JPH0471534A - Magnetic resonance image device - Google Patents

Magnetic resonance image device

Info

Publication number
JPH0471534A
JPH0471534A JP2184208A JP18420890A JPH0471534A JP H0471534 A JPH0471534 A JP H0471534A JP 2184208 A JP2184208 A JP 2184208A JP 18420890 A JP18420890 A JP 18420890A JP H0471534 A JPH0471534 A JP H0471534A
Authority
JP
Japan
Prior art keywords
transformers
impedance
synthesizer
probe
different characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2184208A
Other languages
Japanese (ja)
Inventor
Kiyomi Mori
清巳 守
Kozo Sato
幸三 佐藤
Yoshinori Suzuki
義規 鈴木
Kazuya Okamoto
和也 岡本
Hidehiro Watanabe
英宏 渡邊
Yasutoshi Ishihara
康利 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2184208A priority Critical patent/JPH0471534A/en
Publication of JPH0471534A publication Critical patent/JPH0471534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small magnetic resonance image device and solve problems such as the usage in the high magnetic field, stray capacity and size by constituting a 90 deg.-distributing/synthesizing unit with two pairs of impedance transformers, adjacently arranging transformers with different characteristic impedances, and connecting the transformers with different characteristic impedances together. CONSTITUTION:GND portions of four 1/4-wavelength impedance transformers 1, 2, 3, 4 are bundled, for example, they are soldered at a proximity layout with the minimum volume, two of the transformers 1-4 with different characteristic impedances are adjacently arranged, and the transformers with the same characteristic impedance are diagonally arranged. The adjacent transformers with different characteristic impedances are connected together. The transformers 1, 4 and 2, 3 are vertically connected in parallel on one side, and the transformers 1, 2 and 3, 4 are horizontally connected in parallel on the other side. This device can be used in the high magnetic field environment, it has no effect from the stray capacity of a casing, and it can be miniaturized and made lightweight as compared with conventional probes.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、90°分配・合成器を備えたプローブをもつ
磁気共鳴映像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application)] The present invention relates to a magnetic resonance imaging apparatus having a probe equipped with a 90° distributor/synthesizer.

(従来の技術) 第4図は、MHIにおいてQDプローブを使用する時の
概念図である。1はQDタイプのプローブ、2はQDタ
イプのプローブに送受信する時の、RF電力を分配・合
成する90°分配・合成器(ハイブリッドタイプのもの
)である。本明細書中では、QDタイプのプローブと9
0″分配や合成器を相称してプローブと記載している。
(Prior Art) FIG. 4 is a conceptual diagram when using a QD probe in MHI. 1 is a QD type probe, and 2 is a 90° distributor/synthesizer (hybrid type) that distributes and combines RF power when transmitting and receiving to the QD type probe. Herein, QD type probes and 9
The 0'' distributor and combiner are collectively referred to as probes.

3はQDタイプのプローブ内に配置される被測定物であ
る。以下にこれらの動作を説明する。送信の際、被測定
物3にRFパワーを効率良く照射しかつ、受信の際、N
MR信号を高S/Nで受信する手法として、プローブを
QD化することが良く行われる。これはQDタイプのプ
ローブ1内の被測定物3に対し円偏波の送受信を行うこ
とにより送受信具効率を向上させることができるもので
ある。この時QDタイププローブ1を構成する要素のひ
とつとして、送信RF電力を90″位相差の3dB低下
した電力に2分割しQDタイプのプローブ1へ送り、ま
たQDタイプのプローブ1からの90″位相差の受信信
号を合成する、90°分配・合成器2がある。
3 is an object to be measured placed inside a QD type probe. These operations will be explained below. During transmission, RF power is efficiently irradiated to the object under test 3, and during reception, N
As a method of receiving MR signals with a high S/N, it is often used to make the probe QD. This is capable of improving the efficiency of the transmitting/receiving device by transmitting and receiving circularly polarized waves to and from the object to be measured 3 within the QD type probe 1. At this time, as one of the elements constituting the QD type probe 1, the transmitted RF power is divided into two with a 3 dB lower power with a 90'' phase difference and sent to the QD type probe 1, and the 90'' position from the QD type probe 1 is divided into two. There is a 90° distribution/synthesizer 2 that combines received signals with phase differences.

