JPH0471872B2 - - Google Patents

Info

Publication number
JPH0471872B2
JPH0471872B2 JP12504787A JP12504787A JPH0471872B2 JP H0471872 B2 JPH0471872 B2 JP H0471872B2 JP 12504787 A JP12504787 A JP 12504787A JP 12504787 A JP12504787 A JP 12504787A JP H0471872 B2 JPH0471872 B2 JP H0471872B2
Authority
JP
Japan
Prior art keywords
diamond
mixture
powder
carbonaceous
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12504787A
Other languages
Japanese (ja)
Other versions
JPS63289000A (en
Inventor
Shuzo Fujiwara
Katsutoshi Aoki
Yozo Kakudate
Shu Usuha
Masanori Yoshida
Katsumi Tanaka
Yoshihiko Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kureha Corp filed Critical Agency of Industrial Science and Technology
Priority to JP12504787A priority Critical patent/JPS63289000A/en
Publication of JPS63289000A publication Critical patent/JPS63289000A/en
Publication of JPH0471872B2 publication Critical patent/JPH0471872B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は衝撃波のような動的な加圧作用を利用
し、ダイヤモンド以外の炭素質を含む系に瞬間的
な高温、高圧力を付加し、ダイヤモンドを合成す
る方法において、合成されたダイヤモンドと未反
応の炭素質(以下、ダイヤモンド以外の炭素質、
すなわちグラフアイト、非晶質カーボン等を炭素
質と記す。)との混合物から炭素質を選択択的に
除去するための新規な方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention utilizes a dynamic pressurizing effect such as a shock wave to apply instantaneous high temperature and high pressure to a system containing carbon other than diamond. In the synthesis method, the synthesized diamond and unreacted carbonaceous material (hereinafter referred to as carbonaceous material other than diamond,
That is, graphite, amorphous carbon, etc. are referred to as carbonaceous. This invention relates to a novel method for selectively removing carbonaceous materials from mixtures with

〔従来技術〕[Prior art]

爆薬の爆発等の衝撃波による圧縮・加熱作用を
利用して得られるダイヤモンドは衝撃合成ダイヤ
モンド、あるいはシヨツクダイヤモンドと呼ば
れ、その合成方法は米国特許3238019号、3401019
号明細書や特公昭54−10558号公報等に詳しく報
じられ、公知の事実として知られている。衝撃合
成方法においては、生成したダイヤモンドと未反
応の炭素質、これは主として出発原料としてのグ
ラフアイト、あるいは非晶質のカーボンブラツク
類であるが、これらの炭素質とダイヤモンドが共
存するため、炭素質を除去し、ダイヤモンドを分
離する方法が製造プロセスにおける重要な技術課
題であり、ダイヤモンドと炭素質の酸化反応ある
いは水素化反応等に対する活性度の差を利用して
炭素質を酸化あるいは水素化して除去する方法が
常識的な方法として知られている。一般に、衝撃
合成されたダイヤモンドは超微粉状であり、かつ
格子残留ひずみが大きいため、前記の反応に対し
て活性が高く、浸されやすいので、効果的な分離
は困難である。かかる欠点をなくすため、衝撃処
理し回収した試料に酸化鉛等の酸化剤を触媒とし
て混ぜ、混合物を400℃前後の比較的低温度に保
ちつつ、空気酸化させる方法が米国特許3348918
号明細書及び特公昭52−28749号公報に述べられ
ている。しかしながら、この方法においては炭素
質を分離後、ダイヤモンド粉末と残存触媒粉末と
を再分離する必要があり、このため、化学薬品処
理や洗浄等の余分な処理工程を必要とし、この工
程中にダイヤモンドの一部が失われる等の欠点を
有する。
Diamonds obtained by using the compression and heating effects of shock waves from the explosion of explosives are called shock synthetic diamonds, or shot diamonds, and the synthesis method is described in U.S. Patents Nos. 3238019 and 3401019.
This is reported in detail in the specification of the Japanese Patent Publication No. 54-10558, etc., and is known as a publicly known fact. In the impact synthesis method, the produced diamond and unreacted carbon, which are mainly graphite as a starting material or amorphous carbon blacks, coexist with diamond. The method of removing diamonds and separating diamonds is an important technical issue in the manufacturing process. The method of removing it is known as a common-sense method. In general, impact-synthesized diamond is in the form of ultrafine powder and has a large residual lattice strain, so it is highly active for the above-mentioned reactions and is easily immersed, making effective separation difficult. In order to eliminate this drawback, US Patent No. 3,348,918 proposes a method in which an oxidizing agent such as lead oxide is mixed as a catalyst into the sample recovered after impact treatment, and the mixture is oxidized in air while keeping the mixture at a relatively low temperature of around 400 degrees Celsius.
No. 52-28749 and Japanese Patent Publication No. 52-28749. However, in this method, after separating the carbonaceous material, it is necessary to re-separate the diamond powder and the remaining catalyst powder, which requires extra processing steps such as chemical treatment and cleaning. It has disadvantages such as part of the data being lost.

