org.Chem.)第26巻、第659頁(1961年)等によ
つて知られているが、これらを1−アルケニルホ
スフインオキシド類のエポキシ化に適用しても、
反応が満足に進行しない。また、一般に行われて
いる過酢酸、過安息香酸、過フタル酸などの過酸
により、オレフイン二重結合に酸素を付加してエ
ポキシドを合成する方法も同様の理由で、1−ア
ルケニルホスフインオキシド類のエポキシ化には
応用できない。 更に、1−アルケンホスホン類ジエステルなど
のホスホン酸エステル誘導体に対し、無水トリフ
ルオロ酢酸と高濃度過酸化水素、例えば90%過酸
化水素とを用いて酸化しエポキシ化する方法が、
ヘミツシエ・ベリヒテ(Chem.Ber.)第101巻、
3530頁(1968年)およびケミカル・アブストラク
ツ(C.A)第103巻、22654P.に報告されている
が、かかる方法は、90%の過酸化水素という高濃
度過酸化物を使用するために頗る危険である点
や、かかる高濃度過酸化水素が市販されておらず
入手困難である点、またこのエポキシド合成法に
おいては、リン酸ナトリウム緩衝液を使用しなけ
ればならない点、及び生成したエポキシドの更な
る開環反応等がエポキシ化反応に引続いて進行
し、副反応生成物の副生を伴うなどの欠点または
問題点があり、従つて、従来1−アルケニルホス
フインオキシド類からそのエポキシドを簡便、容
易且つ選択的に合成する方法はなかつた。 (発明が解決しようとする問題点) 上述のような従来技術の問題点に鑑み、本発明
の目的は、現今汎用されているエポキシド合成法
では合成することのできなかつた1−アルケニル
ホスフインオキシド類のエポキシドを、入手容易
な試薬を以つて、安全、容易且つ選択的に高収率
で取得せんとするにある。 (問題点を解決するための手段) 上記目的を達成するための本発明方法の特徴
は、無水トリフルオロ酢酸と約25〜約35%過酸化
水素とを反応させてトリフルオロ過酢酸を生成
し、該トリフルオロ過酢酸を、1−アルケニルホ
スフイン類に有機溶媒中で還流下に作用せしめて
エポキシ化することにある。 本発明方法を適用する1−アルケニルホスフイ
ンオキシドは、1−アルケニルホスホン酸エステ
ル、1−アルケニルホスフイン酸エステル、等の
1−アルケニルリン酸化合物、またはα,β−位
以外の位置にオレフイン二重結合を有するアルケ
ンのリン酸化合物を併用することができる。 本発明方法により上記1−アルケニルホスフイ
ンオキシド類より取得される生成物は、 α,β−エポキシホスフインオキシド誘導体で
あり、 α,β−エポキシホスホン酸エステル誘導体、 α,β−エポキシホスフイン酸エステル誘導
体、 等のα,β−エポキシホスフイン誘導体、また
α,β−位以外の位置にエポキシ基を有するホス
フイン誘導体を誘導することも可能である。これ
ら誘導体の中で特に重要なものとしては、ホスホ
マイシンが挙げられる。 本発明方法において酸化作用を司り、アルケニ
ル化合物のオレフイン二重結合に酸素を付加して
エポキシ化するためには、特にトリフルオロ過酢
酸の作用を必須とするが、かかるトリフルオロ過
酢酸は無水トリフルオロ酢酸より、例えば次の手
順により合成することができる。 即ち氷冷下、適量の有機液媒、例えば塩化メチ
レンに市販の約25〜約35%、好ましくは約30〜約
35%過酸化水素水を添加し、約0℃で撹拌し、そ
れに更に無水トリフルオロ酢酸を撹拌しながら加
え、約30分後に室温まで温度を上昇させればトリ
フルオロ過酢酸が塩化メチレン液媒中に効率よく
生成する。 上述のトリフルオロ過酢酸の生成反応は室温あ
るいは約40℃程度迄の昇温下においても可能であ
るが、温度の上昇に伴い無水トリフルオロ酢酸の
過剰量を必要とするうえに収率が著しく低下する
ため、0℃乃至室温の範囲の可及的低温域で前記
手順を踏むことが好ましい。 かくして合成したトリフルオロ過酢酸に基質で
ある1−アルケニルホスフインオキシド類の有機
溶媒溶液、例えば1−アルケニルホスフインオキ
シドの塩化メチレン溶液を滴下した後、前記有機
溶媒の沸点、CH2Cl2の場合は約40℃、で還流下
に約8〜14時間、好ましくは約10〜12時間撹拌し
てエポキシ化反応を行う。 ここに用いられる有機溶媒は基質に対する溶剤
であること、溶媒自体および系内の反応物質に対
して不活性、非反応性であること、比較的低沸点
