JPH0471136B2 - - Google Patents

Info

Publication number
JPH0471136B2
JPH0471136B2 JP60104387A JP10438785A JPH0471136B2 JP H0471136 B2 JPH0471136 B2 JP H0471136B2 JP 60104387 A JP60104387 A JP 60104387A JP 10438785 A JP10438785 A JP 10438785A JP H0471136 B2 JPH0471136 B2 JP H0471136B2
Authority
JP
Japan
Prior art keywords
compressor
drive
pressure
refrigerant
discharge pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60104387A
Other languages
Japanese (ja)
Other versions
JPS61262554A (en
Inventor
Naoki Akazawa
Tadayoshi Kimura
Naoya Kawakami
Yoshiaki Fujisawa
Noryoshi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Priority to JP10438785A priority Critical patent/JPS61262554A/en
Priority to DE19863616149 priority patent/DE3616149A1/en
Priority to US06/863,129 priority patent/US4706470A/en
Publication of JPS61262554A publication Critical patent/JPS61262554A/en
Publication of JPH0471136B2 publication Critical patent/JPH0471136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧縮機駆動制御装置、特に振動式の圧
縮機に供給する交流電源の周波数を当該圧縮機の
冷媒の吸入圧力および吐出圧力に関連づけること
によつて最大効率で稼働させるよう制御する圧縮
機駆動制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates the frequency of an AC power supply supplied to a compressor drive control device, particularly a vibrating compressor, to the suction pressure and discharge pressure of refrigerant of the compressor. The present invention relates to a compressor drive control device that controls the compressor to operate at maximum efficiency.

〔従来の技術〕[Conventional technology]

振動式の圧縮機を用いてガス状の冷媒を圧縮し
て液化し、当該液化した冷媒が気化する際の気化
熱を利用して冷却等を行う冷蔵庫がある。従来、
該冷蔵庫に用いる振動式の圧縮機駆動制御装置と
して例えば第3図図示の如きものがある。第3図
中の振動式の圧縮機5は、スイツチング用のトラ
ンジスタTR1、TR2を導通状態に交互に切り換え
ることによつて、直流電源Vを変圧器4の極性の
異なる1次側の巻線に交互に印加し、共振状態、
即ち最大効率が得られるように駆動制御される。
この際、スイツチング用のトランジスタTR1
TR2は例えば第4図図示電流波形の如き態様で導
通状態/非導通状態に交互に切り換えられ、しか
も振動式の圧縮機5の共振周波数に一致するよう
にスイツチング周波数が制御される。詳述する
と、第4図図中にコレクタ電流“IC”が切換わる
ように、ドライブ回路1−3からスイツチング用
のトランジスタTR1、TR2のベースにベース電流
“IB”が交互に供給される。即ち、当該ベース電
流“IB”を電流増幅率“hFE”倍した電流波形と
して図示ないしに示す如きいわば台形波形を
供給することによつて、図中点P1ないしP3の如
き位置において夫々 IC≧hFE×IB なる条件を与えることによつて、スイツチング用
のトランジスタTR1、TR2を導通状態/非導通状
態に交互に切り換えている。従来以上説明した如
き圧縮機駆動制御方式によつて、振動式の圧縮機
5の共振周波数に一致した駆動電源によつて当該
圧縮機5を駆動していた。
There is a refrigerator that compresses and liquefies a gaseous refrigerant using a vibrating compressor, and performs cooling etc. using the heat of vaporization when the liquefied refrigerant evaporates. Conventionally,
As an example of a vibrating compressor drive control device used in the refrigerator, there is one as shown in FIG. The vibrating compressor 5 in FIG. 3 connects the DC power supply V to the primary windings of the transformer 4 with different polarities by alternately switching the switching transistors TR 1 and TR 2 into conduction states. Apply voltage alternately to the line to create a resonant state,
That is, the drive is controlled so as to obtain maximum efficiency.
At this time, the switching transistor TR1 ,
TR 2 is alternately switched between a conductive state and a non-conductive state in a manner such as the current waveform shown in FIG. 4, and the switching frequency is controlled to match the resonant frequency of the vibrating compressor 5. To be more specific, the base current "I B " is alternately supplied from the drive circuit 1-3 to the bases of the switching transistors TR 1 and TR 2 so that the collector current "I C " is switched as shown in FIG. be done. That is, by supplying a so - called trapezoidal waveform as shown in the figures as a current waveform obtained by multiplying the base current "I B " by the current amplification factor "h FE ", The switching transistors TR 1 and TR 2 are alternately switched between a conductive state and a non-conductive state by providing the following condition: I C ≧h FE ×I B . Conventionally, the compressor 5 has been driven by a drive power source that matches the resonant frequency of the vibrating compressor 5 using the compressor drive control method as described above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した如く、例えば振動式の圧縮機5の
電流がIC≧hFE×IBの条件によつてスイツチング用
のトランジスタ等を導通状態/非導通状態に切り
換えるように制御した場合には、第1に当該スイ
ツチング用のトランジスタ等を導通状態/非導通
状態に切り換えるタイミングを取るために必要な
信号がリツプルによつて影響を受け、タイミング
の時期に変動を生じてしまうという問題点があつ
た。第2に、第4図図示の如くスイツチング用の
トランジスタが非導通状態となる時期は、当該ト
ランジスタの電流増幅率“hFE”によつて変動す
るため、交互に導通状態/非導通状態に切り換わ
るトランジスタの電流増幅率“hFE”の値を合わ
せる必要がある。更に、当該電流増幅率“hFE
が温度によつて変動してしまうこと、経年変化す
ること等によつて振動式の圧縮機5が常に最大の
効率によつて駆動され得ない場合が生じてしまう
という問題点があつた。
As explained above, for example, when the current of the vibrating compressor 5 is controlled so that a switching transistor or the like is switched between a conductive state and a non-conductive state according to the condition of I C ≧h FE × I B , First, there was a problem in that the signals necessary to determine the timing for switching the switching transistor, etc. between a conductive state and a non-conductive state were affected by ripples, causing fluctuations in the timing. . Second, as shown in FIG. 4, the timing at which the switching transistor becomes non-conductive varies depending on the current amplification factor "h FE " of the transistor, so the switching transistor is alternately switched between the conductive state and the non-conductive state. It is necessary to match the value of the current amplification factor "h FE " of the transistor to be replaced. Furthermore, the current amplification factor “h FE
There has been a problem in that the vibrating compressor 5 cannot always be driven at maximum efficiency due to fluctuations in temperature, aging, etc.