〔目的〕〔the purpose〕

そこで、本発明は前記従来技術に見られる前記
欠点を克服することを目的とする。
SUMMARY OF THE INVENTION The present invention therefore aims to overcome the drawbacks found in the prior art.

〔構成〕〔composition〕

本発明者らは、衝撃処理方法等により生じたダ
イヤモンド粉末と未反応残存炭素質との効果的な
分離方法を開発すべく鋭意研究した結果、本発明
をなすに到つた。即ち、低圧力の酸素ガス中で高
周波放電を行うと、反応活性な励起状態の酸素も
しくは酸素イオンを生じることは、公知の事実で
あり、これを利用した有機物の灰化装置等が実用
に供されている。本発明者は、これらの反応活性
な酸素(以後、これを酸素プラズマと記す。)が
100℃程度の低温雰囲気化で使用できること、ま
た酸化作用が強いことから、これをダイヤモンド
と炭素質の混合系に与え、炭素質を選択的に酸化
する方法に利用することを考え、本発明をなすに
到つた。
The present inventors have completed the present invention as a result of intensive research aimed at developing an effective method for separating diamond powder produced by impact treatment methods and unreacted residual carbonaceous matter. In other words, it is a well-known fact that when high-frequency discharge is performed in low-pressure oxygen gas, reactive excited oxygen or oxygen ions are generated, and organic matter ashing devices that utilize this are not in practical use. has been done. The present inventor has discovered that these reactive oxygen species (hereinafter referred to as oxygen plasma)
Since it can be used in a low-temperature atmosphere of about 100°C and has a strong oxidizing effect, we thought of applying it to a mixed system of diamond and carbon and using it as a method to selectively oxidize the carbon. I arrived at the eggplant.

本発明は、ダイヤモンドとダイヤモンド以外の
炭素質との混合物からダイヤモンド以外の炭素質
を気相酸化法で除去するにおいて、該混合物を温
度15〜300℃で活性酸素プラズマと接触させて該
ダイヤモンド以外の炭素質を選択的に酸化除去す
ることを特徴とする炭素質の除去方法である。
In the present invention, in removing carbonaceous substances other than diamond from a mixture of diamond and carbonaceous substances other than diamond by a vapor phase oxidation method, the mixture is brought into contact with active oxygen plasma at a temperature of 15 to 300°C to remove the carbonaceous substances other than diamond. This is a carbonaceous removal method characterized by selectively oxidizing and removing carbonaceous substances.

本発明における被処理原料は、ダイヤモンドと
ダイヤモンド以外の炭素質との混合物であり、こ
のような混合物は、従来公知の方法、例えば、衝
撃加工法や衝撃焼結法等により得られる。
The raw material to be treated in the present invention is a mixture of diamond and carbonaceous material other than diamond, and such a mixture can be obtained by a conventionally known method, such as an impact processing method or an impact sintering method.