(沸点約100℃以下、好ましくは約80℃以下)であ
ること、および前記トリフルオロ過酢酸の合成に
用いた有機液媒と相溶性を有すること、好ましく
は同一のものであること、の諸条件を満足するも
のの中から選ばれる。適用可能なものとしては、
例えば塩化メチレン、クロロホルム、酢酸エチ
ル、四塩化炭素、ジエチルエーテル、テトラヒド
ロフラン、ベンゼン、ジオキサン等が挙げられる
が、本反応では基質の磁性が比較的大きく、溶解
度が小さいために、塩化メチレン、クロロホル
ム、酢酸エチル等、低沸点の極性溶媒が好まし
く、就中、塩化メチレンが最適である。これら溶
媒は単独または混合して用い得る。 上述のエポキシ化反応は、次の一般式()を
以つて表され、また、基質即ちエポキシ化反応の
出発物質であるジフエニル(1−エチル−1−プ
ロペニル)−ホスフインオキシドをエポキシ化し
て、ジフエニル−(1,2−エポキシ−1−エチ
ルプロピル)−ホスフインオキシドを得る場合の
例は式()で示す通りである。 上記反応において、基質と無水トリフルオロ酢
酸と過酸化水素とのモル比については、過酸化水
素は基質に対して少なくとも等モルを必要とし、
また無水トリフルオロ酢酸は低沸点であるため、
反応中に蒸発して気相に移行する量を補うために
少なくとも2モル、好ましくは少なくとも3モル
を反応初期に存在せしめることが良い。最適モル
比は約1:3:3である。 かくしてエポキシ化反応が完結した反応混合物
は冷却後、分液ロートに移し、有機層を亜硫酸水
素カリウム水溶液、炭酸水素ナトリウム水溶液、
更に水を以つて相次いで洗浄し、乾燥後、溶媒を
減圧下に留去することにより、1−アルケニルホ
スフインオキシド類のエポキシドが取得される。 以下、本発明方法を実施例について説明する。 実施例 1 氷浴上で塩化メチレン10mlに30%過酸化水素水
1.2mlを、約0℃で撹拌しながら加え、それに無
水トリフルオロ酢酸2.9gを撹拌下徐々に添加し
た。全部添加し了えてから温浴上に移し、30℃に
て30分間撹拌した後、室温とした。生成したトリ
フルオロ過酢酸に基質ジフエニル−(1−エチル
−1−プロペニル)−ホスフインオキシド1.23g
の塩化メチレン10ml溶液を滴下し、12時間約40℃
で加熱還流下に撹拌した。室温に冷却後、反応混
合液を分液ロートに移し、塩化メチレン30mlを加
え、亜硫酸水素カリウム水溶液、炭酸水素ナトリ
ウム水溶液及び水で相次いで洗浄した。無水硫酸
ナトリウムで乾燥後、減圧下、塩化メチレンを留
去して、1.24gのジフエニル−(1,2−エポキ
シ−1−エチルプロピル)−ホスフインオキシド
を得た。この場合の収率は95%であり、得られた
化合物の融点は154〜156℃であつた。 実施例 2〜5 前記式()のR1,R2を種々に変えた4種類
の1−アルケニルジフエニルホスフインオキシド
を基質とし、トリフルオロ過酢酸によるエポキシ
化反応を前記実施例1の方法に準じて塩化メチレ
ン溶媒還流下12時間反応せしめた。この場合基質
と、トリフルオロ過酢酸の生成に用いた無水トリ
フルオロ酢酸と、過酸化水素との量比をモル比で
1:3:3とした。 生成したα,β−エポキシホスフイン誘導体の
収率、融点及び質量分析値を次表に示す。
(Industrial Application Field) The present invention relates to a method for synthesizing organic phosphorus compounds, particularly 1-
This invention relates to a method for synthesizing α,β-epoxyphosphine derivatives from alkenylphosphine oxides. (Prior art) Phosphorus α,β-epoxy compounds such as fosfomycin, which is known as a phosphonic acid antibiotic, are themselves important compounds, and furthermore, α,β-epoxy compounds such as fosfomycin are known as phosphonic acid antibiotics.
