JPH0471446B2 - - Google Patents

Info

Publication number
JPH0471446B2
JPH0471446B2 JP61218858A JP21885886A JPH0471446B2 JP H0471446 B2 JPH0471446 B2 JP H0471446B2 JP 61218858 A JP61218858 A JP 61218858A JP 21885886 A JP21885886 A JP 21885886A JP H0471446 B2 JPH0471446 B2 JP H0471446B2
Authority
JP
Japan
Prior art keywords
probe
liquid level
ultrasonic
salt bath
level gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61218858A
Other languages
Japanese (ja)
Other versions
JPS6373117A (en
Inventor
Toshikazu Kobayashi
Atsushi Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUEROO KK
NIPPON SUTENRESU KK
Original Assignee
FUEROO KK
NIPPON SUTENRESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUEROO KK, NIPPON SUTENRESU KK filed Critical FUEROO KK
Priority to JP61218858A priority Critical patent/JPS6373117A/en
Publication of JPS6373117A publication Critical patent/JPS6373117A/en
Publication of JPH0471446B2 publication Critical patent/JPH0471446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波液面計、特に従来は超音波の
反射波を捕えることのできなかつた、例えば300
℃以上という高温のソルトバス液面を測定する超
音波高温液面計に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultrasonic liquid level gauge, and particularly to a liquid level meter that has conventionally been unable to capture reflected waves of ultrasonic waves.
This invention relates to an ultrasonic high-temperature liquid level gauge that measures the high-temperature salt bath liquid level at temperatures above ℃.

(従来の技術) 液面計は液面の位置を指示する計測器で、液面
を直接監視できないとき、遠隔測定するとき、あ
るいは自動制御装置の検出部として使用するとき
等に用いられている。
(Prior art) A liquid level gauge is a measuring device that indicates the position of the liquid level, and is used when the liquid level cannot be directly monitored, for remote measurement, or when used as a detection part of an automatic control device. .

その測定方式には、浮子式、ゲージグラス式、
液圧式、X線・γ線方式、超音波式のものがあげ
られ、これらの方式はすでに工業計測器として多
方面に利用されていた。
Measurement methods include float type, gauge glass type,
Hydraulic type, X-ray/gamma ray type, and ultrasonic type are listed, and these types were already used in a wide variety of industrial measuring instruments.

(発明が解決しようとする問題点) ところが、金属表面の酸洗処理などに使用する
ソルトバスのような500℃にもなる高温液面の測
定は、浮子式、ゲージグラス式、液圧式の液面計
を使用することが難しく、またX線・γ線方式は
装置自体が高価なものとなり、これらの液面計を
利用するのが不向きであつた。
(Problem to be solved by the invention) However, it is difficult to measure high-temperature liquid levels of up to 500°C, such as in salt baths used for pickling metal surfaces, using the float type, gauge glass type, and hydraulic type. It is difficult to use a level gauge, and the equipment itself for the X-ray/γ-ray method is expensive, making it unsuitable to use these level gauges.

したがつて、従来より、高温ソルトバス液面の
液面測定はほとんど目視式で行われていたが、こ
の方式では遠方監視が実施できないため、非常に
不便なものであつた。
Therefore, conventionally, liquid level measurements in high-temperature salt baths have mostly been carried out visually, but this method is extremely inconvenient because it does not allow for remote monitoring.

特に、今日のように製造ラインの自動化が積極
的に行なわれている状況下では、そのような高温
液面の自動計測の実現が強く要望されている。
Particularly in today's situation where manufacturing lines are being actively automated, there is a strong demand for such automatic measurement of high-temperature liquid levels.

ところで、非接触式の液面計として知られてい
る超音波式の液面計は、広範囲の液面変動を高精
度で測れること、早い変動に追従できること、遠
方指示、連続記録などが容易であることといつた
特徴を持つている。そこで、本発明者らはこのよ
うな超音波液面計の持つ上述のような特徴に注目
して、超音波液面計を使用し、高温液面の測定を
試みたが、液面からの反射波が全く無く、実施不
可能であつた。
By the way, ultrasonic liquid level gauges, which are known as non-contact liquid level gauges, are capable of measuring wide-range liquid level fluctuations with high precision, can follow rapid fluctuations, and can easily provide distant indications and continuous recording. It has certain characteristics. Therefore, the present inventors focused on the above-mentioned characteristics of such an ultrasonic liquid level gauge and attempted to measure high-temperature liquid levels using an ultrasonic liquid level gauge, but it was difficult to measure high-temperature liquid levels. There were no reflected waves at all, making it impossible to implement.