本発明は、このようなダイヤモンドとダイヤモ
ンド以外の炭素質との混合物を活性酸素プラズマ
で処理するが、本発明の場合この活性酸素プラズ
マ処理は、温度15〜300℃、好ましくは50〜200℃
の条件で行う。このような低温の活性酸素プラズ
マは、酸素ガス圧10トール以下、好ましくは0.1
〜1トールの含酸素雰囲気に、0.1〜100MHzの高
周波電力、好ましくは5〜15MHzの高周波電力を
放電させることにより、形成することができる。
本発明者らの研究によれば、このような低温活性
酸素プラズマを用いる時には、ダイヤモンドに比
べて、グラフアイトやカーボンブラツク等の他の
炭素質が選択的に酸化除去されることが見出され
た。
In the present invention, such a mixture of diamond and carbonaceous material other than diamond is treated with active oxygen plasma.
Performed under the following conditions. Such low-temperature active oxygen plasma is produced at an oxygen gas pressure of 10 Torr or less, preferably 0.1
It can be formed by discharging high frequency power of 0.1 to 100 MHz, preferably 5 to 15 MHz, into an oxygen-containing atmosphere of ~1 Torr.
According to research conducted by the present inventors, it has been found that when such low-temperature active oxygen plasma is used, other carbon materials such as graphite and carbon black are selectively oxidized and removed compared to diamond. Ta.

本発明により得られるダイヤモンドは、それ以
外の炭素質を殆んど含まないもので、その純度
は、通常99%以上である。
The diamond obtained by the present invention contains almost no other carbonaceous substances, and its purity is usually 99% or more.

以下、実施例で本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 平均粒径が18ミクロンのカーボンブラツク約
100gをスチール製の円筒状容器に充填し、5万
気圧以下の衝撃圧力で処理し、活性化したカーボ
ンブラツクを得た。この活性化処理したカーボン
ブラツク粉末及びデユポン社製のシヨツクダイヤ
モンド粉末(平均粒径:0.5ミクロン以下)及び
GE社製の静圧法により合成されたダイヤモンド
粉末(平均粒径:0.5ミクロン以下)の各々950〜
990mgを秤量し、モデル原料として用いた。これ
を各々内径55mmのガラスシヤーレーに広げてヤマ
ト科学製プラズマリアクター:ヤマト科学社製、
PR−501A機を用いて酸素ガス圧力:1トール、
ガス流量:85〜90ml/分、高周波加熱出力:
250Wの条件で酸化した。酸化処理中、30分ごと
にシヤーレーを取り出し、内部の試料の重量減少
を測定するとともにシヤーレ内で試料の攪拌を行
ない、炭素質の酸化気流への接触を良好ならしめ
た。その結果、2時間後にカーボンブラツクは完
全に消失したが、ダイヤモンド粉末は2時間後、
各々全量の1.1%、0.8%が気化したにとどまつ
た。また、処理時間を8時間程度に延長してもダ
イヤモンドの酸化はこれ以上ほとんど進行しない
ことがわかつた。
Example 1 Carbon black with an average particle size of 18 microns
100g of the carbon black was filled into a cylindrical steel container and treated under impact pressure of 50,000 atmospheres or less to obtain activated carbon black. This activated carbon black powder, DuPont's shock diamond powder (average particle size: 0.5 microns or less) and
Diamond powder (average particle size: 0.5 microns or less) synthesized by GE's static pressure method, each with 950 ~
990 mg was weighed and used as a model raw material. Each of these was spread in a glass shear array with an inner diameter of 55 mm, and a plasma reactor manufactured by Yamato Scientific Co., Ltd. was installed.
Oxygen gas pressure: 1 torr using PR-501A machine
Gas flow rate: 85-90ml/min, high frequency heating output:
Oxidation was carried out under the condition of 250W. During the oxidation treatment, the Shearley was taken out every 30 minutes to measure the weight loss of the sample inside, and the sample was stirred within the Shearley to ensure good contact of the carbonaceous to the oxidizing gas flow. As a result, carbon black completely disappeared after 2 hours, but diamond powder disappeared after 2 hours.
Only 1.1% and 0.8% of the total amount was vaporized, respectively. It was also found that even if the treatment time was extended to about 8 hours, the oxidation of the diamond hardly progressed any further.