- Epoxyphosphine derivatives are important synthetic intermediates for the synthesis of various useful compounds. Hitherto, there has been no proposal for epoxide synthesis of 1-alkenylphosphine oxides themselves. As a related compound, a method for synthesizing epoxides of vinylphosphine oxides is based on the addition of a phosphorus compound to α-ketotosylate and the elimination of tosylic acid, that is, p-toluenesulfonic acid, for example, in Synthesis 1985. No. 1, p. 65, and Journal of Organic Chemistry (J.
Org.Chem.) Vol. 26, p. 659 (1961), etc., but even if these are applied to the epoxidation of 1-alkenylphosphine oxides,
The reaction does not proceed satisfactorily. In addition, for the same reason, the commonly used method of adding oxygen to olefin double bonds with peracids such as peracetic acid, perbenzoic acid, and perphthalic acid to synthesize epoxides produces 1-alkenylphosphine oxide. It cannot be applied to other types of epoxidation. Furthermore, there is a method of oxidizing and epoxidizing a phosphonic acid ester derivative such as a 1-alkenephosphonic diester using trifluoroacetic anhydride and high concentration hydrogen peroxide, for example, 90% hydrogen peroxide.
Chem.Ber. Volume 101,
3530 (1968) and Chemical Abstracts (CA) Vol. 103, P. 22654, such methods are extremely dangerous due to the use of a high concentration of peroxide, 90% hydrogen peroxide. In some respects, such highly concentrated hydrogen peroxide is not commercially available and is difficult to obtain; in this epoxide synthesis method, a sodium phosphate buffer must be used; There are drawbacks or problems such as ring-opening reactions proceeding after the epoxidation reaction and the production of side reaction products. There was no way to easily and selectively synthesize it. (Problems to be Solved by the Invention) In view of the problems of the prior art as described above, an object of the present invention is to solve the problems of 1-alkenylphosphine oxide, which cannot be synthesized by the currently widely used epoxide synthesis method. The object of the present invention is to obtain epoxides of the same type safely, easily, and selectively in high yields using readily available reagents. (Means for Solving the Problems) A feature of the method of the present invention for achieving the above object is that trifluoroacetic anhydride is reacted with about 25 to about 35% hydrogen peroxide to produce trifluoroperacetic acid. , the trifluoroperacetic acid is allowed to act on 1-alkenylphosphine in an organic solvent under reflux to epoxidize the compound. The 1-alkenylphosphine oxide to which the method of the present invention is applied is a 1-alkenylphosphonic acid compound such as a 1-alkenylphosphonic acid ester, a 1-alkenylphosphine acid ester, or an olefin diamide at a position other than the α or β-position. A phosphoric acid compound of an alkene having a double bond can be used in combination. The products obtained from the above-mentioned 1-alkenylphosphine oxides by the method of the present invention are α,β-epoxyphosphine oxide derivatives, α,β-epoxyphosphonic acid ester derivatives, α,β-epoxyphosphine oxide derivatives, It is also possible to derive α,β-epoxyphosphine derivatives such as ester derivatives, and phosphine derivatives having epoxy groups at positions other than the α,β-positions. Particularly important among these derivatives is fosfomycin. In the method of the present invention, the action of trifluoroperacetic acid is particularly essential in order to control the oxidation action and add oxygen to the olefin double bond of the alkenyl compound for epoxidation. It can be synthesized from fluoroacetic acid, for example, by the following procedure. That is, under ice cooling, a suitable amount of an organic liquid medium, such as methylene chloride, is mixed with a commercially available solution of about 25 to about 35%, preferably about 30 to about