第5図(a) 、(b)は90°分配・合成器の種類を
説明する回路構成図である。第5図(a)は、インダク
タンスとキャパシタンスを組み合せA、B。
FIGS. 5(a) and 5(b) are circuit configuration diagrams illustrating types of 90° distributor/synthesizer. FIG. 5(a) shows the combinations A and B of inductance and capacitance.

C,Dそれぞれの2つの端子は片方の端子それぞれを共
通にGNDに接続し、もう一方を、測定機器への接続端
子に用いるタイプである。また、第5図(b)は、特性
インピーダンスZoの1/4波長インピーダンス変成器
や特性インピーダンスZ o / J 2の1/4波長
インピーダンス変成器を組み合せたタイプである。また
、この他に伝送線路トランスを使用するタイプのものも
あり、これは原理的に第5図(a)に示すインダクタン
スとキャパシタンスを組合わせるタイプと同様である。
Each of the two terminals C and D is of a type in which one terminal is commonly connected to GND, and the other terminal is used as a connection terminal to a measuring device. Further, FIG. 5(b) shows a type in which a quarter-wavelength impedance transformer with a characteristic impedance Zo and a quarter-wavelength impedance transformer with a characteristic impedance Zo/J2 are combined. In addition, there is also a type that uses a transmission line transformer, which is similar in principle to the type that combines inductance and capacitance shown in FIG. 5(a).

これを磁気共鳴映像装置(MHI )に用いる場合、高
磁場環境下であるためコア内に発生する磁束が飽和して
しまい、90°分配・合成器としての特性に劣化を招い
てしまう。
When this is used in a magnetic resonance imaging apparatus (MHI), the magnetic flux generated in the core becomes saturated due to the high magnetic field environment, resulting in deterioration of the characteristics as a 90° distributor/synthesizer.

第5図(a)に示すインダクタンスとキャパシタンスだ
けを使用するタイプの場合、実用上、インダクタンス部
に発生する浮遊容量のふらつきによる周波数特性の変動
をおさえるためケーシングを施す必要があり、浮遊容量
を考慮した調整等も必要となる。そして、構成部品とケ
ース間の構造上の耐圧、構成部品自体の耐圧等を考慮す
る必要がある。
In the case of the type shown in Figure 5 (a) that uses only inductance and capacitance, in practice it is necessary to provide a casing to suppress fluctuations in frequency characteristics due to fluctuations in stray capacitance that occur in the inductance section, so stray capacitance must be taken into account. Additional adjustments will also be required. It is also necessary to consider the structural pressure resistance between the component parts and the case, the pressure resistance of the component parts themselves, and the like.

また第5図(b)に示すものは、4つの1/4波長イン
ピーダンス変成器を応用し、2種類の特性インピーダン
スZ、/J2を用いたマイクロストリップ線路から構成
するタイプである。一般にこれは扱う周波数がマイクロ
波帯域(UHF以上)の場合よく用いられる。その理由
は波長が短いため、マイクロストリップ線路で作る2種
類の1/4波長インピ一ダンス変成器4個分も短く構成
でき、必然的に90°分配・合成器自体の回路構成も小
型化できる。しかし、MRIのような短波帯(HF) 
・超短波帯(VHF)の周波数帯域下では、波長が数メ
ートルにもおよぶため、90°分配・合成器を構成して
いる4つのインピーダンス変成器を正方形の各辺上に配
置させるように並べそれぞれを接続したものを使用する
と分配・合成器自体も数メートル四方の厚みを持った正
方形の箱になり、作業上や運搬上の効率を低下させるた
め実用的ではない。
Furthermore, the one shown in FIG. 5(b) is a type constructed from a microstrip line using two types of characteristic impedances Z and /J2 by applying four quarter-wavelength impedance transformers. Generally, this is often used when the frequency to be handled is in the microwave band (UHF or higher). The reason for this is that the wavelength is short, so it can be constructed as short as four 1/4 wavelength impedance transformers of two types made of microstrip lines, and the circuit configuration of the 90° distributor/synthesizer itself can also be made smaller. . However, short wave band (HF) such as MRI
・In the very high frequency band (VHF), the wavelength spans several meters, so the four impedance transformers that make up the 90° splitter/synthesizer are arranged on each side of a square. If you use a device that connects , the distributor/synthesizer itself becomes a square box with a thickness of several meters on each side, which is not practical as it reduces the efficiency of work and transportation.