実施例 2 結晶性の良好な天然黒鉛粉末(平均粒径:7μ、
灰分含有量:2%、揮発分含有料:1%)及び実
施例1に使用したシヨツクダイヤモンドと活性化
したカーボンブラツク各々1gを高周波出力を
500Wとする以外は、実施例1と全く同じ方法で
酸化処理した。その結果、活性化したカーボンブ
ラツクは、2.5時間後に、また天然黒鉛は3.5時間
後に100%が消失したが、ダイヤモンドは1.5%が
気化したにとどまつた。
Example 2 Natural graphite powder with good crystallinity (average particle size: 7μ,
Ash content: 2%, volatile content: 1%) and 1 g each of the shot diamond and activated carbon black used in Example 1 were subjected to high-frequency output.
The oxidation treatment was performed in exactly the same manner as in Example 1 except that the power was 500W. As a result, 100% of activated carbon black and natural graphite disappeared after 2.5 hours and 3.5 hours, but only 1.5% of diamond was vaporized.

実施例 3 実施例1に使用した活性化されたカーボンブラ
ツク1gと同じく実施例1に使用したシヨツクダ
イヤモンド1gを各々、乳鉢で混合し、この混合
物を内径85mmのシヤーレに広げ、プラズマリアク
ターPR−501Aを用いて実施例1と同一条件で酸
化処理した。その結果、2.5時間後に混合物中の
カーボンブラツクの50%が、5時間後に85%が、
10時間後にほぼ100%が消失した。ダイヤモンド
の消失は1.5%程度であつた。
Example 3 1 g of the activated carbon black used in Example 1 and 1 g of the shock diamond used in Example 1 were each mixed in a mortar, and this mixture was spread in a shear dish with an inner diameter of 85 mm, and the mixture was placed in a plasma reactor PR-501A. Oxidation treatment was carried out under the same conditions as in Example 1. As a result, 50% of the carbon black in the mixture was dissolved after 2.5 hours, and 85% after 5 hours.
Almost 100% disappeared after 10 hours. The loss of diamond was about 1.5%.

比較例 比較例のために昭52−28749号公報に記載され
ている方法で酸化処理を行なつた。すなわち、実
施例2で用いた天然黒鉛及び実施例1で用いたシ
ヨツクダイヤモンド各々1gに一酸化鉛(PbO)
0.1gを混合攪拌し、これを内径90mmの磁製皿に広
げ、450℃に保つた電気炉に置き、空気を流し攪
拌しつつ酸化処理を行なつた。その結果、3.5時
間後に天然黒鉛のほぼ100%が、シヨツクダイヤ
モンドの9%が消失した。このことから、鉛の酸
化物はグラフアイトに対しての気相酸化触媒作用
はあるが、シヨツクダイヤモンドもかなり酸化さ
せることが示された。
Comparative Example For a comparative example, oxidation treatment was carried out by the method described in Publication No. 52-28749. That is, lead monoxide (PbO) was added to 1 g each of natural graphite used in Example 2 and shot diamond used in Example 1.
0.1 g was mixed and stirred, spread on a porcelain plate with an inner diameter of 90 mm, placed in an electric furnace kept at 450°C, and oxidized while stirring with air flowing through it. As a result, almost 100% of the natural graphite and 9% of the shot diamond disappeared after 3.5 hours. This indicates that lead oxides have a gas-phase oxidation catalytic effect on graphite, but they also oxidize shock diamond to a large extent.