Add 35% hydrogen peroxide solution, stir at about 0°C, add trifluoroacetic anhydride with stirring, and raise the temperature to room temperature after about 30 minutes to convert trifluoroperacetic acid into methylene chloride liquid medium. efficiently generated inside. The above-mentioned reaction for producing trifluoroperacetic acid is possible at room temperature or at an elevated temperature of about 40°C, but as the temperature rises, an excessive amount of trifluoroacetic anhydride is required and the yield is significantly reduced. Therefore, it is preferable to carry out the above procedure at the lowest possible temperature in the range of 0° C. to room temperature. An organic solvent solution of the substrate 1-alkenylphosphine oxide, for example, a methylene chloride solution of 1-alkenylphosphine oxide, is added dropwise to the thus synthesized trifluoroperacetic acid, and then the boiling point of the organic solvent, CH 2 Cl 2 In this case, the epoxidation reaction is carried out by stirring at about 40° C. under reflux for about 8 to 14 hours, preferably about 10 to 12 hours. The organic solvent used here must be a solvent for the substrate, be inert and non-reactive with respect to the solvent itself and the reactants in the system, and have a relatively low boiling point (boiling point of about 100°C or less, preferably about 80°C). C) or below) and be compatible with, preferably the same as, the organic liquid medium used in the synthesis of trifluoroperacetic acid. As applicable,
Examples include methylene chloride, chloroform, ethyl acetate, carbon tetrachloride, diethyl ether, tetrahydrofuran, benzene, dioxane, etc.; Polar solvents with low boiling points, such as ethyl, are preferred, with methylene chloride being most suitable. These solvents may be used alone or in combination. The above-mentioned epoxidation reaction is represented by the following general formula (), and the substrate, that is, the starting material of the epoxidation reaction, diphenyl (1-ethyl-1-propenyl)-phosphine oxide, is epoxidized, An example of obtaining diphenyl-(1,2-epoxy-1-ethylpropyl)-phosphine oxide is as shown in formula (). In the above reaction, regarding the molar ratio of the substrate, trifluoroacetic anhydride, and hydrogen peroxide, hydrogen peroxide needs to be at least equimolar to the substrate;
In addition, since trifluoroacetic anhydride has a low boiling point,
In order to compensate for the amount that evaporates and transfers to the gas phase during the reaction, at least 2 mol, preferably at least 3 mol, is preferably present at the beginning of the reaction. The optimum molar ratio is about 1:3:3. After the reaction mixture in which the epoxidation reaction was completed was cooled, it was transferred to a separating funnel, and the organic layer was mixed with an aqueous solution of potassium bisulfite, an aqueous solution of sodium bicarbonate, and an aqueous solution of sodium bicarbonate.
Furthermore, the epoxide of 1-alkenylphosphine oxides is obtained by washing successively with water, drying, and distilling off the solvent under reduced pressure. Hereinafter, the method of the present invention will be explained with reference to Examples. Example 1 Add 30% hydrogen peroxide solution to 10 ml of methylene chloride on an ice bath.