(発明が解決しようとする課題) 以上述べてきたように、従来は、磁気共鳴映像装置に使
用される周波数帯は短波帯が主であり、波長も数メート
ルにおよぶため90″分配・合成器を備えたプローブは
大型化するという欠点があった。
(Problems to be Solved by the Invention) As stated above, conventionally, the frequency band used in magnetic resonance imaging equipment is mainly a shortwave band, and the wavelength ranges over several meters, so a 90" splitter/synthesizer has been used. A probe equipped with this had the disadvantage of being large.

そこで、本発明は、上述した点に鑑みてなされたもので
高磁場下での使用、構成上の浮遊容量及び耐圧、構造上
の大きさ等の問題を解決した4つのインピーダンス変成
器で構成される90″分配・合成器を備えた磁気共鳴映
像装置を提供することを目的とするものである。
Therefore, the present invention has been made in view of the above points, and is composed of four impedance transformers that solve problems such as use under high magnetic fields, stray capacitance and withstand voltage due to construction, and size due to structure. The object of the present invention is to provide a magnetic resonance imaging apparatus equipped with a 90'' distributor/synthesizer.

[発明の構成コ (課題を解決するための手段) 上記目的を達成するために、本発明においては、プロー
ブを被測定物に接触させてこの被測定物から得られる画
像データをプローブで測定し、このプローブ部からの測
定結果を所定の波長で動作する90°分配・合成器に入
力し、この出力結果の解析を行う磁気共鳴映像装置であ
って、この90″分配・合成器は、2組のインピーダン
ス変成器からなり隣り合うインピーダンス変成器それぞ
れが互いに異なる特性インピーダンス特性を有するよう
に各インピーダンス変成器の長手方向が平行になる位置
に近接してこの各インピーダンス変成器を配置し、かつ
特性インピーダンスが異なるインピーダンス変成器どう
しを接続したことを特徴とするものである。
[Configuration of the Invention (Means for Solving the Problems) In order to achieve the above object, the present invention includes a method of bringing a probe into contact with an object to be measured and measuring image data obtained from the object with the probe. , is a magnetic resonance imaging apparatus that inputs the measurement results from this probe section into a 90° distributor/synthesizer operating at a predetermined wavelength and analyzes the output results. Each impedance transformer is arranged close to a position where the longitudinal direction of each impedance transformer is parallel to each other so that each of the adjacent impedance transformers has different characteristic impedance characteristics, and This is characterized by connecting impedance transformers with different impedances.

(作  用) プローブを構成している90°分配・合成器は2組のイ
ンピーダンス変成器で構成されている。
(Function) The 90° distributor/synthesizer that makes up the probe consists of two sets of impedance transformers.

本発明の90°分配・合成器ではこの2組のインピーダ
ンス変成器それぞれの隣りどうしが互いに異なる特性イ
ンピーダンスになるよう各インピーダンス変成器の長手
方向が平行になるよう近接して配置し、これらの特性イ
ンピーダンスが異なるインピーダンス変成器どうしを接
続することで、小型化が実現できる。
In the 90° distributor/synthesizer of the present invention, these two sets of impedance transformers are arranged close to each other so that the longitudinal directions of the impedance transformers are parallel to each other so that adjacent sets of impedance transformers have different characteristic impedances. Miniaturization can be achieved by connecting impedance transformers with different impedances.