更に従来から、振動式の圧縮機における共振周
波数が冷媒の温度や圧力に対応して変化する点に
着目し、当該圧縮機における振動を制御すること
が考慮されたことがあつた。しかし、この場合、
いわば単一のセンサを用いることが考慮されたの
みで温度や圧力の変化に対して正しく対処するこ
とができなかつた。
Furthermore, conventionally, attention has been paid to the fact that the resonant frequency in a vibratory compressor changes in response to the temperature and pressure of the refrigerant, and consideration has been given to controlling vibrations in the compressor. But in this case,
In other words, the use of a single sensor was only considered, and it was not possible to properly deal with changes in temperature and pressure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記問題点を解決するために、振動
式の圧縮機の冷媒吸入圧力および吐出圧力の和に
対応した形の周波数の駆動電源によつて駆動する
構成を採用することにより、振動式の圧縮機を最
大効率で駆動するようにしている。そしてそのた
め、本発明の圧縮機駆動制御装置は、負荷に対応
した所定の周波数を用いて振動式の圧縮機を駆動
制御する圧縮機駆動制御装置において、前記圧縮
機によつて吸入される冷媒の吸入圧力を検出する
吸入圧力検出器と、前記圧縮機によつて圧縮され
た冷媒の吐出圧力を検出する吐出圧力検出器と、
前記吸入圧力検出器および前記吐出圧力検出器に
よつて夫々検出された圧力信号についての和を演
算する演算部とをそなえると共に、当該演算部に
よつて加算された結果の値にもとづいて定められ
る所定の周波数の駆動電圧を発生する駆動電源発
生部を備え、該駆動電源発生部によつて発生され
た駆動電源を用いて前記圧縮機を駆動することを
特徴としている。
In order to solve the above-mentioned problems, the present invention employs a configuration in which the vibrating compressor is driven by a drive power source with a frequency corresponding to the sum of the refrigerant suction pressure and discharge pressure of the vibrating compressor. The compressor is driven at maximum efficiency. Therefore, the compressor drive control device of the present invention is a compressor drive control device that controls the drive of a vibrating compressor using a predetermined frequency corresponding to the load. a suction pressure detector that detects suction pressure; a discharge pressure detector that detects the discharge pressure of the refrigerant compressed by the compressor;
an arithmetic unit that calculates the sum of pressure signals respectively detected by the suction pressure detector and the discharge pressure detector, and is determined based on the value of the result added by the arithmetic unit. The compressor is characterized in that it includes a drive power generation section that generates a drive voltage of a predetermined frequency, and uses the drive power generated by the drive power generation section to drive the compressor.