1.2 ml was added with stirring at about 0° C., and 2.9 g of trifluoroacetic anhydride was gradually added thereto with stirring. After all additions were completed, the mixture was transferred to a hot bath, stirred at 30°C for 30 minutes, and then cooled to room temperature. 1.23 g of the substrate diphenyl-(1-ethyl-1-propenyl)-phosphine oxide was added to the generated trifluoroperacetic acid.
Add 10ml of methylene chloride solution dropwise and keep at 40℃ for 12 hours.
The mixture was stirred under heating under reflux. After cooling to room temperature, the reaction mixture was transferred to a separatory funnel, 30 ml of methylene chloride was added, and the mixture was washed successively with an aqueous potassium bisulfite solution, an aqueous sodium bicarbonate solution, and water. After drying over anhydrous sodium sulfate, methylene chloride was distilled off under reduced pressure to obtain 1.24 g of diphenyl-(1,2-epoxy-1-ethylpropyl)-phosphine oxide. The yield in this case was 95%, and the melting point of the obtained compound was 154-156°C. Examples 2 to 5 Four types of 1-alkenyldiphenylphosphine oxides in which R 1 and R 2 of the above formula () were variously changed were used as substrates, and the epoxidation reaction with trifluoroperacetic acid was carried out by the method of Example 1 above. The mixture was reacted for 12 hours under refluxing methylene chloride solvent according to the procedure described in . In this case, the molar ratio of the substrate, trifluoroacetic anhydride used to produce trifluoroperacetic acid, and hydrogen peroxide was 1:3:3. The yield, melting point, and mass spectrometry values of the produced α,β-epoxyphosphine derivative are shown in the following table.

【表】 上述の実施例から明らかな通り、本発明方法に
よれば、各種の1−アルケニルホスフインオキシ
ド類から対応するα,β−エポキシホスフイン誘
導体が極めて高収率で得られる。 (発明の効果) 本発明方法の効果を列挙すると次の通りであ
る。 (1) 従来法では合成至難であつた1−アルケニル
ホスフインオキシド類のエポキシドを本発明方
法により頗る安全、簡便且つ高収率を以つて合
成することができる。 (2) α−ケトトシラートを経る従来のビニルホス
フインオキシドのエポキシド合成よりも操作が
著しく簡単である。 (3) 90%過酸化水素を用いるエポキシホスホン酸
エステル合成法に比して、本発明方法に適用す
る試薬は、市中で容易に入手可能な約25〜35%
過酸化水素を用いて合成され(90%過酸化水素
水は市販されていないが25〜35%のものは市販
されている)、従つて安全性が高く、爆発等の
危険性が少ないため、装置並びに操作が至極簡
単である。 (4) 上述の高濃度過酸化水素を用いる方法に比
し、副反応や二次反応が無いために目的物質で
あるリン化合物のα,β−エポキシ誘導体生成
の選択性が高く、高純度且つ高収率で目的物を
取得することができる。 (5) 本発明方法は、その技術思想の範囲内で、
α,β−エポキシ誘導体のみならず、種々のエ
ポキシド合成に改変、応用し得ると思われ、広
い応用範囲が期待される。
[Table] As is clear from the above examples, according to the method of the present invention, corresponding α,β-epoxyphosphine derivatives can be obtained in extremely high yields from various 1-alkenylphosphine oxides. (Effects of the Invention) The effects of the method of the present invention are listed below. (1) Epoxides of 1-alkenylphosphine oxides, which have been extremely difficult to synthesize by conventional methods, can be synthesized in an extremely safe, simple and high yield by the method of the present invention. (2) It is significantly simpler to operate than the conventional epoxide synthesis of vinylphosphine oxide via α-ketotosylate. (3) Compared to the epoxyphosphonic acid ester synthesis method that uses 90% hydrogen peroxide, the reagents applied to the method of the present invention contain approximately 25 to 35% of the reagents that are easily available on the market.