(実施例) 本発明の一実施例を図面を参照しながら説明する。ここ
では1/4波長インピーダンス変成器をセミリジットケ
ーブルで構成した場合について説明する。第1図は、本
発明に関わる4つの1/4波長インピーダンス変成器に
より構成された90″分配・合成器(ハイブリッド)の
一実施例をあられす構造図である。第1図を用い90’
分配・合成器(ハイブリッド)の構造を説明する。
(Example) An example of the present invention will be described with reference to the drawings. Here, a case will be described in which the 1/4 wavelength impedance transformer is configured with a semi-rigid cable. FIG. 1 is a structural diagram of an embodiment of a 90'' distributor/combiner (hybrid) constructed of four quarter-wavelength impedance transformers related to the present invention.
The structure of the distributor/synthesizer (hybrid) will be explained.

この図では一例として4つの1/4波長インピーダンス
変成器1,2,3.4のGNDの部分を束ねるようにし
、最小の体積になるよう接近した配置にハンダ付けさせ
ている、尚、各1/4波長インピーダンス変成器どうし
の接続については、後述する。
In this figure, as an example, the GND parts of four quarter-wavelength impedance transformers 1, 2, and 3.4 are bundled and soldered close together to minimize the volume. The connection between the /4 wavelength impedance transformers will be described later.

第2図は(a) 、 (b) 、 (c)は本発明の一
実施例の内部構造を説明する構成図である。第2図(a
)は90″分配・合成器の横断面図で、第2図(b)は
第2図(a)の左側からみた断面図で、第2図は(C)
は第2図(a)の右側からみた断面図である。第2図(
b)を参考にして特性インピーダンスZ0のセミリジッ
トケーブル1を中心にした場合について説明する。4つ
の1/4波長インピーダンス変成器1,2.3.4の配
置は隣り合うものどうしは異なる特性インピーダンスの
ものであり、例えば特性インピーダンスZoの1/4波
長インピーダンス変成器1の隣りは、特性インピーダン
スZ。
FIGS. 2(a), 2(b), and 2(c) are configuration diagrams illustrating the internal structure of an embodiment of the present invention. Figure 2 (a
) is a cross-sectional view of the 90'' distributor/synthesizer, Figure 2(b) is a cross-sectional view seen from the left side of Figure 2(a), and Figure 2(C) is a cross-sectional view of the 90'' distributor/synthesizer.
is a sectional view seen from the right side of FIG. 2(a). Figure 2 (
With reference to b), the case will be explained focusing on the semi-rigid cable 1 having a characteristic impedance Z0. The arrangement of the four quarter-wave impedance transformers 1, 2, 3, and 4 is such that adjacent ones have different characteristic impedances. For example, the quarter-wave impedance transformers 1 next to each other having a characteristic impedance Zo have different characteristic impedances. Impedance Z.

/J2の1/4波長インピーダンス変成器2と4である
。また斜めに隣り合うものは同じ特性インピーダンスの
ものであり、例えば特性インピーダンスZo/の1/4
波長インピーダンス変成器1の斜め隣りは、特性インピ
ーダンスZo/の1/4波長インピーダンス変成器3で
ある。
/J2 1/4 wavelength impedance transformers 2 and 4. Diagonally adjacent ones have the same characteristic impedance, for example, 1/4 of the characteristic impedance Zo/
Diagonally adjacent to the wavelength impedance transformer 1 is a quarter wavelength impedance transformer 3 having a characteristic impedance Zo/.

線路の接続は、第2図(b) 、 (c)に示すように
隣り合う異なる特性インピーダンスを持つ線路同志を接
続する。つまり第2b図に示すよう片方は縦に並列、具
体的には1と4.2と3とを接続する。
To connect the lines, adjacent lines having different characteristic impedances are connected as shown in FIGS. 2(b) and 2(c). That is, as shown in FIG. 2b, one side connects vertically in parallel, specifically, 1, 4, 2, and 3.