本発明者らは、より強力な超音波発生器を取り
付けることによりソルトバスのような高温液面で
の超音波液面計の利用も試みたが、検出器が大き
くなりすぎて設置場所、価格面で問題が多く、ま
た液面からの反射波も十分明瞭なものではなかつ
た。
The inventors also attempted to use an ultrasonic level gauge at high temperature liquid levels such as salt baths by attaching a more powerful ultrasonic generator, but the detector became too large and the installation space and cost required. There were many problems with the liquid surface, and the reflected waves from the liquid surface were not sufficiently clear.

(問題点を解決するための手段) ここに、本発明者らは、高温ソルトバス液面を
測定できる超音波液面計を開発すべく種々検討を
重ねた結果、従来高温液面の測定ができなかつた
のは、超音波検出器の探触子から発生させた超音
波が高温液面と探触子との間に存在する温度差層
およびヒユーム飛沫に吸収されて、検出器まで反
射してこないためであることを知見した。そし
て、冷却気体の吹付け手段により探触子と高温液
面との間に存在する温度差層およびヒユーム飛沫
をなくしたところ、明瞭な反射波が得られること
を知り、本発明を完成した。
(Means for solving the problem) The present inventors have conducted various studies to develop an ultrasonic liquid level gauge that can measure the liquid level in a high-temperature salt bath. What could not be done was that the ultrasonic waves generated from the probe of the ultrasonic detector were absorbed by the temperature difference layer and fume droplets that existed between the high-temperature liquid surface and the probe, and reflected back to the detector. I found out that this is because it doesn't come. Then, he discovered that clear reflected waves could be obtained by eliminating the temperature difference layer and hume droplets existing between the probe and the high-temperature liquid surface by blowing cooling gas, and completed the present invention.

ここに、本願発明の要旨とするところは、測定
すべきソルトバス液面から離間対向して配置され
る超音波送受信用の探触子を備えた超音波液面計
であつて、前記探触子を取り囲むとともに前記ソ
ルトバス液面に向つて長く伸び、先端が開いた導
波部を有し、該導波部の長さをソルトバス液面か
ら探触子までの計測距離の1/2以上とし、前記探
触子と前記ソルトバス液面との間の温度差を可及
的に少なくすべく、該導波部の内部に冷却用気体
を吹き出すノズル口を設け、該ノズル口を予め該
冷却用気体を500〜1300mmAqに調整するアキユム
レータに連結させたことを特徴とする、ソルトバ
ス用超音波液面計である。
Here, the gist of the present invention is an ultrasonic liquid level meter equipped with a probe for transmitting and receiving ultrasonic waves disposed facing away from the salt bath liquid level to be measured, the probe It has a waveguide section that surrounds the probe and extends long toward the salt bath liquid surface, with an open tip, and the length of the waveguide section is set to 1/2 of the measurement distance from the salt bath liquid surface to the probe. With the above, in order to reduce the temperature difference between the probe and the salt bath liquid level as much as possible, a nozzle port for blowing out cooling gas is provided inside the waveguide, and the nozzle port is set in advance. This is an ultrasonic level gauge for a salt bath, characterized in that it is connected to an accumulator that adjusts the cooling gas to 500 to 1300 mmAq.

本発明の好適態様にあつては、前記ノズル口は
前記探触子を取り囲んで配置される。高温液面に
対向配置される探触子を含む液面検知部は高温液
面からの輻射熱により加熱されるため冷却用気
体、通常は常温空気が吹き付けられている。した
がつて、上記構成をとることにより、液面検知部
の冷却後にその冷却気体を前記導波部に案内して
探触子と液面との間の温度差を可及的に少なくす
ることができる。
In a preferred embodiment of the present invention, the nozzle opening is arranged to surround the probe. The liquid level detection section including a probe placed opposite the high temperature liquid surface is heated by radiant heat from the high temperature liquid surface, and is therefore blown with cooling gas, usually room temperature air. Therefore, by adopting the above configuration, after cooling the liquid level detection part, the cooling gas is guided to the waveguide part to reduce the temperature difference between the probe and the liquid surface as much as possible. I can do it.