It is synthesized using hydrogen peroxide (90% hydrogen peroxide solution is not commercially available, but 25-35% hydrogen peroxide solution is commercially available), so it is highly safe and has little risk of explosion. The device and operation are extremely simple. (4) Compared to the above-mentioned method using high concentration hydrogen peroxide, there is no side reaction or secondary reaction, so the selectivity for producing α,β-epoxy derivatives of the target phosphorus compound is high, and the process is highly pure and The target product can be obtained in high yield. (5) The method of the present invention, within the scope of its technical idea,
It is thought that it can be modified and applied not only to α,β-epoxy derivatives but also to the synthesis of various epoxides, and a wide range of applications is expected.

Claims (1)

【特許請求の範囲】 1 無水トリフルオロ酢酸と約25〜35%過酸化水
素水とを反応させてトリフルオロ過酢酸を生成
し、該トリフルオロ過酢酸を、1−アルケニルホ
スフインオキシド類に有機溶媒中で還流下に作用
せしめてエポキシ化することを特徴とするα,β
−エポキシホスフイン誘導体の製造法。 2 前記無水トリフルオロ酢酸と過酸化水素水と
の反応が有機液媒中で行われる特許請求の範囲第
1項記載のα,β−エポキシホスフイン誘導体の
製造法。 3 前記有機液媒と有機溶媒とが互いに相溶性を
有するものである特許請求の範囲第2項記載の
α,β−エポキシホスフイン誘導体の製造法。 4 前記有機溶媒が、それ自体非反応性であり且
つ低沸点の極性溶媒である前記特許請求の範囲各
項の何れかに記載のα,β−エポキシホスフイン
誘導体の製造法。 5 前記有機溶媒が塩化メチレン、クロロホル
ム、酢酸エチルより選ばれる少なくとも1種の極
性溶媒である特許請求の範囲第4項記載のα,β
−エポキシホスフイン誘導体の製造法。 6 前記有機溶媒と有機液媒とが共に塩化メチレ
ンである特許請求の範囲第5項記載のα,β−エ
ポキシホスフイン誘導体の製造法。 7 前記無水トリフルオロ酢酸と過酸化水素との
反応が約0℃乃至室温において行われる前記特許
請求の範囲各項の何れかに記載のα,β−エポキ
シホスフイン誘導体の製造法。 8 前記1−アルケニルホスフインオキシド類と
無水トリフルオロ酢酸と過酸化水素とをモル比で
約1:(2以上):(1以上)反応初期に存在せし
める前記特許請求の範囲各項の何れかに記載の
α,β−エポキシホスフイン誘導体の製造法。 9 前記モル比が約1:3:3である特許請求の
範囲第8項記載のα,β−エポキシホスフイン誘
導体の製造法。
[Claims] 1. Trifluoroperacetic acid is produced by reacting trifluoroacetic anhydride with about 25 to 35% hydrogen peroxide, and the trifluoroperacetic acid is mixed into 1-alkenylphosphine oxides with organic α, β characterized by being epoxidized by acting under reflux in a solvent.
- A method for producing an epoxyphosphine derivative. 2. The method for producing an α,β-epoxyphosphine derivative according to claim 1, wherein the reaction between the trifluoroacetic anhydride and the hydrogen peroxide solution is carried out in an organic liquid medium. 3. The method for producing an α,β-epoxyphosphine derivative according to claim 2, wherein the organic liquid medium and the organic solvent are compatible with each other. 4. The method for producing an α,β-epoxyphosphine derivative according to any one of the claims, wherein the organic solvent is a polar solvent that is non-reactive in itself and has a low boiling point. 5 α, β according to claim 4, wherein the organic solvent is at least one polar solvent selected from methylene chloride, chloroform, and ethyl acetate.
- A method for producing an epoxyphosphine derivative. 6. The method for producing an α,β-epoxyphosphine derivative according to claim 5, wherein both the organic solvent and the organic liquid medium are methylene chloride. 7. The method for producing an α,β-epoxyphosphine derivative according to any one of the claims, wherein the reaction between the trifluoroacetic anhydride and hydrogen peroxide is carried out at about 0°C to room temperature. 8. Any of the above claims, wherein the 1-alkenylphosphine oxide, trifluoroacetic anhydride, and hydrogen peroxide are present in a molar ratio of about 1:(2 or more):(1 or more) at the initial stage of the reaction. A method for producing an α,β-epoxyphosphine derivative as described in . 9. The method for producing an α,β-epoxyphosphine derivative according to claim 8, wherein the molar ratio is about 1:3:3.