また第2図(C)に示すようもう片方は横に並列、具体
的には1と2.3と4とを接続する。
Moreover, as shown in FIG. 2(C), the other side is connected horizontally in parallel, specifically, 1, 2, 3, and 4.

第3図に示した本発明の一実施例の詳細を説明する動作
説明図を使用し90°分配・合成器(ハイブリッド)の
動作を説明する。同図の構成を第1図に対応させると、
第3図に示した端子A、 B間は第1図のインピーダン
ス変成器1に、第3図に示した端子B、C間は第1図の
インピーダンス変成器2に、第3図に示した端子C,D
間は第1図のインピーダンス変成器3に、第3図にイン
ピーダンス変成器4に対応している。AまたはDから入
力された信号は、BとCに電力が2分され、入力レベル
より3 [dB]低い値となって出力される。この時B
とCに2分され出力される信号間の位相差は90°であ
る。ただしAD間、BC間では信号の通過がない(アイ
ソレーションが取れている)ため、干渉することが無く
、例えばA(B)から入力された電力がD (C)に直
接伝送されることは無い。この場合はセミリジットケー
ブルを例に説明したが、この実施例だけに限定されるだ
けのものではない。
The operation of the 90° distributor/synthesizer (hybrid) will be explained using the operation explanatory diagram showing details of an embodiment of the present invention shown in FIG. If the configuration in the same figure corresponds to that in Figure 1,
Between the terminals A and B shown in Fig. 3, the impedance transformer 1 shown in Fig. 1 is used, and between the terminals B and C shown in Fig. 3, the impedance transformer 2 shown in Fig. 1 is used. Terminals C, D
1 corresponds to the impedance transformer 3 in FIG. 1, and corresponds to the impedance transformer 4 in FIG. The power of the signal input from A or D is divided into two between B and C, and the signal is output at a value 3 [dB] lower than the input level. At this time B
The phase difference between the signals divided into two and outputted is 90°. However, since no signal passes between AD and BC (isolation is achieved), there is no interference, and for example, power input from A (B) cannot be directly transmitted to D (C). None. Although this case has been explained using a semi-rigid cable as an example, the present invention is not limited to this embodiment.

[発明の効果] 以上詳述してきたように本発明の磁気共鳴映像装置に備
えられるプローブは従来からある4つのインピーダンス
変成器で構成され90”分配・合成器を備えるプローブ
に比べ高磁場環境下でも使用可能であり、ケーシングに
よる浮遊容量からの影響も無く小型、軽量化が実現でき
る。
[Effects of the Invention] As described in detail above, the probe included in the magnetic resonance imaging apparatus of the present invention is configured with four impedance transformers and can be used in a high magnetic field environment compared to a conventional probe equipped with a 90" distributor/synthesizer. However, it can also be used in smaller sizes and lighter weight without being affected by stray capacitance caused by the casing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示した図、第2図は、本
発明の一内部構造を示した図、第3図は本発明の他の実
施例を示した図、第4図は従来例を示した図、第5図は
従来の90°分配・合成器の回路構成を示した図である
。 1.3・・・特性インピーダンスZOの174波長イン
ピーダンス変成器、2,4・・・特性インピーダンスZ
 o / J 2の1/4波長インピーダンス変成器。
1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing an internal structure of the present invention, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. 4 is a diagram showing another embodiment of the present invention. The figure shows a conventional example, and FIG. 5 is a diagram showing the circuit configuration of a conventional 90° distributor/synthesizer. 1.3...174 wavelength impedance transformer with characteristic impedance ZO, 2,4...characteristic impedance Z
o/J 2 quarter wavelength impedance transformer.