導波部の構造は、例えば筒状体であつてもよ
く、要するに探触子と計測すべき高温液面との間
に周囲から区画された導波領域を形成できればよ
い。
The structure of the waveguide section may be, for example, a cylindrical body, as long as it can form a waveguide region separated from the surroundings between the probe and the high-temperature liquid level to be measured.

ソルトバスは酸洗用などに用いられるもので、
300℃以上、通常は400〜700℃程度の液面であつ
て、探触子との間に温度差が生成するとともにヒ
ユームの発生が激しいため超音波を吸収する傾向
が顕著である。
Salt baths are used for pickling, etc.
The liquid level is 300°C or higher, usually about 400 to 700°C, and there is a temperature difference between it and the probe, and fume is generated intensely, so it has a remarkable tendency to absorb ultrasonic waves.

(作用) ここで、本発明を添付図面を用いてさらに詳し
く説明する。
(Operation) Here, the present invention will be explained in more detail using the accompanying drawings.

添付図面は本発明にかかる装置の略式説明図で
あり、図中、超音波高温液面計10の探触子11
は高温ソルトバス液面12に離間対向されて配置
され、空気供給源(図示せず)の元圧が5Kg/cm2
の空気をエアーノズルからの雑音をなくすため
に、減圧弁14を介して空気圧を下げて、一旦ア
キユムレータ16に充填させ、一定圧に安定させ
た後にその充填空気を液面計10の探触子11を
含む液面検知部に導いている。
The attached drawing is a schematic explanatory diagram of the device according to the present invention, and in the drawing, the probe 11 of the ultrasonic high temperature liquid level gauge 10 is shown.
are arranged to face the high temperature salt bath liquid level 12 at a distance, and the source pressure of the air supply source (not shown) is 5Kg/cm 2
In order to eliminate noise from the air nozzle, the air pressure is lowered through the pressure reducing valve 14 to fill the accumulator 16, and after stabilizing it at a constant pressure, the filled air is passed to the probe of the level gauge 10. 11.

このアキユームレータ16に充填された空気を
500〜1300mmAqの圧力で一定となつた時に、空気
供給管側の弁18を開き、空気供給管20を通し
て液面検知部の探触子11を取り囲んで配置させ
たノズル口22から、導波部を構成する筒状先端
部24に、下向きに流れを形成させながら吹き出
している。
The air filled in this accumulator 16
When the pressure becomes constant at 500 to 1300 mmAq, the valve 18 on the air supply pipe side is opened, and the waveguide is passed through the air supply pipe 20 from the nozzle port 22 arranged surrounding the probe 11 of the liquid level detection part. The air is blown out from the cylindrical tip 24 forming a downward flow.

これらのノズル口22から吹き出された冷却用
空気は、ソルトバス液面12の500℃の高温液面
からの輻射熱で温められた探触子11を冷却しな
がら、探触子11と高温ソルトバス液面12との
間に存在する温度差層をなくし、超音波の伝播性
を高める。
The cooling air blown out from these nozzle ports 22 cools the probe 11, which has been warmed by radiant heat from the 500°C high-temperature liquid level of the salt bath liquid level 12, while cooling the probe 11 and the high-temperature salt bath. The temperature difference layer existing between the liquid surface 12 and the liquid surface 12 is eliminated to improve the propagation of ultrasonic waves.

導波部の筒状部の形状は特に制限されないが、
好ましくは探触子を取り囲んだパイプ状のもので
ある。その長さは探触子と液面との1/2以上を占
める。
Although the shape of the cylindrical part of the waveguide part is not particularly limited,
Preferably, it is in the form of a pipe surrounding the probe. Its length occupies more than 1/2 of the length of the probe and the liquid surface.

ここに、液面検知部の発信用探触子から超音波
を発生させ、高温ソルトバス液面に向けて発射
し、反射した超音波を反射波として受信用探触子
で検出し、増幅器で増幅することにより液面を測
定する。超音波による液面計それ自体すでに公知
であることから、これ以上の説明は省略する。
Here, an ultrasonic wave is generated from the transmitting probe of the liquid level detection section, emitted toward the high temperature salt bath liquid surface, the reflected ultrasonic wave is detected as a reflected wave by the receiving probe, and the amplifier detects the ultrasonic wave. Measure the liquid level by amplification. Since the ultrasonic liquid level gauge itself is already known, further explanation will be omitted.