JP4741386A 1986-03-06 1986-03-06 Production of alpha,beta-epoxyphosphine derivative Granted JPS62207281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4741386A JPS62207281A (en) 1986-03-06 1986-03-06 Production of alpha,beta-epoxyphosphine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4741386A JPS62207281A (en) 1986-03-06 1986-03-06 Production of alpha,beta-epoxyphosphine derivative

Publications (2)

Publication Number Publication Date
JPS62207281A JPS62207281A (en) 1987-09-11
JPH0471918B2 true JPH0471918B2 (en) 1992-11-16

Family

ID=12774453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4741386A Granted JPS62207281A (en) 1986-03-06 1986-03-06 Production of alpha,beta-epoxyphosphine derivative

Country Status (1)

Country Link
JP (1) JPS62207281A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588693A (en) * 2013-10-14 2014-02-19 青岛文创科技有限公司 Preparation method of trifluoroperacetic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231032A (en) * 1975-08-29 1977-03-09 Italchemi Spa Process for manufacturing epoxyalkylphosphone acids
JPS5414925A (en) * 1977-07-01 1979-02-03 Kanebo Ltd Preparation of epoxy compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231032A (en) * 1975-08-29 1977-03-09 Italchemi Spa Process for manufacturing epoxyalkylphosphone acids
JPS5414925A (en) * 1977-07-01 1979-02-03 Kanebo Ltd Preparation of epoxy compounds

Also Published As

Publication number Publication date
JPS62207281A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
JP5550051B2 (en) Method for producing epoxy compound
JP2004099467A (en) Method for producing alicyclic epoxy compound
JP5778684B2 (en) Method for producing divinylarene dioxide
JP5894144B2 (en) Production process of divinylarene dioxide
JPS58172387A (en) Manufacture of 2,2-dicyclohexenylpropane diepoxide
JPH0471918B2 (en)
JPS62178578A (en) Production of oxysilanylcarboxilic ester
US20230399349A1 (en) Method of preparing symmetrical phosphate-based compound
RU2036196C1 (en) Method of synthesis of (±) -6- cyano- 3,4- dihydro -2,2-dimethyl -trans -4- (2-hydroxo -1-pyrrolidinyl) -2h-1- benzopyran -3-ol
JP3905772B2 (en) New multifunctional epoxy compounds
JP3536480B2 (en) 4,5-Dihalogeno-6-dihalogenomethylpyrimidine and process for producing the same
KR100296737B1 (en) The Process of Aceclofenac
JPH02180878A (en) Preparation of polyglycidyl ether
US5157131A (en) Epoxides and a process for their preparation
KR20230059118A (en) A manufacturing method of cycloaliphatic epoxy compound
US4058567A (en) Cyclopentene sulfoxides
US4240969A (en) Synthesis of menthofuran
JP2003340286A (en) Epoxidizing catalyst
JP2003096079A (en) Method for producing alicyclic epoxy compound with oxetane ring
JPS5839676A (en) Preparation of olefin oxide
JP3863956B2 (en) Novel process for producing phosphonic acid diesters
JP2001233869A (en) Optically active epoxypropionic acid ester derivative, its intermediate and method for producing thereof
EP0478803B1 (en) Process for producing (S)-gamma-acyloxy-methyl-alpha-beta-butenolide
US4658026A (en) N,N'-bis(2,3-epoxypropyl) derivatives of cyclic dicarboxylic acid hydrazides and a process for the production thereof
KR860000625B1 (en) Process for preparing pirbuterol and analogs

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term