実施例 4 平均粒径が50ミクロン以下の銅粉90重量部と、
平均粒径が18ミクロンのカーボンブラツク10重量
部をボールミル内で攪拌混合し、この混合物約
8gを油圧プレス装置で理論密度の60%程度に圧
填成形する。成形体をスチール製の容器に封入
し、これに約80万気圧の衝撃圧力を与えた。衝撃
処理後、前記成形体を王水で処理し、不溶残渣物
を乾燥し、約24.5時間、温度100℃でプラズマ酸
化処理を行なつた後、再度、王水処理し、残渣物
をさらに13時間、同様のプラズマ酸化処理した結
果、約0.1gの灰白色の粉末を得た。このものを粉
末X線回折法で調べた結果、ダイヤモンドである
ことが確認され、その合成収率は13%であつた。
一方、比較のために、同様な衝撃処理を行なつた
成形体を王水処理後、残渣を乾燥し、乾燥残渣に
対して重量比で1/3のPbO粉末を加え、425℃
に保つた電気炉で約4時間酸化処理をし、最終的
に鉛分を除去した結果、この場合には、ダイヤモ
ンドの合成収率は約6%であつた。
Example 4 90 parts by weight of copper powder with an average particle size of 50 microns or less,
10 parts by weight of carbon black with an average particle size of 18 microns was stirred and mixed in a ball mill, and the mixture was mixed with approx.
Pressure mold 8g to approximately 60% of the theoretical density using a hydraulic press device. The molded body was sealed in a steel container, and an impact pressure of approximately 800,000 atmospheres was applied to it. After the impact treatment, the molded body was treated with aqua regia, the insoluble residue was dried, and the plasma oxidation treatment was performed at a temperature of 100°C for about 24.5 hours. As a result of the same plasma oxidation treatment for several hours, about 0.1 g of grayish white powder was obtained. When this material was examined by powder X-ray diffraction, it was confirmed to be diamond, and the synthesis yield was 13%.
On the other hand, for comparison, a molded body subjected to similar impact treatment was treated with aqua regia, the residue was dried, PbO powder was added at a weight ratio of 1/3 to the dried residue, and the product was heated at 425°C.
Oxidation treatment was carried out for about 4 hours in an electric furnace maintained at a constant temperature, and the lead content was finally removed, resulting in a diamond synthesis yield of about 6% in this case.

〔効果〕〔effect〕

以上、実施例に示されるがごとく、活性化され
た酸素プラズマによる酸化作用は、ダイヤモンド
と炭素質に対して極めて選択性があり、衝撃合成
された微粉末のダイヤモンドを効率的に未反応炭
素質との混合物から、選択的に炭素質を除去する
ことができる。この酸素プラズマによる酸化は、
粒子の表面で進行することから、酸化処理する試
料を常にかきまぜて、新しい表面が酸素プラズマ
気流に接触するように行えば、効率的な炭素質の
除去が可能となる。また、天然のダイヤモンド微
粉末もしくは静圧合成されたダイヤモンド微粉
末、もしくは衝撃合成されたダイヤモンド微粉
末、もしくはこれらの混合物を特公昭54−10558
号公報に記載されているような方法により爆発衝
撃処理し、瞬間的に増結させ増粒する爆発焼結法
において得られた固結したダイヤモンド粒とグラ
フアイト化した炭素質との混合物からの炭素質の
除去にも本発明は有利に適用できる。すなわち、
爆発焼結法においては、グラフアイト化した一部
の炭素質を除去し、固化したダイヤモンドの粒子
の純度を高める必要があるが、本発明は、このよ
うな用途にも適用できるものである。
As shown in the examples above, the oxidation effect by activated oxygen plasma is extremely selective to diamond and carbonaceous material, and it efficiently converts the impact-synthesized fine powder diamond into unreacted carbonaceous material. Carbonaceous material can be selectively removed from a mixture with. Oxidation by this oxygen plasma is
Since oxidation progresses on the surface of particles, if the sample to be oxidized is constantly stirred so that the new surface comes into contact with the oxygen plasma stream, efficient carbonaceous removal becomes possible. In addition, natural diamond fine powder, static pressure synthesized fine diamond powder, impact synthesized fine diamond powder, or a mixture thereof can be used in Japanese Patent Publication No. 54-10558.
Carbon from a mixture of solidified diamond grains and graphitized carbonaceous material obtained by explosive sintering, which is subjected to explosive impact treatment by the method described in the publication, and instantaneously increases and increases the grain size. The present invention can also be advantageously applied to the removal of particles. That is,
In the explosive sintering method, it is necessary to remove some of the graphitized carbon to improve the purity of solidified diamond particles, and the present invention can also be applied to such uses.