冷却用気体をノズル口から吹き出すときの気体
圧は一定圧1300mmAq超では超音波の雑音が発生
し、逆に、300mmAqより低くすぎると温度差層が
なくせないため、通常の条件下において本発明で
は500〜1300mmAqの空気圧での実施が最適であ
る。この空気圧はノズル口寸法、導波部形状、寸
法さらには被計測面から探触子までの距離によつ
て多少変動するのであつて、与えられる条件下で
適宜範囲内に設定できる。また、その範囲内で液
面の温度水準により適宜調整できる。
When the cooling gas is blown out from the nozzle opening, if the gas pressure exceeds a constant pressure of 1300 mmAq, ultrasonic noise will occur, and if it is too low than 300 mmAq, the temperature difference layer cannot be eliminated. It is best performed at an air pressure of 500 to 1300 mmAq. This air pressure varies somewhat depending on the nozzle opening size, waveguide shape, size, and distance from the surface to be measured to the probe, and can be set within an appropriate range under given conditions. Further, the temperature can be adjusted as appropriate within this range depending on the temperature level of the liquid surface.

次に、本発明を実施例によつてさらに説明す
る。
Next, the present invention will be further explained by examples.

実施例 添付図面に示す装置を用いて、元圧5Kg/cm2
空気を減圧弁で空気の各空気圧500〜1300mmAqに
減圧し、アキユームレータに充填した。次いで、
そのような調整圧の空気を、500℃の高温ソルト
バス液面に吹き付けた。筒状先端部の開放端と液
面との距離は300mmであつた。高温液面に向つて
筒状先端部内に探触子から発射した超音波の反射
波を同じく探触子で検出した。
Example Using the apparatus shown in the attached drawings, air at an original pressure of 5 kg/cm 2 was reduced to a pressure of 500 to 1300 mmAq using a pressure reducing valve, and then filled into an accumulator. Then,
Air at such adjusted pressure was blown onto the liquid surface of the high-temperature salt bath at 500°C. The distance between the open end of the cylindrical tip and the liquid level was 300 mm. The same probe detected the reflected waves of the ultrasonic waves emitted from the probe into the cylindrical tip toward the high-temperature liquid surface.

なお、このときの筒状先端部は探触子から筒状
先端部までの高さが500mmのものを使用した。
The cylindrical tip used here had a height of 500 mm from the probe to the cylindrical tip.

本例において、500〜1300mmAqの空気圧では明
瞭な反射波の測定値が得られた。
In this example, clear measured values of reflected waves were obtained at air pressures of 500 to 1300 mmAq.

(発明の効果) 本発明は、高温液面の非接触式の液面計であ
り、従来高温液面に利用できなかつた超音波液面
計を300℃以上、あるいは500℃以上という高温液
面に適用可能とするのである。
(Effects of the Invention) The present invention is a non-contact type liquid level gauge for measuring high temperature liquid levels. This makes it applicable to

このようにして、本発明が、超音波液面計の適
用範囲を広げることにより、各工業計器の検知部
への利用範囲が拡大され、本発明の斯界の発展に
与える利益は大きい。
In this way, the present invention expands the range of application of the ultrasonic level gauge, thereby expanding the range of use in the detection section of each industrial instrument, and the present invention brings great benefits to the development of this field.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明に係る超音波液面計により
高温ソルト液面の測定する様子を示す略式説明図
である。 10:液面計、11:探触子、12:液面、2
2:ノズル口、24:筒状先端部。
The attached drawing is a schematic explanatory diagram showing how the high temperature salt liquid level is measured by the ultrasonic liquid level gauge according to the present invention. 10: Liquid level gauge, 11: Probe, 12: Liquid level, 2
2: Nozzle opening, 24: Cylindrical tip.