Claims (1)

【特許請求の範囲】[Claims] プローブを被測定物に接触させてこの被測定物から得ら
れる画像データを前記プローブで測定し、このプローブ
からの測定結果を、所定の波長で動作する90°分配・
合成器に入力し、この出力結果の解析を行う磁気共鳴映
像装置において、前記90°分配合成器は2組のインピ
ーダンス変成器からなり、隣り合うインピーダンス合成
器それぞれが互いに異なる特性インピーダンス特性を有
するように各インピーダンス変成器の長手方向が平行に
なる位置に近接して配置し、かつ異なるインピーダンス
特性を有するインピーダンス変成器どうしを接続したこ
とを特徴とする磁気共鳴映像装置。
A probe is brought into contact with an object to be measured, and the image data obtained from the object is measured by the probe, and the measurement results from this probe are transferred to a 90° distribution device that operates at a predetermined wavelength.
In a magnetic resonance imaging apparatus that inputs input to a synthesizer and analyzes the output results, the 90° distribution synthesizer is composed of two sets of impedance transformers, and each adjacent impedance synthesizer has a different characteristic impedance characteristic. 1. A magnetic resonance imaging apparatus characterized in that impedance transformers having different impedance characteristics are connected to each other, and the impedance transformers are arranged close to each other at positions where the longitudinal directions of the impedance transformers are parallel to each other.
JP2184208A 1990-07-13 1990-07-13 Magnetic resonance image device Pending JPH0471534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2184208A JPH0471534A (en) 1990-07-13 1990-07-13 Magnetic resonance image device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2184208A JPH0471534A (en) 1990-07-13 1990-07-13 Magnetic resonance image device

Publications (1)

Publication Number Publication Date
JPH0471534A true JPH0471534A (en) 1992-03-06

Family

ID=16149254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2184208A Pending JPH0471534A (en) 1990-07-13 1990-07-13 Magnetic resonance image device

Country Status (1)

Country Link
JP (1) JPH0471534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932721B2 (en) 2006-04-07 2011-04-26 The United States Of America As Represented By The Department Of Health And Human Services Inductive decoupling of a RF coil array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932721B2 (en) 2006-04-07 2011-04-26 The United States Of America As Represented By The Department Of Health And Human Services Inductive decoupling of a RF coil array

Similar Documents

Publication Publication Date Title
US7999755B2 (en) Method and apparatus for quadrifilar antenna with open circuit element terminations
US6054906A (en) RF power divider
US7676252B2 (en) Filter circuit having plural resonator blocks with a phase adjustment unit
US7936171B2 (en) Baluns, a fine balance and impedance adjustment module, a multi-layer transmission line, and transmission line NMR probes using same
US20070075802A1 (en) Wide-bandwidth balanced transformer
US6246299B1 (en) High power broadband combiner having ferrite cores
US5808518A (en) Printed guanella 1:4 balun
US5091708A (en) Transmission line transformer
US5450011A (en) Magnetic resonance apparatus having a wideband matching network
CN109521374B (en) Resonance tangential electric field probe embedded with integrated balun and loaded improved dipole
JPH0714389B2 (en) Nuclear magnetic resonance imaging apparatus and other interface method and apparatus
US4951012A (en) Transformer arrangement to accomplish impedance transformation
JPH01305703A (en) Pi/2 power divider
US11181592B2 (en) Radio-frequency power converter and radio-frequency transmission system for magnetic resonance imaging
Sohn et al. A compact, high power capable, and tunable high directivity microstrip coupler
JPH0471534A (en) Magnetic resonance image device
JP4757942B2 (en) Broadband hybrid coupler and related method
Sardi et al. Design and fabrication of the novel miniaturized microstrip coupler 3dB using stepped impedance resonators for the ISM applications
JPH02231807A (en) Coupler
CN114137460B (en) Radio frequency array coil system
Apurva et al. Development of compact and flexible quadrature hybrid coupler using coaxial cable with capacitive loading for 1.5 T indigenous MRI system
JPS6119124B2 (en)
Buhtiyarov et al. The Novel Linearly and Circularly Polarized Dipole-like Antennas Fed by the Rectangular Waveguide
EP0569091A1 (en) Magnetic resonance apparatus
CN116487856A (en) Radio frequency broadband miniaturized coupler