〔実施例〕〔Example〕

以下図面を参照しつつ本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の1実施例構成図、第2図は第
1図図示本発明の1実施例構成の要部構成図を示
す。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of essential parts of the embodiment of the present invention shown in FIG.

図中、1は制御回路、1−1は圧力検出部、1
−2は演算部、1−3はドライブ回路、2,3は
圧力検出器、4は変圧器、5は圧縮機、6は凝縮
器、7は減圧器、8は冷蔵庫、8−1はエバポレ
ータを表す。
In the figure, 1 is a control circuit, 1-1 is a pressure detection section, 1
-2 is a calculation unit, 1-3 is a drive circuit, 2 and 3 are pressure detectors, 4 is a transformer, 5 is a compressor, 6 is a condenser, 7 is a pressure reducer, 8 is a refrigerator, and 8-1 is an evaporator represents.

第1図において、図中制御回路1は圧力検出部
1−1、演算部1−2およびドライブ回路1−3
によつて構成され、圧縮機5によつて吸入される
吸入圧力を検出する圧力検出器(Ps)2および圧
縮機5によつて圧縮され吐出される吐出圧力を検
出する圧力検出器(Pd)3からの夫々の信号に
基づいて当該圧縮機5が共振状態で駆動されるよ
うな周波数の駆動信号を供給するためのものであ
る。該制御回路1から供給された駆動信号によつ
て生成された駆動電源の供給を受けた振動式の圧
縮機5は、冷媒を圧縮して気体および液体が混合
した形のものを凝縮器6に供給して熱を放出させ
て液化させている。そして、該液化された冷媒は
減圧器7を介して冷蔵庫8内に設けられたエバポ
レータ8−1で気化し、気化熱を奪つて当該冷蔵
庫8を冷却するものである。該気化した冷媒は再
度圧縮機5によつて圧縮され、液化される。以上
の如きクローズド・サイクルを繰り返すことによ
り、エバポレーター8−1から奪われた熱が凝縮
器6から熱の形で放出されることとなる。以下制
御回路1の動作を詳述する。
In FIG. 1, the control circuit 1 in the figure includes a pressure detection section 1-1, a calculation section 1-2, and a drive circuit 1-3.
A pressure detector (P s ) 2 detects the suction pressure sucked in by the compressor 5 and a pressure detector (P s ) 2 detects the discharge pressure compressed and discharged by the compressor 5. d ) to supply a drive signal of such a frequency that the compressor 5 is driven in a resonant state based on the respective signals from 3; The vibrating compressor 5, supplied with drive power generated by the drive signal supplied from the control circuit 1, compresses the refrigerant and sends a mixture of gas and liquid to the condenser 6. It supplies heat, releases heat, and liquefies it. Then, the liquefied refrigerant passes through the pressure reducer 7 and is vaporized in an evaporator 8-1 provided in the refrigerator 8, and cools the refrigerator 8 by removing the heat of vaporization. The vaporized refrigerant is compressed again by the compressor 5 and liquefied. By repeating the closed cycle as described above, the heat taken from the evaporator 8-1 is released from the condenser 6 in the form of heat. The operation of the control circuit 1 will be described in detail below.

図中圧力検出部1−1は圧力検出器2,3によ
つて検出された信号を所定の電気信号に変換する
ためのものである。
In the figure, a pressure detection section 1-1 is for converting signals detected by pressure detectors 2 and 3 into predetermined electrical signals.