Claims (1)

【特許請求の範囲】[Claims] 1 ダイヤモンドとダイヤモンド以外の炭素質と
の混合物から、該ダイヤモンド以外の炭素質を気
相酸化法で除去するにおいて、該混合物を温度15
〜300℃で活性酸素プラズマと接触させて該ダイ
ヤモンド以外の炭素質を選択的に酸化除去するこ
とを特徴とする炭素質の除去方法。
1. When removing carbonaceous substances other than diamond from a mixture of diamond and carbonaceous substances other than diamond by a gas phase oxidation method, the mixture is heated to a temperature of 15
A method for removing carbonaceous matter, which comprises selectively oxidizing and removing carbonaceous matter other than the diamond by bringing it into contact with active oxygen plasma at ~300°C.
JP12504787A 1987-05-21 1987-05-21 Method for removing carbonaceous material from mixture of diamond and carbonaceous material Granted JPS63289000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12504787A JPS63289000A (en) 1987-05-21 1987-05-21 Method for removing carbonaceous material from mixture of diamond and carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12504787A JPS63289000A (en) 1987-05-21 1987-05-21 Method for removing carbonaceous material from mixture of diamond and carbonaceous material

Publications (2)

Publication Number Publication Date
JPS63289000A JPS63289000A (en) 1988-11-25
JPH0471872B2 true JPH0471872B2 (en) 1992-11-16

Family

ID=14900521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12504787A Granted JPS63289000A (en) 1987-05-21 1987-05-21 Method for removing carbonaceous material from mixture of diamond and carbonaceous material

Country Status (1)

Country Link
JP (1) JPS63289000A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028675A1 (en) * 2006-05-15 2010-02-04 Yury Gogotsi Process of purifying nanodiamond compositions and applications thereof
US20080170981A1 (en) * 2007-01-17 2008-07-17 Genis Alfred R Enhanced diamond polishing

Also Published As

Publication number Publication date
JPS63289000A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
CA2459579A1 (en) Method of producing silicon metal particulates of reduced average size
EP0161975B1 (en) Process for producing porous products of boron or boron compounds
JP3598369B2 (en) Method for producing silica raw material
JP4677665B2 (en) Method for producing high-pressure phase material
JPH0471872B2 (en)
JP2500930B2 (en) Purification method of carbon black
JPH0253400B2 (en)
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
JPS5849631B2 (en) How to scrapp and recycle rare earth magnets
JP2003206476A (en) Heat-treated diamond fine powder and method for producing the same
JPH07216474A (en) Production of high purity metallic chromium
KR100483929B1 (en) A method for making silicon-based industrial wastes into a fire-resistance powder
JPH1029814A (en) Production of bcn based material having crystal structure at high pressure phase
RU2737103C1 (en) Method of producing zirconium powder
US20050160678A1 (en) Abrasive particles based on aluminium oxynitride
RU2130336C1 (en) Method of producing graphite boron nitride
JPH1192128A (en) Method for removing carbon from particle mixture
JPS6042164B2 (en) Powder manufacturing method
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JP2970400B2 (en) Method for producing high α-type silicon nitride powder
RU2188160C1 (en) Method of preparing lithium methatantalate
JPH11217633A (en) High purity ruthenium powder and its production
JPS61102416A (en) Production of fibrous silicon carbide
JP2719394B2 (en) Method for producing silicon carbide
JPH0475771B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term