Claims (1)

【特許請求の範囲】 1 測定すべきソルトバス液面から離間対向して
配置される超音波送受信用の探触子を備えた超音
波液面計であつて、前記探触子を取り囲むととも
に前記ソルトバス液面に向つて長く伸び、先端が
開いた導波部を有し、該導波部の長さをソルトバ
ス液面から探触子までの計測距離の1/2以上とし、
前記探触子と前記ソルトバス液面との間の温度差
を可及的に少なくすべく、該導波部の内部に冷却
用気体を吹き出すノズル口を設け、該ノズル口を
予め該冷却用気体を500〜1300mmAqに調整するア
キユムレータに連結させたことを特徴とする、ソ
ルトバス用超音波液面計。 2 前記ノズル口が前記探触子を取り囲んで配置
されている、特許請求の範囲第1項記載の超音波
液面計。
[Scope of Claims] 1. An ultrasonic liquid level gauge equipped with a probe for transmitting and receiving ultrasonic waves disposed facing away from the salt bath liquid level to be measured, which surrounds the probe and It has a waveguide that extends long toward the salt bath liquid surface and has an open tip, and the length of the waveguide is 1/2 or more of the measurement distance from the salt bath liquid surface to the probe,
In order to reduce the temperature difference between the probe and the salt bath liquid surface as much as possible, a nozzle port for blowing out cooling gas is provided inside the waveguide, and the nozzle port is preliminarily connected to the cooling gas. An ultrasonic level gauge for salt baths, characterized by being connected to an accumulator that adjusts gas to 500 to 1300 mmAq. 2. The ultrasonic liquid level gauge according to claim 1, wherein the nozzle opening is arranged to surround the probe.
JP61218858A 1986-09-17 1986-09-17 Ultrasonic liquid level meter Granted JPS6373117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218858A JPS6373117A (en) 1986-09-17 1986-09-17 Ultrasonic liquid level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218858A JPS6373117A (en) 1986-09-17 1986-09-17 Ultrasonic liquid level meter

Publications (2)

Publication Number Publication Date
JPS6373117A JPS6373117A (en) 1988-04-02
JPH0471446B2 true JPH0471446B2 (en) 1992-11-13

Family

ID=16726423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218858A Granted JPS6373117A (en) 1986-09-17 1986-09-17 Ultrasonic liquid level meter

Country Status (1)

Country Link
JP (1) JPS6373117A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440246B2 (en) * 2019-10-28 2024-02-28 Jfeスチール株式会社 Interface measurement device, tar decanter, and interface measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50966A (en) * 1973-01-24 1975-01-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113450U (en) * 1978-01-21 1979-08-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50966A (en) * 1973-01-24 1975-01-08

Also Published As

Publication number Publication date
JPS6373117A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JP3585841B2 (en) Fluid temperature measuring method and apparatus
CN101343676A (en) On-line detecting device and method for temperature of blast furnace chamber
CN110514271A (en) A kind of adjustable ultrasonic level gage
CN101910786A (en) Refractory thickness measuring method, and apparatus therefor
CN105738348B (en) High temperature resistant immersion cell for LIBS system
JP2018132405A (en) Sensor device
JPH0471446B2 (en)
CN106840959A (en) The determination system and method for working solution sedimentation stability
US3913407A (en) Device for acoustic detection in a nuclear reactor
CN109387349A (en) A kind of fractal antenna window surface heat flux and device for pressure measurement
CN110940257A (en) Device and method for measuring inclination angle change of pipeline
US2938386A (en) Method and apparatus for measuring predetermined pressures
Fujii et al. Ultrasonic absorption and relaxation times in nitrogen, oxygen, and water vapor
CN103884448B (en) Measure the built-in type x-ray imaging method and apparatus of component inside temperature
CN205643167U (en) A high temperature resistant immersion cell for laser induction punctures spectroscopy system
CN108005643A (en) The oil-filled pressure-bearing type acoustic logging instrument injection flow computational methods of capsule
JP2005077410A (en) Probe and probe assembly
CN106769530A (en) Repeated strain measurement apparatus and system suitable for high temperature fluent metal medium
CN206580849U (en) Means for correcting for thermocouple temperature measurement in blast furnace
JP3128089B2 (en) Structure of porous plug for molten metal container
CN216695293U (en) Temperature measuring system for measuring surface temperature of steel billet in two cooling chambers at multiple angles
CN110455859A (en) Sweat coolling test macro and test method based on oxy-acetylene platform
KR101212217B1 (en) Echo reduction measurement apparatus and echo reduction measurement system using the apparatus
JP2533904B2 (en) Internally generated air pressure measuring device for construction body
CN213274630U (en) Air injection device capable of automatically adapting to temperature in closed industrial environment