図中演算部1−2は圧力検出部1−1によつて
変換された吸入圧力および吐出圧力に対応する電
気信号に基づいて所定の周波数の駆動電源を生成
するためのものである。そして、ドライブ回路1
−3は演算部1−2から供給された電圧に対応す
る形の周波数の駆動信号を図中トランジスタTR1
およびTR2に供給して、図示直流電源Vccから変
圧器4の1次側巻線にいわば矩形波の形であつて
交互に切り換わる態様で電流を夫々供給するため
のものである。該変圧器4の2次側巻線から得ら
れた交流電圧は圧縮機5に供給され、当該圧縮機
5は最大効率で駆動されることとなる。
In the drawing, a calculation section 1-2 is for generating a driving power source of a predetermined frequency based on electric signals corresponding to the suction pressure and discharge pressure converted by the pressure detection section 1-1. And drive circuit 1
-3 is a drive signal with a frequency corresponding to the voltage supplied from the calculation unit 1-2 to the transistor TR 1 in the figure.
and TR 2 to supply current from the illustrated DC power supply V cc to the primary winding of the transformer 4 in a so-called rectangular waveform and in an alternating manner. The AC voltage obtained from the secondary winding of the transformer 4 is supplied to the compressor 5, and the compressor 5 is driven at maximum efficiency.

以下第2図を用いて圧縮機5が共振状態で駆動
制御される態様を詳細に説明する。
The manner in which the compressor 5 is driven and controlled in a resonant state will be described in detail below with reference to FIG.

第2図図中圧力検出器2,3、圧力検出部1−
1、演算部1−2、ドライブ回路1−3、変圧器
4および圧縮機5は夫々第1図図示のものと同一
あるいは具体例を示す。
In Fig. 2, pressure detectors 2 and 3, pressure detection part 1-
1. The arithmetic unit 1-2, drive circuit 1-3, transformer 4, and compressor 5 are the same as those shown in FIG. 1, or specific examples thereof are shown.

まず、振動式の圧縮機5の共振周波数fは下式
の如く表される。
First, the resonant frequency f of the vibrating compressor 5 is expressed as in the following equation.

f=A(K/M)1/2 ……(1) ここで、Aは定数、Mは圧縮機5を構成するピ
ストンの質量およびKはバネ定数を表す。また、
バネ定数Kは下式の如く表せる。
f=A(K/M) 1/2 (1) Here, A is a constant, M is the mass of the piston constituting the compressor 5, and K is a spring constant. Also,
The spring constant K can be expressed as shown below.

K=K1×2+Kps+Kpd ……(2) ここで、K1は圧縮機5を構成するピストンを
両側から支える夫々のバネ定数、Kpsは吸入され
る冷媒によつて定まる定数およびKpdは吐出され
る冷媒によつて定まる定数を表す。
K = K 1 × 2 + K ps + K pd ... (2) Here, K 1 is the spring constant of each of the pistons that support the compressor 5 from both sides, K ps is a constant determined by the refrigerant to be drawn, and K pd represents a constant determined by the discharged refrigerant.

従つて、前式(1)および(2)から判明するように、
圧縮機5に吸入される冷媒の吸入圧力および圧縮
されて圧送される冷媒の吐出圧力の例えば増大に
伴い、圧縮機5の共振周波数が増大する関係とな
る。このため、本発明の如く圧縮機5の吸入圧力
および吐出圧力を検出し、該検出した圧力に関連
づけて圧縮機5に供給する駆動電源の周波数を制
御することによつて、当該圧縮機5の負荷等に影
響されることなく、常に共振周波数即ち最大効率
で圧縮機5を駆動することが可能となる。
Therefore, as is clear from the previous equations (1) and (2),
For example, as the suction pressure of the refrigerant drawn into the compressor 5 and the discharge pressure of the compressed and pumped refrigerant increase, the resonance frequency of the compressor 5 increases. Therefore, as in the present invention, the suction pressure and discharge pressure of the compressor 5 are detected, and the frequency of the driving power supplied to the compressor 5 is controlled in relation to the detected pressure. It becomes possible to always drive the compressor 5 at the resonant frequency, that is, at maximum efficiency, without being affected by the load or the like.

次に第2図図示構成の動作を説明する。 Next, the operation of the configuration shown in FIG. 2 will be explained.

図中圧力検出器2,3によつて検出された吸入
圧力(Ps)信号および圧縮機5の吐出圧力(Pd
信号は圧力検出部1−1中の夫々のオペアンプの
正極性端子に夫々入力されて、所定の増幅が行わ
れる。該増幅された夫々の信号は、演算部1−2
中で図示の如く抵抗回路網によつて式(2)中の
“Kps+Kpd”が演算される。そして、該演算され
た信号はドライブ回路1−3に供給され、該信号
に対応する周波数の矩形信号に電圧・周波数変換
される。該電圧・周波数変換された矩形信号は図
中TR1およびTR2に供給され、直流電源Vccから
交互に極性の変わる態様の電流を変圧器4の1次
側巻線に夫々供給する。そして、当該変圧器4の
2次側巻線から得られた交流電圧を圧縮機5に供
給する。以上の如くして圧縮機5によつて吸入さ
れる冷媒の吸入圧力および吐出圧力に関連づけた
形で当該圧縮機5を駆動する駆動電源の周波数を
常に共振する状態、即ち最大効率の状態で駆動制
御することが可能となる。
In the figure, the suction pressure (P s ) signal detected by pressure detectors 2 and 3 and the discharge pressure (P d ) of the compressor 5
The signals are input to the positive polarity terminals of the respective operational amplifiers in the pressure detection section 1-1, and a predetermined amplification is performed. The respective amplified signals are sent to the arithmetic unit 1-2.
As shown in the figure, "K ps +K pd " in equation (2) is calculated using a resistor network. The calculated signal is then supplied to the drive circuit 1-3, where it is voltage-frequency converted into a rectangular signal having a frequency corresponding to the signal. The voltage/frequency converted rectangular signal is supplied to TR 1 and TR 2 in the figure, and a current with alternating polarity is supplied from the DC power supply V cc to the primary winding of the transformer 4, respectively. Then, the AC voltage obtained from the secondary winding of the transformer 4 is supplied to the compressor 5. As described above, the frequency of the drive power source that drives the compressor 5 is always driven in a resonant state, that is, in a state of maximum efficiency, in relation to the suction pressure and discharge pressure of the refrigerant sucked by the compressor 5. It becomes possible to control.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、振動式の
圧縮機の冷媒吸入圧力および吐出圧力に対応した
周波数の駆動電源を当該圧縮機に供給する構成を
採用しているため、常に最大効率で圧縮機を駆動
制御することが可能となる。
As explained above, according to the present invention, since a configuration is adopted in which a driving power supply having a frequency corresponding to the refrigerant suction pressure and discharge pressure of the vibratory compressor is supplied to the compressor, the compressor is always compressed with maximum efficiency. It becomes possible to drive and control the machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例構成図、第2図は第
1図図示本発明の1実施例構成の要部構成図、第
3図は従来の圧縮機駆動制御装置を説明する説明
図、第4図は第3図図示圧縮機駆動制御装置の動
作を説明する動作説明図を示す。 図中、1は制御回路、1−1は圧力検出部、1
−2は演算部、1−3はドライブ回路、2,3は
圧力検出器、4は変圧器、5は圧縮機、6は凝縮
器、7は減圧器、8は冷蔵庫、8−1はエバポレ
ータを表す。
FIG. 1 is a configuration diagram of one embodiment of the present invention, FIG. 2 is a configuration diagram of main parts of one embodiment of the present invention shown in FIG. 1, and FIG. 3 is an explanatory diagram illustrating a conventional compressor drive control device. , FIG. 4 shows an operation explanatory diagram for explaining the operation of the compressor drive control device shown in FIG. 3. In the figure, 1 is a control circuit, 1-1 is a pressure detection section, 1
-2 is a calculation unit, 1-3 is a drive circuit, 2 and 3 are pressure detectors, 4 is a transformer, 5 is a compressor, 6 is a condenser, 7 is a pressure reducer, 8 is a refrigerator, and 8-1 is an evaporator represents.

Claims (1)

【特許請求の範囲】 1 負荷に対応した所定の周波数を用いて振動式
の圧縮機を駆動制御する圧縮機駆動制御装置にお
いて、 前記圧縮機によつて吸入される冷媒の吸入圧力
を検出する吸入圧力検出器と、 前記圧縮機によつて圧縮された冷媒の吐出圧力
を検出する吐出圧力検出器と、 前記吸入圧力検出器および前記吐出圧力検出器
によつて夫々検出された圧力信号についての和を
演算する演算部と をそなえると共に、 当該演算部によつて加算された結果の値にもと
づいて定められる所定の周波数の駆動電圧を発生
する駆動電源発生部を備え、 該駆動電源発生部によつて発生された駆動電源
を用いて前記圧縮機を駆動することを特徴とする
圧縮機駆動制御装置。
[Scope of Claims] 1. A compressor drive control device that controls the drive of a vibrating compressor using a predetermined frequency corresponding to the load, comprising: a suction device that detects the suction pressure of refrigerant sucked by the compressor; a pressure detector; a discharge pressure detector that detects the discharge pressure of the refrigerant compressed by the compressor; and a sum of pressure signals detected by the suction pressure detector and the discharge pressure detector, respectively. , and a drive power generation section that generates a drive voltage of a predetermined frequency determined based on the value of the result added by the operation section; A compressor drive control device, characterized in that the compressor is driven using drive power generated by the compressor.
JP10438785A 1985-05-16 1985-05-16 Compressor driving control system Granted JPS61262554A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10438785A JPS61262554A (en) 1985-05-16 1985-05-16 Compressor driving control system
DE19863616149 DE3616149A1 (en) 1985-05-16 1986-05-14 SYSTEM FOR CONTROLLING THE OPERATION OF A VIBRATION COMPRESSOR
US06/863,129 US4706470A (en) 1985-05-16 1986-05-14 System for controlling compressor operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10438785A JPS61262554A (en) 1985-05-16 1985-05-16 Compressor driving control system

Publications (2)

Publication Number Publication Date
JPS61262554A JPS61262554A (en) 1986-11-20
JPH0471136B2 true JPH0471136B2 (en) 1992-11-12

Family

ID=14379337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10438785A Granted JPS61262554A (en) 1985-05-16 1985-05-16 Compressor driving control system

Country Status (1)

Country Link
JP (1) JPS61262554A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762469B2 (en) * 1996-01-18 2006-04-05 三洋電機株式会社 Linear compressor drive unit
JP2002161863A (en) * 2000-11-30 2002-06-07 Matsushita Electric Ind Co Ltd Piston collision prevention control method for linear compressor
KR100451233B1 (en) * 2002-03-16 2004-10-02 엘지전자 주식회사 Driving control method for reciprocating compressor

Also Published As

Publication number Publication date
JPS61262554A (en) 1986-11-20

Similar Documents

Publication Publication Date Title
KR100571224B1 (en) Linear compressor driving device, medium and information assembly
US5032772A (en) Motor driver circuit for resonant linear cooler
US20050031470A1 (en) Linear compressor and apparatus to control the same
JP2004190657A (en) Apparatus and method for controlling driving of linear motor
JP2002155868A (en) Linear compressor drive device, medium, and information aggregate
JP3717961B2 (en) Vibration type compressor
JPH0471136B2 (en)
JPS6145140B2 (en)
JPH09250449A (en) Vibration type compressor
JPH09126145A (en) Drive device for linear compressor
JPH0473055B2 (en)
JP3954669B2 (en) Vibration type compressor
JP2001073944A (en) Driving device for linear compressor
JPH0523348B2 (en)
JP2828388B2 (en) Vibration compressor power supply
JPH0114775Y2 (en)
JP2527563B2 (en) High frequency heating equipment
JPH0523347B2 (en)
JPH0113819Y2 (en)
KR0177025B1 (en) High voltage generator using piezoelectric ceramics
JPH05231745A (en) Engine driven type cooling and heating device
JPH0765570B2 (en) Malfunction prevention circuit device for drive power source
KR20020039067A (en) Driving apparatus of linear compressor
JPS62103493A (en) Power source switch device for car-loaded refrigerator
JPH08237937A (en) Constant current power supply